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Abstract Cell formation (CF) problem is one of the most

important decision problems in designing a cellular man-

ufacturing system includes grouping machines into

machine cells and parts into part families. Several factors

should be considered in a cell formation problem. In this

work, robust optimization of a mathematical model of a

dynamic cell formation problem integrating CF, production

planning and worker assignment is implemented with

uncertain scenario-based data. The robust approach is used

to reduce the effects of fluctuations of the uncertain

parameters with regards to all possible future scenarios. In

this research, miscellaneous cost parameters of the cell

formation and demand fluctuations are subject to uncer-

tainty and a mixed-integer nonlinear programming model

is developed to formulate the related robust dynamic cell

formation problem. The objective function seeks to mini-

mize total costs including machine constant, machine

procurement, machine relocation, machine operation, inter-

cell and intra-cell movement, overtime, shifting labors

between cells and inventory holding. Finally, a case study

is carried out to display the robustness and effectiveness of

the proposed model. The tradeoff between solution

robustness and model robustness is also analyzed in the

obtained results.

Keywords Dynamic cell formation problem � Scenario-
based robust optimization � Mixed-integer nonlinear

model � Worker assignment

Introduction

Today, global competitive environment has persuaded

manufacturing practitioners to deliver low-cost and high-

quality products. Some recently applied approaches have

been put into practice to cope with the ever growing

manufacturing costs, such as location, material handling

system, and energy. One of these recent manufacturing

approaches is Group Technology (GT). GT is one of the

main building blocks to implementing Just-In-Time (JIT)

philosophy. This approach is based upon grouping parts

and machines together with respect to their similarities in

production processes, functionalities, etc. The aspect of GT

which associates with the configuration of manufacturing

firms is cellular manufacturing system (CMS). The most

outstanding benefit of CMS can be noted as reduction in

some production factors, such as lot sizes, lead times,

work-in-process inventories and setups, while higher level

of investment is inevitable to implement this system.

Designing of a CMS involves four main steps. The first

step associates with cell formation problem which com-

prises assigning parts to their families and machines to

their corresponding machine cells based on some features,

such as similar geometric design or processing require-

ments. Second, intra-cell and inter-cell layouts are defined

through Group Layout (GL). This step determines the

location of machines and cells in the shop floor. Third,

Group Scheduling (GS) is accomplished to schedule parts

within part families. Finally, required resources such as

labors and material handling devices are assigned to the

manufacturing cells.

It has been clarified by Wu et al. (2007) that these four

steps are interrelated and in other words, the solution for

each step influences the other one. Thus, simultaneously

solving these problems has to be applied by the
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researchers; that is, the matter not been paid attention

enough. Nevertheless, due to the complexity and NP-

complete nature of CF, GL, and GS decisions, most

researchers have addressed two or three decisions

sequentially or independently. However, the benefits

gained from CMS implementation are highly affected by

how theses stages of the CMS design have been performed

in collaboration with each other.

Shorter product life cycles are an increasingly signifi-

cant issue in CM. As a result, neglecting new products

emerging at future imposes subsequent unplanned changes

to the CMS design and causes production disruptions and

unexpected costs. Hence, those changes should be incor-

porated in the design process. To come up with a solution

to handle those changes, the dynamic cellular manufac-

turing system (DCMS) was introduced in which it is

assumed that the product mix or volume changes of

demands can be predicted in a multi-period planning

horizon (Rheault et al. 1995).

Most DCMS models assume that the input parameters

are deterministic and certain. However, in practical situa-

tions many parameters are uncertain and imprecise. DCMS

design has to be implemented in many environments based

on some parameters with uncertain values. However, there

are few studies on designing cellular manufacturing sys-

tems under dynamic and uncertain conditions. These

studies can be divided into four classes as fuzzy pro-

gramming approach, stochastic programming approach,

scenario-based programming approach, and robust opti-

mization approach in terms of uncertainty expression type

in the problem. Different robust optimization approaches

have been introduced in the recent years to deal with the

uncertainty of the data. In this study, a scenario-based

robust optimization approach is used to cope with uncer-

tainty and to find a solution that is robust with regard to

data uncertainties in part demand, inter-cell and intra-cell

movement cost, machine purchase cost, selling machine

revenue, machine fixed/variable cost, machine relocation

cost, inter-cell movement labor cost, process variable cost

and inventory holding cost. It is the first time that this vast

coverage of input parameters in a DCMS are considered

uncertain to be handled by a robust optimization approach.

The aims of this study are twofold. The first one is to

formulate a new mathematical model with an extensive

coverage of important manufacturing features including

batch intra-cell/inter-cell movement, production planning

strategies (i.e., internal production, inventory holding, and

lost sale as under-fulfilled demand), selling/purchase

machine, labor movement, labor assignment, labor capac-

ity, machine relocation, regular/overtime machine capac-

ity, cell size limit, flexible operation sequence, machine/

labor processing time, and uncertain scenario-based

parameters (i.e., part demand and miscellaneous costs).

The second aim is to develop a robust model based on the

deterministic proposed model using scenario-based robust

optimization approach. The important concern of the

employed robust methodology is to obtain an optimal CM

design that is robust with regard to data uncertainties in

part demand and miscellaneous costs. The objective func-

tion of the integrated model is to minimize the total costs of

machine constant, machine procurement, machine reloca-

tion, machine operation, inter-cell and intra-cell move-

ment, overtime, shifting labors between cells and inventory

holding. The main constraints are operator-machine-cell

assignment, machine capacity, machine number equilib-

rium, labor capacity, cell size limit, and balancing

inventory.

Recently, Kia et al. (2012) have formulated a mathe-

matical model integrating the CF and GL decisions in a

dynamic environment by considering some advantages

including: (1) considering flexible configuration of cells,

(2) calculating relocation cost based on the locations

assigned to machines, (3) distance-based calculation of

intra- and inter-cell material handling costs and (4) con-

sidering multi-rows layout of equal sized facilities. One

disadvantage in their work was ignoring the assignment of

operators to machines located in different cells. In another

study, Bagheri and Bashiri (2014) investigated the simul-

taneous consideration of the cell formation problem with

inter-cell layout and operator assignment problems in a

dynamic environment by formulating a mathematical

model with the objectives of minimization of inter–intra

cell part trips, machine relocation cost and operator-related

issues. A main drawback in both mentioned studies was

that all parameters were considered deterministic despite

the fact some of them should be predicted for the future

periods in a dynamic environment with high level of

uncertainty.

