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Abstract A utility function is an important tool for repre-

senting a DM’s preference. We adjoin utility functions to multi-

objective optimization problems. In current studies, usually one

utility function is used for each objective function. Situations

may arise for a goal to have multiple utility functions. Here, we

consider a constrained multi-objective problem with each

objective having multiple utility functions. We induce the

probability of the utilities for each objective function using

Bayesian theory. Illustrative examples considering dependence

and independence of variables are worked through to demon-

strate the usefulness of the proposed model.

Keywords Multi-objective program � Utility function �
Bayesian theory

Introduction

Since the 1970s, numerous studies have been made on how

to solve multiple-objective linear programming problems

(MOLPPs) (see Ignizio 1985; Lai and Hwang 1994). There

are three approaches to solve an MOLPP (Lotfi et al. 1997):

1. Vector maximization.

2. Utility maximization.

3. Aspiration level approach.

Aspiration levels for the objective functions are specified

by a decision maker (DM) in solving the problem. Multi-

objective programming (MOP) entails mathematical opti-

mization problems involving more than one objective

function to be optimized simultaneously. It is concerned

with multiple criteria decision making (MCDM). The most

popular technique for solving MCDM problems, especially

MODM (multiple-objective decision making) problems, is

goal programming (GP). GP was first introduced by Charnes

et al. (1955) and further developed by Lee (1972), Ignizio

(1985), Tamiz et al. (1998), and Romero (2001) among

others (see Chang 2004, 2007, 2008). In a GP approach, a

set of satisfying solutions are found by solving MODM

problems, enabling a DM to set her aspiration level for each

objective function. The intention is to minimize the devia-

tions of the achievement functions from their aspiration

levels. This can be done by various methods such as Lexi-

cographic GP, Weighted GP (WGP), and Min–Max (Che-

byshev) GP (see Lee 1972; Romero 2001; Vitoriano and

Romero 1999; Arenas-Parra et al. 2010; Aouni and Kettani

2001; Ignizio 1976; Ijiri 1965). The most widely used

achievement function model for GP, namely weighted goal

programming (WGP), can be shown as follows:

(WGP) Min
Xn

i¼1

wiðdþi þ d�i Þ

s.t. fiðxÞ � dþi þ d�i ¼ gi; i ¼ 1; . . .; n;

dþi ; d
�
i � 0; i ¼ 1; . . .; n;

X 2 F ðF; a feasible setÞ;

where the wi are the weight factors associated with the ith

objective function (goal), the fi(X) and the gi are, respec-

tively, linear functions and aspiration levels associated with

the goals, and di
? and di

- are, respectively, positive and

negative deviations from the aspiration level of the ith goal.
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If we are faced with some problems such as lack of

available resources and information, then we may not be

able to specify the actual aspiration levels. In such situa-

tions, the actual obtained achievements may be higher than

the aspiration levels defined by a DM; we say that the DM

underestimated the initial aspiration level setting, meaning

that we could reach higher aspiration levels under the

available resources/information. We know that methods for

solving a GP problem usually consider only one aspiration

level for the right hand side of a constraint. Chang

(2007, 2008) proposed a new concept, namely multi-choice

goal programming (MCGP), in order to solve goals with

multiple aspiration levels. This formulation helps a DM to

find the optimal aspiration level, under given constraints,

for each goal.

The achievement function of MCGP is defined to be

(Chang 2007)

Min
Xn

i¼1

wi fiðXÞ � gi1 or gi2 or. . .or gimj j;

s.t. X 2 F ðF; a feasible setÞ

where gij is the jthaspiration level (for j = 1, 2,…, m)

corresponding to the ith goal (for i = 1, 2,…, n). Other

variables are as defined in WGP.

To facilitate formulation of the model above, Chang

(2007) introduced ðln n= ln 2Þd e binary variables for the

MCGP model with n aspiration levels.