Generally, the presented study is an extension of the

previous studies Kia et al. (2012), Bagheri and Bashiri

(2014) by integrating the CF, production planning (PP) and

worker assignment in a mathematical model with data

uncertainties in most parameters of model including part

demand and miscellaneous costs which is solved by a

scenario-based robust optimization approach. The robust

approach is used to reduce the effects of fluctuations of the

uncertain parameters with regards to all possible future

scenarios.

To investigate the effect of turbulence in the values of

uncertain data on the model performance and obtained

solutions, a robust model is developed. Then, a case study

is carried out to demonstrate the validity of the employed

robust approach and verify the integrated DCMS model.

The obtained results of implementing the case study also

illustrate the applicability of the proposed model in real

industrial cases.
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The remainder of this paper is organized as follows. In

‘‘Literature review’’ section, the literature review is carried

out. The background of the robust optimization approach

employed in this study is described in ‘‘Robust optimiza-

tion’’ section. A mathematical model is formulated inte-

grating CF, PP and worker assignment decisions in

‘‘Mathematical model and model description’’ section fol-

lowed using some linearization procedures. In addition, a

robust model is developed in this section. ‘‘A case study’’

section illustrates the case study that is implemented to

investigate the features of the proposed model and assess

the performance of the developed robust model. Finally,

conclusion is given in ‘‘Conclusion’’ section.

Literature review

One of the most important issues which have received less

attention in the literature body of DCMS is consideration of

human-related issues. The first mathematical model

developed for human-related aspects of DCMS was pre-

sented by Aryanezhad et al. (2009). They developed a new

mathematical model to deal with DCMS and worker

assignment problems, simultaneously. The objective func-

tion of this model contains system costs including machine

purchase, operating, inter-cell material handling, machine

relocation, worker hiring, training, salary and firing costs.

Balakrishnan and Cheng (2005) presented a flexible

framework for modeling cellular manufacturing when

product demand changes during the planning horizon.

Most CMS models assume that the input parameters are

deterministic and certain. However, in practical situations,

many parameters such as parts demands, processing times

and machines capacities are uncertain. Robust optimization

as a strong technique was used to deal with uncertainty in

the systems. Robust optimization can be very efficient and

useful because of generation of the good and robust solu-

tions for any possible occurrences of uncertain parameters

(Mulvey et al. 1995). The concept of robust optimization in

operation research was presented by Mulvey et al. (1995).

They extended a robust counterpart approach with a non-

linear function that penalizes the constraint violations and

addresses uncertainties via a set of discrete scenarios. Bai

et al. (1997) demonstrated that the traditional stochastic

linear program fails to determine a robust solution despite

the presence of a cheap robust point. They evaluated

properties of risk-averse utility functions in robust opti-

mization. They discussed that a concave utility function

should be incorporated in a model whenever the decision

maker is risk averse. Ben-Tal and Nemirovski (1998)

proposed a robust optimization approach to formulate

continuous uncertain parameters. Ben-Tal and Nemirovski

(1998), Ben-Tal and Nemirovski (2002) and Ben-Tal et al.

(2002) developed robust theory of linear, quadratic and

conic quadratic problems. Bertsimas and Sim (2002) and

Bertsimas and Thiele (2003) proposed robust optimization

methods for discrete optimization in continuous spaces.

Mirzapour Al-E-Hashem et al. (2011) studied multi-site

aggregate production planning problems under uncer-

tainty by defining multi-objective robust optimization

models.

Mahdavi et al. (2010) proposed a mathematical model

for solving dynamic cellular manufacturing problem con-

sidering two areas of cell configuration and assigning the

operators to the machines. In the proposed model, some

factors have been considered including machine capacity,

multi-period planning horizon and the worker idleness

time. Rafiei and Ghodsi (2013) designed a two-objective

mathematical model for solving the operator assignment

and cell configuration simultaneously. Minimizing total

costs of machines purchase, machine relocation and over-

head, parts intra-cell and inter-cell movements and the

operator inter-cell movements were considered in the first

objective function. The second objective function increased

the utilization level of the operators.

In similar studies, Kia et al. (2013), Shirazi et al. (2014)

presented multi-objective mixed-integer nonlinear pro-

gramming models to combine the problems of dynamic cell

formation and group layout. They utilized the multi-row

layout for locating machines inside the cells with flexible

size regarding the lot splitting feature and several other

features (i.e., operation sequence, processing time, machine

duplicates, and machine capacity).

Bashiri and Bagheri (2013) proposed a two-phase

heuristic method for cell formation and operator assigning,

where in the first phase, clustering technique and in the

second phase, a mathematical model is used. Kia et al.

(2011) presented a mathematical model for a multi-period

CM system layout with fuzzy parameters. By taking the

linear intra-cell machines layout, operation sequence,

processing times and the machines capacity into account,

the model intended to minimize the intra/inter-cell move-

ments costs, the machines overhead costs and machines

relocation costs.

Ghezavati et al. (2011) proposed a robust model for cell

formation and group scheduling with supply chain

approach. In this model, the uncertainty resulted from

demand and parts processing time were expressed by

stochastic scenarios with given probabilities. They formu-

lated the problem with the objective to minimize delaying

costs for parts delivery due time, the parts outsourcing

costs to suppliers and the underutilization cost of machines

and solved it by a hybrid meta-heuristic algorithm. Paydar

et al. (2013) presented a mathematical model for integra-

tion of cell formation, machine layout and production

planning. They considered customer demand and machine
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capacity uncertain and proposed a robust model. Forghani

et al. (2012) suggested a robust model to determine cell

formation and group layout where the parts demand is

uncertain.

Sakhaii et al. (2015) developed a robust optimization

approach for a new integrated MILP model to solve a

DCMS with unreliable machines and a production planning

problem simultaneously. They adopted a robust optimiza-

tion approach immunized against even worst-case to cope

with the parts processing time uncertainty. Hassannezhad

et al. (2014) performed sensitivity analysis of modified

self-adaptive differential evolution (MSDE) algorithm for

basic parameters of cell formation problem. First, they

presented a DCMS model. Then, two basic test CF prob-

lems were introduced to assess the performance of MSDE

algorithm by diverse problems sizes.

Regarding this section, it could be concluded that no

study has been done on simultaneous integrating of three

problems as cell configuration, production planning and

operator assigning so far with uncertainty considered in the

most model parameters including part demands and cost

parameters.

Robust optimization

Mulvey et al. (1995) presented a framework for robust

optimization that involves two types of robustness: ‘‘so-

lution robustness’’ (the solution is nearly optimal in all

scenarios) and ‘‘model robustness’’ (the solution is nearly

feasible in all scenarios). The robust optimization method

extended by Mulvey et al. (1995), in fact, develops

stochastic programming through replacing traditional

expected cost minimization objective by one that explicitly

addresses cost variability. The framework of robust opti-

mization is briefly demonstrated by Feng and Rakesh

(2010). The form of the robust optimization model is as

follows:

Min cTxþ dTy ð1Þ
Ax ¼ b ð2Þ
Bxþ Cy ¼ e ð3Þ
x; y� 0 ð4Þ

where x defines the vector of decision variables that should

be determined under the uncertainty of model parameters.

B, C and e demonstrate random technological coefficient

matrix and right- hand side vector, respectively. Assume a

finite set of scenarios X ¼ {1, 2,…,s} to model the

uncertain parameters; with each scenario s 2 X, we asso-

ciate the subset {ds; Bs; Cs; es} and the probability of the

scenario psð
Ps

s¼1 ps ¼ 1Þ.

Note that a scenario is a series of data realizations over

the planning horizon. In addition, control variable y, can be

denoted as ys for scenario s. ds represents the infeasibility

of the model under scenario s, because of parameter

uncertainty the model may be infeasible for some scenar-

ios. If the model is feasible, ds will be equal to 0, other-

wise; ds will receive a positive value according to Eq. (7).

A robust optimization model is formulated as follows:

Min r x; y1; . . .; ysð Þ þ xq d1; d2; . . .; dsð Þ ð5Þ
Ax ¼ b ð6Þ
Bsxþ Csys þ ds ¼ es for all s 2 X ð7Þ
x� 0; ys � 0 for all s 2 X ð8Þ

The first term presents solution robustness, a single

choice for an aggregate objective in (1). The second term

demonstrates model robustness, feasibility penalty function,

which is used to penalize violation of the control constraint

under some of the scenarios. Mulvey et al. (1995) used

Eq. (9) to indicate solution robustness as follows:

r 0ð Þ ¼
X

s2X
wsps þ k

X

s2X
ps ws�

X

s02X
ps0ws0

 !2

ð9Þ

As can be seen, there is a quadratic term in Eq. (9). Yu

and Li (2000) proposed an absolute deviation instead of the

quadratic term, because the computational effort required

due to the quadratic term is less, shown as follows:

r 0ð Þ ¼
X

s2X
wsps þ k

X

s2X
ps ws �

X

s02X
ps0ws0

�
�
�
�
�

�
�
�
�
�

ð10Þ

Mathematical model and model description

In this section, a new mixed-integer nonlinear program-

ming model of a DCMS integrating CF, PP and worker

assignment is presented to minimize total costs including

machine constant, machine procurement, machine reloca-

tion, machine operation, inter-cell and intra-cell move-

ment, overtime, shifting labors between cells and inventory

holding respecting to the following assumptions.

Assumptions

1. Each part type has several operations which must be

processed according to their sequence data.

2. Process time and manual workload time required for

performing operations of a part type on various

machine types are known and deterministic.

3. Part demands in each period are uncertain and

defined in scenarios.
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4. Time-capacity in regular time and overtime for each

machine type are known and deterministic over the

planning horizon.

5. Purchasing price and revenue from selling of each

machine type are uncertain.

6. Constant cost of each machine type is uncertain. It

covers overall service and maintenance cost. It is

burdened for each machine even when a machine is

idle.

7. Variable cost of each machine type in regular time

and overtime is uncertain. It covers operating cost

depending on the workload allocated to the machine.

8. Holding inventory is allowed and its related cost is

uncertain.

9. In each period, the number of cells and the

maximum cell size is known.

10. All machine types are multipurpose. Therefore, each

operation of each part can be processed by more than

one machine which brings flexibility for processing

routes. However, each operation is allowed to be

assigned to only one machine. In addition, there is no

changeover cost for performing different operations

by a machine.

11. Total number of labors is constant for all periods.

Firing and hiring are not allowed.

12. Relocation cost of each machine between cells and

shifting cost of operators between cells during

successive periods are uncertain.

13. Batch sizes are fixed for moving parts between and

within cells during planning horizon. However,

inter-cell and intra-cell batches have different sizes.

It is supposed that inter-cell and intra-cell transfer-

ring of batches has uncertain costs.

Indices

c Index for cells (c = 1,…,C).

m Index for machine types (m = 1,…,M).

p Index for part types (p = 1,…,P).

h Index for time periods (h = 1,…,H).

j Index for operations of part p (j = 1,…,Op).

s Index for scenarios (s = 1,…,S).

Input parameters

L Total number of labors.

Dphs Demand for part p in period h under scenario s.

#phs 1 if part p is planned to be produced in period

h under scenario s; 0 otherwise.

Binter
p

Batch size for inter-cell movements of part p.

Bintra
p

Batch size for intra-cell movements of part p.

cinters
Inter-cell movement cost per batch under scenario

s.

cintras
Intra-cell movement cost per batch under scenario

s. For justification of CMS, it is assumed that (cintras

/Bintra
p )\ (cinters /Binter

p ).

ums Marginal cost to purchase machine type m under

scenario s.

hphs Inventory cost for holding part p at the end of

period h under scenario s.

Wms Marginal revenue from selling machine type

m under scenario s.

ams Constant cost of machine type m in each period

under scenario s.

qhs Constant cost of inter-cell labor movement in

period h under scenario s.

bms Variable cost of machine type m for each unit time

in regular time under scenario s.

dms Relocation cost of machine type m under scenario s.

Tmh Time-capacity of machine type m in period h in

regular time.

T 0
mh Time-capacity of machine type m in period h in

overtime.

hmhs Variable cost of processing on machine type m per

hour in overtime in period h under scenario s.

UB Maximal cell size.

tjpm Processing time required to perform operation j of

part type p by machine type m.

t0jpm Manual workload time required to perform

operation j of part type p by machine type m.

ajpm 1 if operation j of part p can be processed by

machine type m; 0 otherwise.

ps Occurrence probability of scenario s.

WT Available time capacity per worker.

Decision variables

Nmch Number of machine type m allocated to cell c in

period h.

kþmch Number of machine type m added in cell c in

period h.

k�mch Number of machine type m removed from cell

c in period h.

Iþmh Number of machine type m purchased in period h.

I�mh Number of machine type m sold in period h.

Xjpmchs 1 if operation j of part type p is processed by

machine type m in cell c in period h under

scenario s; 0 otherwise.

Lch Number of labors assigned to cell c in period h.

T
0
mch

Extra time needed for machine type m allocated

to cell c in period h.

dphs the under-fulfillment of demand of part type p in

period h under scenario s.
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Iphs The inventory level of part p at the end of time

period h under scenario s.

Qphs Number of demand of part type p produced in

period h under scenarios s.