The corresponding MCGP model is shown as follows

(see, Aouni and kettani 2001):

Min
Xn

i¼1

wiðdþi þ d�i Þ

s.t. fiðxÞ � dþi þ d�i ¼
Xm

j¼1

gijsijðBÞ; i ¼ 1; . . .; n;

dþi ; d
�
i � 0; i ¼ 1; . . .; n;

sijðBÞ 2 RiðxÞ; i ¼ 1; . . .; n; j ¼ 1; . . .;m;

X 2 F ðF; a feasible setÞ

where SijðBÞ is the jth function of binary serial numbers

corresponding to the ith goal, RiðxÞ is a function of

resource limitations, and the other notations are as defined

in WGP.

In recent years, researchers have used the concept of

MCGP to conduct their surveys. For example, Francisco da

Silva et al. (2013) introduced Multi-Choice Mixed Integer

Goal Programming model to make a comparison between

this and WGP model and to show the usefulness of the

proposed model in Multi-Choice Aspiration Level (MCAL)

problems. Moreover, Patro et al. (2015) presented an

equivalent model for MCGP problems.

Chang (2015) represented an MCGP model to avoid

underestimation of aspiration level which is common to

occur by GP problems. Also, Jadidi et al. (2015) declared

a new MCGP model, in situations when there is an

interval aspiration level on the right hand side of the

equation, to choose a level in compliance with their

preferences.

Chang (2011) proposed that, in order to consider DM’s

preferences in MCGP problems, we need to add utility

functions as a decision aid for the DM. A utility function

represents DM’s preferences and offers her more flexibility

about the goal or attribute; (see Al-Nowaihi et al. 2008; Yu

et al. 2009; Podinovski 2010). According to available

studies (see Licalzi and Sorato 2006), four possible utility

functions are considered (concave, convex, S-shaped and

reverse S-shaped). Our aim here is to consider a new model

for solving MODM problems with each goal having mul-

tiple utility functions. To our knowledge, solutions of such

problems have not been considered in the literature. Here,

we make use of Bayesian theory to deduce probabilities of

the utility functions. Abbasian et al. (2015) have recently

proposed a new approach for solving non-constrained

multi-objective problems having multiple utility functions

using the Bayesian theory, obtaining the probabilities as

aspiration levels of the objective functions.

The remainder of our work is organized as follows. In

Sect. 2, an optimization model is presented for MODM

problems with multiple utility functions. To depict the

usefulness and effectiveness of the suggested model,

examples are worked through in Sect. 3. Finally, conclu-

sions are made in Sect. 4.

Modeling constrained MOLP problems

Here, we use Bayesian theory to calculate the probability

of the utility functions corresponding to the objective

function (see Olshausen 2004). Bayesian theory is a

method to categorize events on the probability of occur-

rence or non-occurrence. Since it is difficult to calculate the

probability of an event directly, we can use Bayesian the-

ory to consider conditional probability of the event. Our

approach makes use of the Bayes’ rule as follows:

Bayes’ rule:

If B1,…, Bk partition a space S, and A is an ideal event,

then

pðBrjAÞ ¼
pðBr \ AÞ

pðAÞ ¼ pðBrÞ � pðAjBrÞP
i

pðBiÞ � pðAjBiÞ
; r ¼ 1; . . .; k;

where PðBrjAÞ denotes the conditional probability for the

occurrence of event Br, given that event A has occurred

(see Olshausen 2004). A constrained multi-objective

problem can be expressed as follows:
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Min FðXÞ ¼ f1ðxÞ; . . .; fnðxÞf g

s.t. gjðxÞ

�

�

¼

2
664

3
775 0; j ¼ 1; . . .;m

x 2 F:

Here, we consider utilities u
i1
; . . .; ui;pi for each objective

function fi.

Assuming that the utilities u11; . . .; u1;pi corresponding to

the ith objective function are incompatible with one another,

the probability of the utilities in conditions of dependence

and independence of variables is considered separately and

then the total probability and sum of probability rules are

used. Here, we show the effect of independence of variables

on the utility functions and later consider dependence and

independence of variables in the examples of Sect. 3.

The probability of the utilities using Bayesian theory is

calculated as follows:

pðuirjxjÞ ¼
pðuir \ xjÞ

pðxjÞ
¼ pðxjjuirÞpðuirÞ

Ppi

k¼1

pðxjjuikÞpðuikÞ
; 8i; j; r;

i ¼ 1; . . .; n; j ¼ 1; . . .; n; r ¼ 1; . . .; pi: ð1Þ

Regarding the definition of prior and posterior probabili-

ties, a DM can set prior probabilities for the utility functions in

order to access the conditional probabilities above. This new

conditional probability of uir is called posterior probability.