Problem formulation

The objective function consists of nine components, given

in Eqs. (1.1)–(1.9), seeks to minimize the sum of miscel-

Min Z ¼
PH

h¼1

PM

m¼1

PC

c¼1

Nmch � ams ð1:1Þ

þ
PH

h¼1

PM

m¼1

Iþmh:ums �
PH

h¼1

PM

m¼1

I�mh � wms ð1:2Þ

þ
PH

h¼1

PC

c¼1

PP

p¼1

POp

j¼1

PM

m¼1

bms � Qphs � tjpm � Xjpmchs ð1:3Þ

þ1=2
PH

h¼1

PP

p¼1

cinters � Qphs

Binter
p

" #
POp�1

j¼1

PC

c¼1

PM

m¼1

X jþ1ð Þpmchs �
PM

m¼1

Xjpmchs

�
�
�
�

�
�
�
� ð1:4Þ

þ1=2
PH

h¼1

PP

p¼1

cintras � Qphs

Bintra
p

" #
POp�1

j¼1

PC

c¼1

PM

m¼1

X jþ1ð Þpmchs�Xjpmchs

�
�

�
��

PM

m¼1

X jþ1ð Þpmchs�
PM

m¼1

Xjpmchs

�
�
�
�

�
�
�
�

� �

ð1:5Þ

þ
PH

h¼1

PM

m¼1

PC

c¼1

T
0

mch � hmhs ð1:6Þ

þ1=2
PH

h¼1

PC

c¼1

qhs � Lc hþ1ð Þ � Lch
�
�

�
�

� �
ð1:7Þ

þ1=2
PH

h¼1

PM

m¼1

PC

c¼1

dms � kþmch þ k�mch
� �

ð1:8Þ

þ
PH

h¼1

PP

p¼1

hphs � Iphs ð1:9Þ

s.t:

PC

c¼1

PM

m¼1

Xjpmchs � ajpm ¼ #phs 8j; p; h; s ð2Þ

Xjpmchs � ajpm 8j; p;m; c; h; s ð3Þ
PP

p¼1

POp

j¼1

Xjpmchs � Qphs � tjpm � Tmh � Nmch þ T 0
mch 8m; c; h; s ð4Þ

PC

c¼1

Nmch �
PC

c¼1

Nmc h�1ð Þ ¼ Iþmh � I�mh 8m; h ð5Þ

Nmc h�1ð Þ þ kþmch � k�mch ¼ Nmch 8m; c; h ð6Þ
PC

c¼1

T 0
mch � T 0

mh 8m; h ð7Þ

PC

c¼1

Lch � L 8h ð8Þ

PM

m¼1

Nmch �UB 8c; h ð9Þ

POp

j¼1

PP

p¼1

PM

m¼1

Xjpmchs � Qphs � t0jpm �WT � Lch 8c; h; s ð10Þ

Dphs ¼ Qphs � Iphs þ Ip h�1ð Þs 8p; h; s ð11Þ
Qphs �M#phs 8p; h; s ð12Þ
Xjpmchs in binary 8j; p;m; c; h; s ð13Þ
Lch;Nmch; k

þ
mch; k

�
mch; I

þ
mh; I

�
mh are positive and integer 8m; c; h ð14Þ

Qphs; Iphs; T
0
mch � 0 are positive and continuous 8p;m; c; h; s ð15Þ
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laneous costs. Term (1.1) demonstrates sum of constant

cost of all machines which have been used over the plan-

ning horizon for entire cells. Term (1.2) shows the total

purchase cost minus selling income for entire machines

during all periods. Term (1.3) indicates the variable cost of

processing operations by different machines in whole cells

and periods. Terms (1.4) and (1.5) calculate inter-cell and

intra-cell movement costs, respectively. Term (1.6) repre-

sents the total costs for overtime working of machines

which is required to produce the partial fraction of demand.

Term (1.7) demonstrates the total costs of shifting labors

between cells over the planning horizon. Various parame-

ters such as labors training, wage rate of skilled labors and

labors transference among the cells affect this expenditure.

Term (1.8) indicates the cost of machines relocations.

Finally, the last term of the objective function considers

inventory holding costs. It is worth mentioning that all

components (1.1)–(9) in the objective function are calcu-

lated under scenario s.

The first constraint introduced in Eq. (2) ensures that

each operation of part p is allocated to only one machine

capable of processing that part operation and one cell in

period h on condition that part p is planned to be produced

in that period. Equation (3) guarantees that an operation of

a part is assigned to a machine provided that the machine is

capable of processing that part operation. Equation (4)

guarantees that machine capacity is not exceeded. Equa-

tion (5) calculates the number of each machine type bought

or sold during each period. Equation (6) shows that the

number of machines type m in cell c at the current period

h equals to the number of that machines moved into cell c,

plus the number of the same machine type present in the

previous period and minus the number of machines

removed from that cell. Equation (7) shows that summation

of the extra time dedicated to all cells per machine type

m cannot exceed the total capacity of machine type m in

period h in overtime. Equation (8) ensures the number of

labors allocated to all cells in each period is equal to the

total number of available labors. Equation (9) determines

the number of machines assigned to a cell in each period is

less than the upper cell size limit. Equation (10) guarantees

that available time capacity per worker is not exceeded.

Equation (11) shows the balancing inventory constraint

between periods for each part type at each period. It means

that the inventory level of each part at the end of each

period is equal to the quantity of production plus the

inventory level of the part at the end of the previous period

minus the part demand volume in the current period.

Equation (12), complementary to Eq. (2), ensures that a

portion of the part demand can be produced at the given

period if its operations are assigned in the constraint given

in Eq. (2). Logical binary, non-negativity integer or

continuous necessities for the decision variables are

determined in Eqs. (13), (14) and (15).

Linearization of the proposed model

The proposed model is a mixed-integer nonlinear pro-

gramming model because of absolute terms in Eqs. (1.4),

(1.5) and (1.7) and the product of decision variables in

Eqs. (1.3), (4) and (10).

The linearization process for absolute terms (1.4), (1.5)

and (1.7) is accomplished by transforming the absolute

terms into the linear form as follows:

To linearize term (1.4), non- negative variables Z1
jpchs

and Z2
jpchs are introduced and term (1.4) is rewritten as

follows:

1=2cinters �
XH

h¼1

XP

p¼1

Qphs

Binter
p

" #
XOp�1

j¼1

XC

c¼1

Z1
jpchs þ Z2

jpchs

� �
ð11Þ

where the following constraint must be added to the orig-

inal model.

Z1
jpchs � Z2

jpchs ¼
XM

m¼1

X jþ1ð Þpmchs�
XM

m¼1

Xjpmchs 8j; p; c; h; s

ð12Þ

Likewise, to transform the term (1.5) to the linear form,

non- negative variables Y1
jpmchs and Y2

jpmchs are introduced

and this term is rewritten as follows:

1=2cintras

XH

h¼1

XP

p¼1

Qphs

Bintra
p

" #
XOp�1

j¼1

XC

c¼1

�
XM

m¼1

Y1
jpmchs þ Y2

jpmchs

� �
� Z1

jpchs þ Z2
jpchs

� �
 !

ð13Þ

where the following constraint must be added to the orig-

inal model.

Y1
jpmchs � Y2

jpmchs ¼ X jþ1ð Þpmchs � Xjpmchs 8j; p;m; c; h; s
ð14Þ

Equation (11) is still nonlinear term. In the next step, to

transform Eq. (11) to the linear form, non-negative vari-

able u1
jpchs is introduced, and this equation is rewritten as

follows:

1=2cinters

XH

h¼1

XP

p¼1

XOp�1

j¼1

XC

c¼1

u1
jpchs

Binter
p

" #

ð15Þ

where the following constraints set must be added to the

original model.

u1
jpchs �Qphs�M 1� Z1

jpchs � Z2
jpchs

� �
8j; p; c; h; s ð16Þ
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u1
jpchs �Qphs þM 1� Z1

jpchs � Z2
jpchs

� �
8j; p; c; h; s ð17Þ

Likewise, to transform Eq. (13) to the linear form, non-

negative variable u2
jpchs is introduced, and this equation is

rewritten as follows:

1=2cintras

XH

h¼1

XP

p¼1

XOp�1

j¼1

XC

c¼1

u2
jpchs

Bintra
p

" #

ð18Þ

where the following constraints must be added to the

original model.

u2
jpchs �Qphs �M 1�

XM

m¼1

Y1
jpmchs þ Y2

jpmchs

� �
(

þ Z1
jpchs þ Z2

jpchs

� �o
8j; p; c; h; s

ð19Þ

u2
jpchs �Qphs þM 1�

XM

m¼1

Y1
jpmchs þ Y2

jpmchs

� �
(

þ Z1
jpchs þ Z2

jpchs

� �o
8j; p; c; h; s

ð20Þ

To transform product terms in Eqs. (1.3), (4) and (10) to

the linear forms, non-negative variable ujpmchs is intro-

duced and replaced by Xjpmchs � Qphs in the aforementioned

terms. Then, the following constraints must be added to the

original model.

ujpmchs �Qphs�M 1� Xjpmchs

� �
8j; p;m; c; h; s ð21Þ

ujpmchs �Qphs þM 1� Xjpmchs

� �
8j; p;m; c; h; s ð22Þ

The absolute term Eq. (1.7) is transformed into the

linear form as follows:

1=2
XH

h¼1

XC

c¼1

qhs W1
ch þW2

ch

� �
ð23Þ

where the following constraint must be added to the orig-

inal model:

W1
ch �W2

ch ¼ Lc hþ1ð Þ � Lch 8c; h ð24Þ

The final linear model is written as follows:

Min Z ¼
XH

h¼1

XC

c¼1

XP

p¼1

XOp

j¼1

XM

m¼1

bms � tjpm � ujpmchs

þ Eq: 1:1ð Þ þ Eq: 1:2ð Þ þ Eq: 1:6ð Þ þ Eq: 1:8ð Þ
þ Eq: 1:9ð Þ þ Eq: 15ð Þ þ Eq: 18ð Þ þ Eq: 23ð Þ

s.t:

Equations (2) and (3)

XP

p¼1

XOp

j¼1

ujpmchstjpm � TmhNmch þ T
0

mch 8m; c; h; s ð25Þ

Equations (5)–(9)

XOp

j¼1

XP

p¼1

XM

m¼1

ujpmchst
0
jpm �WTLch 8c; h; s ð26Þ

Equations (11)–(15), (12), (14), (16), (17), (19–22) and

(24)

ujpmchs;Z
1
jpchs;Z

2
jpchs;u

1
jpchs;Y

1
jpmchs;Y

2
jpmchs;u

2
jpchs;W

1
ch;W

2
ch�0

Robust optimization formulation

In this paper, a robust optimization approach based on

Mulvey’s model is employed in which uncertainty is rep-

resented by a set of discrete scenarios. The extended robust

optimization model for the mentioned problem can be

stated as follows:

TCs ¼
XH

h¼1

XM

m¼1

XC

c¼1

Nmchams þ
XH

h¼1

XM

m¼1

Iþmhums �
XH

h¼1

XM

m¼1

I�mhwms

þ
XH

h¼1

XC

c¼1

XP

p¼1

XOp

j¼1

XM

m¼1

bmsujpmchstjpm

þ 1=2cinters

XH

h¼1

XP

p¼1

XOp�1

j¼1

XC

c¼1

u1
jpchs

Binter
p

" #

þ 1=2cintras

XH

h¼1

XP

p¼1

XOp�1

j¼1

XC

c¼1

u2
jpchs

Bintra
p

" #

þ
XH

h¼1

XM

m¼1

XC

c¼1

T
0

mchhmhs þ 1=2
XH

h¼1

XC

c¼1

qhs W1
ch þW2

ch

� �

þ 1=2
XH

h¼1

XM

m¼1

XC

c¼1

dms kþmch þ k�mch
� �

þ
XH

h¼1

XP

p¼1

hphsIphs

ð27Þ

Min Z ¼
XS

s¼1

psTCs þ k1
XS

s¼1

ps TCs �
XS

s0
ps0TCs0

�
�
�
�
�

�
�
�
�
�

þ x
XS

s¼1

XM

m¼1

XH

h¼1

psdphs ð28Þ

s.t

Dphs ¼ dphs þ Qphs � Iphs þ Ip h�1ð Þs 8p; h; s ð29Þ

Equations (2), (3), (5)–(9), (12)–(15), (12), (14), (16), (17),

(19)–(22), (24), (25), (26).

The first and second terms in the objective function (28)

are the expected value and variance of the objective

function (27), respectively, and they measure solution

robustness. The third term in (28) measures the model

robustness with regards to infeasibility associated with

control constraints (29) under scenario s. Equation (29) is a

control constraint that is used to specify the level of

inventory and the under-fulfillment of part demand via
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violation level dphs under scenario s. It is noted that if the

total quantity of products produced in period h plus pre-

vious inventory at period h-1 is greater than market

demand Dphs, then the inventory at period h will be equal to

Iphs ¼ Ip h�1ð Þs þ Qphs � Dphs and under minimization, the

violation level dphs ¼ 0; whereas if Ip h�1ð Þs þ Qphs is less

than market demand Dphs, then Iphs ¼ 0, and

dphs ¼ Dphs � Qphs � Ip h�1ð Þs, demonstrating under-fulfill-

ment of part demand, thus an infeasible solution is

obtained.