This way, we can use the total probability rule for the objective

function fi to reach the final probabilities as follows:

pðuirÞ ¼
Xn

j¼1

pðuirjxjÞ pðxjÞ; 8i; r; i ¼ 1; . . .; n; r ¼ 1; . . .; pi:

ð2Þ

Now, for each fi, let pðui1Þ; . . .; pðui;piÞ be the aspiration

levels achieved. We use the definition of the sum of

probabilities to combine all the final probabilities, Eq. (2),

for each objective separately. Each objective has only one

probability. Taking the probability value as an aspiration

level of the objective function, we can solve the problem

with only one aspiration level using a GP formulation. The

aim of GP is to minimize the deviations of the achieve-

ments of goals from their aspiration levels. This problem

can be solved by weighted GP (WGP) and can be

expressed as the following program:

Min
Xn

i¼1

wiðdþi þ d�i Þ

s.t. fiðxÞ � dþi þ d�i ¼ gi; i ¼ 1; . . .; n;

dþi ; d
�
i ; x� 0;

x 2 F;

where gi is sum of probabilities of the utility functions

corresponding to the ith goal.

If we do not use the sum of probabilities, then we have

multiple probability values for each objective function.

Consider the values as aspiration levels of the objective

function. To the best of our knowledge, the problem with

multiple aspirations cannot be solved by current GP

approaches because in traditional GP with multiple aspi-

ration levels the aspirations are input values while in reality

some conditions may influence the desired deviation of

goals. Thus, an approach is required to handle different

conditions for computing the aspiration levels of objective

functions (see Lotfi et al. 1997; Chang 2011). This problem

can be solved by an MCGP approach and can be expressed

as follows:

Min
Xn

i¼1

wiðdþi þ d�i Þ

s.t. fiðxÞ � dþi þ d�i ¼
Xm

j¼1

gijsijðBÞ; i ¼ 1; . . .; n;

dþi ; d
�
i � 0; i ¼ 1; . . .; n;

sijðBÞ 2 RiðxÞ; i ¼ 1; . . .; n; j ¼ 1; . . .;m;

X 2 F

where gij is the jth aspiration level corresponding to the ith

goal and SijðBÞ is the jth function of binary serial numbers

corresponding to the ith goal.

Illustrative examples

Here, we consider a constrained MOLP problem with

multiple utility functions for each goal, and then assume

the effects of independence and dependence of variables on

the utility functions. The goals and constraints are:

Goal 1: max f1ðxÞ ¼ 3x1 þ 2x2 þ x3

Goal 2: max f1ðxÞ ¼ 3x2 þ 2x3

Goal 3: max f3ðxÞ ¼ 3:5x1 þ 5x2 þ 3x3:

s.t.

x2 þ x3 � 10

x2 � 4

x1 þ x2 þ x3 � 15:

The utility functions corresponding to the goals are:

u11ðxÞ ¼ 2x1 þ 3x2 þ 2x3

u12ðxÞ ¼ x1 þ 2x2

u13ðxÞ ¼ x1 þ x2 þ x3

8
><

>:

u21 ¼ x2 þ x3

u22 ¼ 2x2 þ 2x3

(
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u31 ¼ 2x1 þ 3x3

u32 ¼ x1 þ 5x2 þ 3x3:

(

Starting with Goal 1, the inputs are: pðu11Þ ¼
0:7; pðu12Þ ¼ 0:02; pðu13Þ ¼ 0:28:

The necessary computations are:

pðx1ju11Þ ¼ 0:2

pðx2ju11Þ ¼ 0:1

pðx3ju11Þ ¼ 0:3

pðx1ju12Þ ¼ 0:4

pðx2ju12Þ ¼ 0:6

pðx1ju13Þ ¼ 0:1

pðx2ju13Þ ¼ 0:6

pðx3ju13Þ ¼ 0:3:

If x1, x2 and x3 are assumed to independently affect the

utility functions, then we arrive at the following probabilities:

pðx1Þ ¼ pðx1ju11Þpðu11Þ þ pðx1ju12Þpðu12Þ þ pðx1ju13Þpðu13Þ
¼ ð0:2Þð0:7Þ þ ð0:4Þð0:02Þ þ ð0:1Þð0:28Þ ffi 0:18

pðx2Þ ¼ pðx2ju11Þpðu11Þ þ pðx2ju12Þpðu12Þ þ pðx2ju13Þpðu13Þ
¼ ð0:1Þð0:7Þ þ ð0:6Þð0:02Þ þ ð0:6Þð0:28Þ ¼ 0:25

pðx3Þ ¼ pðx3ju11Þpðu11Þ þ pðx3ju13Þpðu13Þ
¼ ð0:3Þð0:7Þ þ ð0:3Þð0:28Þ ¼ 0:29

pðu11jx1Þ ¼
pðx1ju11Þpðu11Þ

pðx1Þ
¼ ð0:2Þð0:7Þ

0:18
ffi 0:77

pðu11jx2Þ ¼
pðx2ju11Þpðu11Þ

pðx2Þ
¼ ð0:1Þð0:7Þ

0:25
ffi 0:28

pðu11jx3Þ ¼
pðx3ju11Þpðu11Þ

pðx3Þ
¼ ð0:3Þð0:7Þ

0:29
ffi 0:72:

Using the total probability rule, we obtain:

pðu11Þ ¼ pðu11jx1Þpðx1Þ þ pðu11jx2Þpðx2Þ þ pðu11jx3Þpðx3Þ

pðu11Þ ¼ ð0:77Þð0:18Þ þ ð0:28Þð0:25Þ þ ð0:72Þð0:29Þ
ffi 0:42:

On the other hand, if x1; x2; x3 are assumed to depen-

dently affect the utility functions, then with the following

data,

pðx1ju11Þ ¼ 0:2

pðx2ju11Þ ¼ 0:1

pðx3ju11Þ ¼ 0:3

pðx1ju12Þ ¼ 0:4

pðx2ju12Þ ¼ 0:6

pðx1ju13Þ ¼ 0:1

pðx2ju13Þ ¼ 0:6

pðx3ju13Þ ¼ 0:3:

we get the following probabilities:

pðu11jx1x2Þ ¼
pðx1ju11Þpðu11Þpðx2ju11x1Þ

pðx1Þpðx2jx1Þ
¼ ð0:2Þð0:7Þð0:5Þ

ð0:18Þð0:4Þ ffi 0:97

pðu11jx1x3Þ ¼
pðx1ju11Þpðu11Þpðx3jx1u11Þ

pðx1Þpðx3jx1Þ
¼ ð0:2Þð0:7Þð0:45Þ

ð0:18Þð0:4Þ ¼ 0:87

pðu11jx2x3Þ ¼
pðx2ju11Þpðu11Þpðx3jx2u11Þ

pðx2Þpðx3jx2Þ
¼ ð0:1Þð0:7Þð0:3Þ

ð0:25Þð0:2Þ ffi 0:42

pðu11jx1x2x3Þ ¼
pðx3ju11x1x2Þpðx2ju11x1Þpðx1ju11Þpðu11Þ

pðx3jx1x2Þpðx2jx1Þpðx1Þ

¼ ð0:1Þð0:5Þð0:2Þð0:7Þ
ð0:8Þð0:4Þð0:18Þ ffi 0:12:

We then have:

pðx1x2Þ ¼ pðx2jx1Þpðx1Þ ¼ ð0:4Þð0:18Þ ¼ 0:07

pðx1x3Þ ¼ pðx3jx1Þpðx1Þ ¼ ð0:4Þð0:5Þ ¼ 0:07

pðx2x3Þ ¼ pðx3jx2Þpðx2Þ ¼ ð0:2Þð0:25Þ ffi 0:05

pðx1x2x3Þ ¼ pðx3jx1x2Þpðx1x2Þ ¼ ð0:8Þð0:07Þ ffi 0:06:

Using the total probability rule, we obtain:

pðu11Þ ¼ pðu11jx1x2Þpðx1x2Þ þ pðu11jx1x3Þpðx1x3Þ
þ pðu11jx2x3Þpðx2x3Þ þ pðu11jx1x2x3Þpðx1x2x3Þ

pðu11Þ ¼ ð0:97Þð0:07Þ þ ð0:87Þð0:07Þ þ ð0:42Þð0:05Þ
þ ð0:12Þð0:06Þ ffi 0:16:

The same calculations can be carried out for the other

two utility functions. Using the given inputs,

pðx2ju12x1Þ ¼ 0:7

pðx2jx1u13Þ ¼ 0:35

pðx3jx1u13Þ ¼ 0:24

pðx3jx2u13Þ ¼ 0:02

pðx3ju13x1x2Þ ¼ 0:77

pðx3jx1x2Þ ¼ 0:8;

we get

pðu12Þ ¼ pðu12jx1Þpðx1Þ þ pðu12jx2Þpðx2Þ
¼ ð0:02Þð0:18Þ þ ð0:06Þð0:25Þ ffi 0:02

pðu12jx1x2Þ ¼
pðx1ju12Þpðu12Þpðx2ju12x1Þ

pðx1Þpðx2jx1Þ
¼ ð0:4Þð0:02Þð0:7Þ

ð0:18Þð0:4Þ ¼ 0:08

pðu12Þ ¼ pðu12jx1x2Þpðx1x2Þ ¼ ð0:08Þð0:07Þ ¼ 0:01

pðu13Þ¼ pðu13jx1Þpðx1Þþpðu13jx2Þpðx2Þþpðu13jx3Þpðx3Þ
¼ ð0:16Þð0:18Þþð0:67Þð0:25Þþð0:29Þð0:29Þ¼ 0:28

pðu13Þ ¼ pðu13jx1x2Þpðx1x2Þ þ pðu13jx1x3Þpðx1x3Þ
þ pðu13jx2x3Þpðx2x3Þ þ pðu13jx1x2x3Þpðx1x2x3Þ

¼ ð0:14Þð0:07Þ þ ð0:09Þð0:07Þ þ ð0:07Þð0:05Þ
þ ð0:13Þð0:06Þ ffi 0:03:
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We continue with Goal 2 and Goal 3.

Next, assume the following data for Goal 2:

pðu21Þ ¼ 0:5

pðu22Þ ¼ 0:5

pðx2ju21Þ ¼ 0:6

pðx3ju21Þ ¼ 0:2

pðx2ju22Þ ¼ 0:3

pðx3ju22Þ ¼ 0:6

pðx3jx2Þ ¼ 0:8

pðx3ju21x2Þ ¼ 0:6:

Doing similar computations as before, we arrive at the

final probabilities as follows:

pðu21Þ ¼ pðu21jx2Þpðx2Þ þ pðu21jx3Þpðx3Þ
¼ ð0:66Þð0:45Þ þ ð0:25Þð0:4Þ ffi 0:4

pðu21jx2x3Þ ¼
pðx2ju21Þpðu21Þpðx3ju21x2Þ

pðx2Þpðx3jx2Þ
¼ ð0:6Þð0:5Þð0:6Þ

ð0:45Þð0:8Þ ¼ 0:5

pðu21Þ ¼ pðu21jx2x3Þpðx2x3Þ ¼ ð0:5Þð0:36Þ ¼ 0:18

pðu22Þ ¼ pðu22jx2Þpðx2Þ þ pðu22jx3Þpðx3Þ
¼ ð0:33Þð0:45Þ þ ð0:75Þð0:4Þ ffi 0:45

pðu22jx2x3Þ ¼
pðx2ju22Þpðu22Þpðx3ju22x2Þ

pðx2Þpðx3jx2Þ
¼ ð0:3Þð0:5Þð0:6Þ

ð0:39Þð0:8Þ ¼ 0:25

pðu22Þ ¼ pðu22jx2x3Þpðx2x3Þ ¼ ð0:25Þð0:36Þ ¼ 0:09:

Using the following inputs for Goal 3,

pðu31Þ ¼ 0:4

pðu32Þ ¼ 0:2

pðx1ju31Þ ¼ 0:4

pðx3ju31Þ ¼ 0:2

pðx1ju32Þ ¼ 0:2

pðx2ju32Þ ¼ 0:5

pðx3ju32Þ ¼ 0:1

pðx3jx1Þ ¼ 0:9

pðx3ju31x1Þ ¼ 0:8

pðx2ju32x1Þ ¼ 0:43

pðx2jx1Þ ¼ 0:6

pðx3ju32x1Þ ¼ 0:3

pðx3jx2Þ ¼ 0:4

pðx3ju32x2Þ ¼ 0:32

pðx3ju32x1x2Þ ¼ 0:65

pðx3jx1x2Þ ¼ 0:75;

we get

pðu31Þ ¼ pðu31jx1Þpðx1Þ þ pðu31jx3Þpðx3Þ
¼ ð0:57Þð0:28Þ þ ð0:57Þð0:14Þ ffi 0:24

pðu31jx1x3Þ ¼
pðx1ju31Þpðu31Þpðx3ju31x1Þ

pðx1Þpðx3jx1Þ
¼ ð0:4Þð0:4Þð0:8Þ

ð0:28Þð0:9Þ ffi 0:51

pðu31Þ ¼ pðu31jx1x3Þpðx1x3Þ ¼ ð0:51Þð0:25Þ ffi 0:13

pðu32Þ ¼ pðu32jx1Þpðx1Þ þ pðu32jx2Þpðx2Þ þ pðu32jx3Þpðx3Þ
¼ ð0:43Þð0:28Þ þ ð1Þð0:3Þ þ ð0:43Þð0:14Þ ffi 0:48

pðu32Þ ¼ pðu32jx1x2Þpðx1x2Þ þ pðu32jx1x3Þpðx1x3Þ
þ pðu32jx2x3Þpðx2x3Þ þ pðu32jx1x2x3Þpðx1x2x3Þ

¼ ð0:31Þð0:17Þ þ ð0:14Þð0:25Þ þ ð0:8Þð0:12Þ
þ ð0:27Þð0:13Þ ffi 0:22:

Next, we are able to solve the problem in the two con-

sidered cases.

Case I: Independence of variables

Here, we need to consider two models. First, we solve the

following GP model:

Min ðdþ1 þ d�1 Þ þ ðdþ2 þ d�2 Þ þ ðdþ3 þ d�3 Þ
s.t. 3x1 þ 2x2 þ x3 � dþ1 þ d�1 ¼ 72

3x2 þ 2x3 � dþ2 þ d�2 ¼ 85

3:5x1 þ 5x2 þ 3x3 � dþ3 þ d�3 ¼ 72

x2 þ x3 � 10

x2 � 4

x1 þ x2 þ x3 � 15:

We solved the program using LINGO software (see,

Scharge 2008) and obtained the optimal solutions (x1, x2,

x3) = (0, 28.33, 0) as shown in Table 1, under the column

entitled GP corresponding to case I.

Second, based on the proposed MCGP approach (see,

Chang 2007), the problem is formulated as follows:
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Min dþ1 þ d�1 þ dþ2 þ d�2 þ dþ3 þ d�3
s:t: 3x1 þ 2x2 þ x3 � dþ1 þ d�1 ¼ 42z1z2

þ 2z1ð1 � z2Þ þ 28ð1 � z1Þz2;

3x2 þ 2x3 � dþ2 þ d�2 ¼ 40z3 þ 45ð1 � z3Þ

3:5x1 þ 5x2 þ 3x3 � dþ3 þ d�3 ¼ 24z4 þ 48ð1 � z4Þ

dþi ; d
�
i � 0; i ¼ 1; 2; 3;

x2 þ x3 � 10

x2 � 4

x1 þ x2 þ x3 � 15;

where z1, z2, z3 and z4 are binary variables, dþi and d�i are

the positive and negative variables, respectively.

We solved this problem using LINGO (see, Scharge

2008) again to obtain the optimal solution (x1, x2, x3, z1, z2,

z3, z4) = (0, 10, 5, 0, 1, 1, 0) as shown in Table 1, under the

column entitled MCGP corresponding to case I.

Case II: Dependence of variables

Here, we formulated the problem using the WGP model.

Suppose that all the weights attached to the deviations have

the value one. We then have the following problem:

Min w1ðdþ1 þ d�1 Þ þ w2ðdþ2 þ d�2 Þ þ w3ðdþ3 þ d�3 Þ
s.t. 3x1 þ 2x2 þ x3 � dþ1 þ d�1 ¼ 20

3x2 þ 2x3 � dþ2 þ d�2 ¼ 27

3:5x1 þ 5x2 þ 3x3 � dþ3 þ d�3 ¼ 35

x2 þ x3 � 10

x2 � 4

x1 þ x2 þ x3 � 15:

We solved the program using LINGO (see, Scharge

2008) to obtain the optimal solution (x1, x2, x3) = (0.5, 4,

10.5) as shown in Table 1, under the column entitled WGP

corresponding to case II.

Next, the problem is formulated as an MCGP problem

as follows:

Min dþ1 þ d�1 þ dþ2 þ d�2 þ dþ3 þ d�3
s.t. 3x1 þ 2x2 þ x3 � dþ1 þ d�1 ¼ 16z1z2

þ 1z1ð1 � z2Þ þ 3ð1 � z1Þz2;

3x2 þ 2x3 � dþ2 þ d�2 ¼ 18z3 þ 9ð1 � z3Þ

3:5x1 þ 5x2 þ 3x3 � dþ3 þ d�3 ¼ 13z4 þ 22ð1 � z4Þ

dþi ; d
�
i � 0; i ¼ 1; 2; 3;

x2 þ x3 � 10

x2 � 4

x1 þ x2 þ x3 � 15:

The program was solved using LINGO (see, Scharge

2008) to obtain the optimal solution (x1, x2, x3, z1, z2, z3,

z4) = (0, 4, 11, 1, 1, 1, 0) as shown in Table 1, under the

column entitled MCGP corresponding to case II.

Tables 2 and 3 give summaries of the results, respec-

tively, obtained from the GP and MCGP models. As seen

in Table 2, MCGP has the total deviation value of 20 units

which is obviously better than the total deviation value of

85 units obtained by the GP model. From Table 2, we

realize that for the GP model of case I, Goal 1 has achieved

78.7% of the aspiration level which was given to be 72

(i.e., 56.66 aspiration level), Goal 2 has reached the aspi-

ration level 85 exactly, and Goal 3 has achieved 51 percent

of the aspiration level given to be 72. However, we can see

from Table 2 that these values are different by applying the

MCGP model, and solutions obtained by the MCGP model

are better than those of GP, because the percentages of goal

achievements obtained from the MCGP model are better

than the ones obtained by the GP model.

We see in Table 3 that the MCGP model has the total

deviation value of 50 which is larger than 24.25 obtained

by the GP model in case II. As seen from Table 3, for the

GP model of case II, Goal 1 has reached 100 percent of the

aspiration level given to be 20, Goal 2 has reached 81.8

percent of the aspiration level given to be 27, and Goal 3

has reached 65.7 percent of the aspiration level given to be

35. Also, percentages of goal achievements by the MCGP

model are lower than the ones obtained by the GP model.

But, if we solve the GP model by selecting the aspirations

from the MCGP model for each goal separately, then we

reach larger deviation values for the GP model as com-

pared to the MCGP model. In this case, the MCGP model

outperforms the GP model.

Table 1 Solutions corresponding to cases I and II

Case I Case II

GP MCGP WGP MCGP

x1 0 0 0.5 0

x2 28:3�3 10 4 4

x3 0 5 10.5 11

z1 – 0 – 1

z2 – 1 – 1

z3 – 1 – 1

z4 – 0 – 0
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Conclusions

We proposed a new approach for solving multiple-objec-

tive linear problems (MOLPs) having multiple utility

functions for each goal. Available studies considered the

MOLP problems with each objective function having only

one utility function. Here, we proposed multiple utility

functions for each goal and calculated the probabilities of

the utility functions. The probabilities were considered as

aspiration levels for the goal programming (GP) or multi-

choice goal programming (MCGP) models. The usefulness

of the approach was illustrated by working through an

example in two cases of dependence and independence of

variables. The results showed that a decision maker (DM)

could reach her ideal solutions by solving GP or MCGP

models. We observed that the MCGP model obtained better

solutions as compared to the GP model.
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