Although Eq. (28) is a nonlinear function, the absolute

term is transformed into the linear form as follows:

min ¼
XS

s¼1

psTCs þ k1
XS

s¼1

ps ps þ qsð Þ

þ x
XS

s¼1

XM

m¼1

XH

h¼1

psdphs: ð30Þ

s.t:

ps � qs ¼ TCs �
XS

s0
ps0TCs0 8s ð31Þ

dphs � 0; Eqs. (2), (3), (5)–(9), (12)–(15), (12), (14), (16),

(17), (19)–(22), (24), (25), (26), (29).

A case study

Case data description

A case study is conducted for a typical equipment manu-

facturer located in the Mazandaran province in the north of

Iran. Badeleh Machinery Company was pioneered in 1988

with a factory for producing different kinds of tanked and

trailed sprayers. Parallel with an increment in production

rate, there came a variety of other types of machines, thus

an increase in the factory’s area, as far as 15,000 meters for

production section with another 15,000 meters of area left

for future developments, in which 70 people consisting of

workers and specialists work seven days a week. Regarding

the customized demand in such case study, different sce-

narios in different season could be defined. Eight part types

(farm equipment) consisting of (1) sprinkler, (2) Rot cul-

tivator, (3) Stalk-Shredder, (4) chipper, (5) Roller Chisel,

(6) Borers with hydraulic inverter, (7) Borers with

hydraulic inverter, and (8) Rear Hydraulic Crane Arm are

produced in the company. To validate the proposed model

and investigate the credibility of the employed robust

optimization approach, the case study is solved using

GAMS 22.0 software (solver CPLEX). First, the input data

are described. Next, the obtained results are analyzed. This

case study suggested in an uncertain environment includes

8 parts (p1,…,p8), six types of machines (m1,…,m6), three

time periods (h1, h2, h3) and three types of cells (c1, c2,

c3). For each part, three operations (j1, j2, j3) have to be

processed sequentially considering processing times. The

maximum available time for each worker in a time period

is 40 h and the number of workers is 70. Besides, it has

been assumed that the future economic scenarios will fit

four probable scenarios that, respectively, are boom, good,

fair and poor with the related probabilities 0.45, 0.25, 0.2,

and 0.15.

Demand for part type p in period h under scenario s is

shown Table 1. Batch size for inter and intra-cell move-

ment of part p are shown Table 2. Inter-cell and intra-cell

movement costs per batch under scenario s are shown

Table 3. Purchase cost of machine type m under scenario

s is shown Table 4. Marginal revenue from selling machine

type m under scenario s is shown Table 5. Constant cost of

machine type m in each period under scenario s is shown

Table 6. Variable cost of machine type m for each unit time

in regular time is shown Table 7. Relocation cost of

machine type m under scenario s is shown Table 8. Fixed

cost of inter-cell labor moving in period h under scenario s

is shown Table 9. Time-capacity of machine type m in

regular and overtime are shown Table 10. Variable cost of

processing on machine type m in overtime in period h un-

der scenario s is shown Table 11. Processing time required

Table 1 Demand for eight part types in two periods under four

scenarios

Dphs Scenario P1 P2 P3 P4 P5 P6 P7 P8

h1 Boom 550 800 0 500 0 450 0 800

Good 0 0 250 300 0 200 300 0

Fair 350 500 0 0 200 0 250 250

Poor 0 0 100 100 100 100 100 100

h2 Boom 700 800 0 500 0 800 0 950

Good 0 0 500 300 0 500 300 0

Fair 500 400 0 0 300 0 200 350

Poor 0 0 200 100 100 100 100 100

h3 Boom 400 650 0 500 0 700 0 750

Good 0 0 300 300 0 300 400 0

Fair 200 400 0 0 250 0 300 200

Poor 0 0 100 100 100 200 200 100

Table 2 Batch size for inter-cell and intra-cell movement of four part

types

P1 P2 P3 P4 P5 P6 P7 P8

Binter 35 25 20 40 45 30 35 40

Bintra 7 5 4 8 9 5 7 8
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to perform operation j of part type p on machine type m is

shown Table 12. Manual workload time required to per-

form operation j of part type p on machine type m is shown

Table 13. Inventory holding cost for part type p in period

h under scenario s is shown Table 14.

Table 5 Marginal revenue from selling six machine types under four

scenarios

xms Boom Good Fair Poor

M1 9800 8100 7700 7000

M2 9800 8100 7700 7000

M3 10,500 8700 8400 7700

M4 9800 8100 7700 7000

M5 9100 8000 7700 7000

M6 11,200 9000 8400 7700

Table 6 Constant cost of six machine types in each period under 4

scenarios

ams Boom Good Fair or

M1 1400 1200 1100 1000

M2 1400 1200 1100 1000

M3 1500 1400 1200 1100

M4 1400 1300 1200 1100

M5 1300 1200 1100 1000

M6 1600 1300 1200 1100

Table 9 Fixed cost of inter-cell moving of a labor in three periods

under four scenarios

qhs Boom Good Fair Poor

H1 200 150 100 70

H2 200 150 100 70

H3 200 150 100 70

Table 10 Time-capacity of six

machine types in regular and

over time

Tmh T 0
mh

M1 500 200

M2 500 200

M3 500 200

M4 500 200

M5 500 200

M6 500 200

Table 11 Variable cost of processing on six machine types in

overtime in three periods under four scenarios

hmhs Scenario M1 M2 M3 M4 M5 M6

h1 Boom 15 11 17 12 10 20

Good 14 10 16 11 9 19

Fair 13 9 15 10 8 18

Poor 10 8 10 9 7 10

h2 Boom 15 11 17 12 10 20

Good 14 10 15 11 9 19

Fair 13 9 13 10 8 18

Poor 10 8 10 9 7 10

h3 Boom 15 11 17 12 10 20

Good 13 10 12 11 9 19

Fair 12 9 11 10 8 18

Poor 10 8 10 9 7 10

Table 3 Inter-cell and intra-cell movement cost per batch under four

scenarios

Boom Good Fair Poor

cinters
50 40 30 20

cintras
8 7 6 5

Table 4 Purchase cost of six machine types under four scenarios

ums Boom Good Fair Poor

M1 14,000 12,000 11,000 10,000

M2 14,000 12,000 11,000 10,000

M3 15,000 13,000 12,000 11,000

M4 14,000 13,000 12,000 11,000

M5 15,000 13,000 12,000 11,000

M6 16,000 13,000 12,000 11,000

Table 7 Variable cost of six machine types for each unit time in

regular time

bms Boom Good Fair Poor

M1 9 8 7 5

M2 9 8 7 6

M3 8 7 6 5

M4 8 7 6 5

M5 9 8 7 6

M6 8 6 5 4

Table 8 Relocation cost of six machine types under four scenarios

dms Boom Good Fair Poor

M1 650 600 550 500

M2 700 650 600 550

M3 750 700 650 600

M4 700 650 600 550

M5 650 600 550 500

M6 800 750 700 650
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Results analysis

As stated in ‘‘Robust optimization’’ section, robustness

means that the model output should not be highly sensitive

to the exact values of the model input parameters, and if

the model remains feasible for each certain scenario, the

model is robust. According to the objective function

Z [Eq. (28)], the model robustness is calculated through

third term in objective function. Because of the uncer-

tainty of the demand parameter and the cost parameters

related to the cell formation, the model might be infeasible

for some various scenarios. Thus, third term of objective

function (28) that is the penalty function for infeasibility

penalizes the violation of the control constraint (29). The

violation of the control constraint means an infeasible

solution is obtained under some scenarios. In fact, dphs is
the violation vector showing the infeasibility level in

control constraint (29) under a given scenario. If the

under-fulfilled demand (dphs) equals zero, the model is

feasible, otherwise, dphs will be positive. Table 15 presents

sensitivity analysis for the robustness of Model Z with

different values for parameter x.
It is seen from Table 15 that the objective function Z is

sensitive in return for various values of x, (dphs) obtains a
positive value and the objective function Z is positive

under some scenarios. At the point x ¼ 0, the part under-

fulfilled demand (dphs) obtains the maximum value since no

production occurs and this way, it acquires a positive value

in a descending manner until at the point x ¼ 800, the part

under-fulfilled demand (dphs) equals zero and the model

becomes feasible. Figure 1 depicts sensitivity analysis for

the model robustness and objective function value Z. As

Fig. 1 illustrates, the value of Z increases as x increases

and the objective function value Z goes up. In fact, Fig. 1

shows that model Z has penalized the violation of control

constraint (29) under some scenarios and as x increases,

the objective function value gets higher because the

infeasibility penalty function acquires a positive value.

Here, the model solution is analyzed considering

x ¼ 300. The computational results are given in Tables 16

and 17. Table 16 depicts the under-fulfilled demand of part

type p in the period h under scenario s. As can be seen, the

under-fulfilled demand of parts 1 and 2 obtain positive

values in periods 1 and 2 for a boom scenario. Since the

infeasibility penalty function (28) obtains positive value, it

penalizes control constraint violation under some scenar-

ios. While the demand for part 2 in period 1 under the

boom scenario is 800, the optimal production value is 783

and the under-fulfilled demand is 17. Similarly, the demand

for part 1 in period 2 is 700, the optimal production value is

625 and the under-fulfillment demand is 75 under the boom

scenario. The demand for part 2 in period 2 is 800, the

optimal production is 683 and the under-fulfilled demand is

seven under the boom scenario. That is, violation of the

control constraint (29) for the boom scenario in parts 1 and

2 in periods 1 and 2 happened at x ¼ 300.

Table 17 illustrates the total costs based on Eq. (27)

including costs of machine constant, machine variable,

Table 14 Cost of inventory holding for eight part types in three

periods under four scenarios

Hphs Scenario P1 P2 P3 P4 P5 P7 P8

h1 Boom 17 17 25 20 19 33 25

Good 15 15 21 18 14 25 22

Fair 13 13 17 15 13 22 19

Poor 10 10 10 10 10 10 10

h2 Boom 18 22 22 22 17 32 22

Good 15 15 18 19 12 27 19

Fair 14 13 15 14 11 22 13

Poor 11 10 12 11 10 12 11

h3 Boom 17 18 20 17 20 17 29

Good 13 13 15 15 15 15 22

Fair 12 12 11 12 13 13 17

Poor 10 10 10 10 11 10 10

Table 15 Sensitivity analysis

for model Z
x Z

0 2850

100 264,416.1

200 281,446.5

300 292,060.5

400 298,182.5

500 301,576.6

600 301,941

700 308,054.6

800 308,636.1

264416.1 
292060.5 301576.6 308636.12 

0

50000
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150000

200000

250000

300000

350000
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Fig. 1 Sensitivity analysis for the model robustness and the objective

function value Z
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machine purchase, intra and inter-cell movement, part

inventory holding and overtime under various scenarios.

According to Table 1, it is clear that the part demands and

the scenario-based cell formation cost parameters are incre-

mental from poor scenario to the boom one. As can be seen in

Table 17, all cost components have increased from the poor

scenario to the boom one, except the inventory holding cost.

Since the part under-fulfilled demand has obtained positive

value for parts 1 and 2 according to Table 16 in the boom

scenario, violation occurred and according to the control

constraint (29), the part inventory amount and its related cost

is zero in the boom scenario. However, from the boom sce-

nario to the poor one the part inventory has increased and

similarly, the part inventory cost has increased as well. Since

in the good, fair and poor scenarios, dphs equals zero, the part
inventory level gets a positive level and the inventory holding

cost gets a positive level as well.

Figure 2 depicts the cells configuration in three periods

for the main model of the DCMS under boom scenario. The

part operation assignments to machines and the machines

assignments to cells are also shown in Fig. 2. For example,

in the first period, 2 units of machines types 5 and 3 have

been assigned to the cells 1 and 3, respectively.

In period 1, operations 1 and 2 of part 1 are processed

inside cell 1 by machines 5 and 4, respectively, and

operation 3 inside cell 2 by machine 6. Then, there is need

for an intra-cell movement for operations 1 and 2 and an

inter-cell movement for operations 2 and 3. In period 1,

eight inter-cell movements and two intra-cell movement

are performed for the parts processing. In period 2, seven

inter-cell movements and three intra-cell movement are

performed for the parts processing.

Figure 3 shows the cells configuration in periods 1, 2 and

3 for DCMS model solved by the robust optimization

approach respect to 4 scenarios. Here, compared with the

cell configurations obtained for the main model under boom

scenario, there are some similarities and some differences.

For example, in period 1, operations 1 and 2 of part 1 are

processed inside cell 1 by machines 5 and 2, and operation 3

inside cell 2 by machine 6 as shown in Fig. 3. In period 2,

according to Fig. 3, three inter-cell movements and seven

intra-cell movement are performed for the parts processing.

In period 3, five inter-cell movements and five intra-cell

movement are performed for the parts processing. Totally,

the number of inter-cell movements and the number of

machines decrease; as a result, the relocation cost, machine

constant cost and inter-cell movement cost become lower.

Tradeoff between solution robustness and model

robustness

Tradeoff between solution robustness (expected total costs)

and model robustness (expected under-fulfillment) can be

found using different values of x in the objective function

(28). Robust optimization approach allows for infeasibility

in the control constraints by means of penalties. When x is

considered equal to zero, dphs in constraint (29) is equal to

Dphs due to the minimization of objective function (28). In

fact, the total under-fulfillment obtains its highest value,

and obviously this decision cannot be upheld. Therefore, it

is necessary to evaluate the proposed robust optimization

model with various values of x. Tradeoff between feasi-

bility and costs is illustrated in Fig. 4. As the value of x
increases, the expected total costs representing solution

robustness increases exponentially, and the expected

under-fulfilled demand representing model robustness

drops. This means that for larger value of x, the obtained

solution is approaching ‘almost’ feasible for any realization

Table 16 The under-fulfilled demand of eight part types in three

periods under four scenarios

dphs Scenario P1 P2 P3 P4 P5 P6 P7 P8

h1 Boom 0 17 0 0 0 0 0 0

Good 0 0 0 0 0 0 0 0

Fair 0 0 0 0 0 0 0 0

Poor 0 0 0 0 0 0 0 0

h2 Boom 75 117 0 0 0 0 0 0

Good 0 0 0 0 0 0 0 0

Fair 0 0 0 0 0 0 0 0

Poor 0 0 0 0 0 0 0 0

h3 Boom 0 0 0 0 0 0 0 0

Good 0 0 0 0 0 0 0 0

Fair 0 0 0 0 0 0 0 0

Poor 0 0 0 0 0 0 0 0

Table 17 Cost components of total costs [Eq. (27)] in four scenarios

Total costs Machine

constant

Machine

variable

Purchasing

machine

Inter-cell

movement

Intra-cell

movement

Inventory

holding

Overtime

Boom 275,040.3 30,000 87,218 100,000 12,571.7 1862.1 0 28,813.4

Good 189,211.5 27,000 28,888.1 88,000 4422.7 1689.9 388.5 25,826. 1

Fair 179,160.1 24,300 25,414.8 81,000 3313 1226.5 634.9 22,807.2

Poor 134,714.6 22,000 9528 74,000 1266.6 1250 1569.6 19,819.9
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of scenario s through the payment of more total costs. In

addition, e expected under-fulfillment will eventually drop

to zero with an increase in value of x to 800.

Comparing the effectiveness of robust model

and mean-value based model

To illustrate the robust dynamic cell formation that could

be obtained by the proposed MIP model, expected values

of uncertain parameters are used in the primary mixed-inte-

ger linear programming model presented in ‘‘Linearization of
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Fig. 2 Cell configurations for the main DCMS model under boom

scenario
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Fig. 3 Cell configurations for the DCMS model by the proposed
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Fig. 4 Trade-off between expected total costs and expected under-

fulfillment

58 J Ind Eng Int (2016) 12:45–60

123



the proposed model’’ section as certain value parameters,

hereafter called mean-value based model. The results of

these two models (i.e., robust model and mean-value based

model) are compared with each other at the following.

Robust optimization is used to attain a robust solution against

the fluctuation of uncertain parameters in the future. Note

that at the inception of planning horizon, some parameters

are uncertain, and only in the execution time of the plan, the

real values of uncertain parameters will be realized. For this

purpose, we simulate some real and conceivable scenarios

that may occur after executing the cell formation in the

future. We consider 10 random occurrences for the uncertain

parameters and compute the objective function Z of each

instance for the dynamic cell formation problem obtained by

the robust and mean-value based models.

The objective function values for the scenarios with

probabilities 0.15, 0.2, 0.25 and 0.45 are shown in the

Table 18 and Fig. 5. As shown in Fig. 5, the objective

function values of dynamic cell formation problem

obtained by the proposed MIP model are robust against the

amount of uncertain parameters in the future and yield a

series of solutions that are less sensitive to realizations of

the uncertain data. In other words, the violation of results

attained by the robust optimization model is less than that

by mean-value based model.

In fact, the values of the objective function Z for dif-

ferent scenarios are closer to each other than these values

for the mean-value based model. The curve of values in the

proposed method follows a more robust incline, but the

fluctuation in the curve of values for the classical approach

is very high. This achievement indicates that the proposed

approach is efficient for any systems that the robustness of

solution is important in addition to objective function value

Z of production for their managers. Indeed, for such sys-

tems having a solution with minimum total objective is not

adequate, but the fluctuation in real scenarios in future

should be handled. Therefore, numerical results show the

robustness and effectiveness of the proposed model.

Conclusion

In this study, a mathematical model based on a robust

optimization approach has been presented in dynamic cell

formation problem with uncertain data to integrate CF, PP

and worker assignment. The robust optimization approach

reduces the effect of the fluctuations of uncertain parame-

ters under certain scenarios. In this study, the majority of

cell formation parameters including cost parameters and

part demand fluctuation were considered uncertain.

Next, sensitivity analysis has been presented for solution

robustness and model robustness. Since the objective

function has been influenced by x, the relationship

between the model robustness and solution robustness has

been analyzed only for the objective function value.

The computational experiments obtained from a set of

real-world data for an Iranian farm tanked and trailed

sprayers manufacturer illustrated that the proposed robust

model is more practical for handling uncertain parameters

in the production environments. The tradeoff between

optimality and infeasibility was used for obtaining robust

solution based on the opinion of decision-makers. The

results showed the robustness and effectiveness of the

model in real-world cell formation problem.

In addition, the results obtained by the robust MIP

model indicated the advantages of robust optimization in

generating more robust cell configurations with less cost

over the considering expected value of uncertain parame-

ters in a deterministic mean-value based model. In fact, in

such systems designed here as the mean-value based

model, having only solution with the minimum value of the

objective function and lower costs is not sufficient rather

the fluctuations in the related scenarios have to be lowered

in future.

The future studies in the following of the present study

can be pursued in multi-objective DCMS modeling,

Table 18 Total objective function values obtained by the robust and mean-value based models

Problem number 1 2 3 4 5 6 7 8 9 10

Robust model 257,361.8 286,914.8 294,127.3 285,993.8 271,391.6 301,591.6 298,255.4 308,646.9 279,743.5 309,443

Mean-value based

model

316,642.7 394,204.2 389,787.9 421,225.4 410,668.2 432,788.6 371,073.8 439,419.8 406,668.8 434,360.9

286914.8 301591.6 309443 

394204.2 
432788.6 434360.9 
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Fig. 5 Comparison of total objective function between robust and

mean-value based models
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employing the other robust optimization methods, taking

into account the setup time, defining the processing times

and time-capacity of machines as uncertain, consideration

of machine layout, allowing partial or total subcontracting,

workload balancing among the cells, and using meta-

heuristics to tackle large-sized problems.
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