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Abstract

Quadratic assignment problem (QAP) is a well-known problem in the facility location and layout. It belongs to the
NP-complete class. There are many heuristic and meta-heuristic methods, which are presented for QAP in the
literature. In this paper, we applied 2-opt, greedy 2-opt, 3-opt, greedy 3-opt, and VNZ as heuristic methods and
tabu search (TS), simulated annealing, and particle swarm optimization as meta-heuristic methods for the QAP. This
research is dedicated to compare the relative percentage deviation of these solution qualities from the best known
solution which is introduced in QAPLIB. Furthermore, a tuning method is applied for meta-heuristic parameters.
Results indicate that TS is the best in 31% of QAPs, and the IFLS method, which is in the literature, is the best in 58
% of QAPs; these two methods are the same in 11% of test problems. Also, TS has a better computational time
among heuristic and meta-heuristic methods.
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Background
Quadratic assignment problem (QAP) is a well-known
problem which delineates assigning number of economic
facility to the same number of location. The objective
function of this problem needs to be minimized. This prob-
lem was originally initiated by Koopmans and Beckmann
(1957). QAP is used in combinational optimization, partici-
pating with traveling salesman problem (TSP) and graph
problem. QAP is a kind of location problem and, addition-
ally, a kind of layout problem. A lot of research presented
exact solutions for QAP in the literature. Figure 1 shows
the number of research, which applies the exact methods
for QAP until 2005 (Loiola et al. 2007). These methods in-
clude branch and bound, dynamic programming, cutting
plan, and branch and cut.
Sahni and Gonzalez (1976) proved that QAP belongs to

the NP-complete class. In this class of the problem, compu-
tational time for solving problems, which have large
instances, is too much and grows exponentially, so heuristic
approaches and meta-heuristic methods are recommended
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for solving this problem. Figure 2 shows the literature
about solving QAP with heuristic and meta-heuristic meth-
ods. This figure reveals that the meta-heuristic methods
have been applied more than the heuristic approaches.
For the first time, a simulated annealing (SA) approach

in solving QAP was proposed by Burkard and Rendl
(1984). Wilhelm and Ward (1987) then presented the
new equilibrium components for solving QAP with SA,
and after them, research suggested better SA solution
methods. Skorin-Kapov (1990) executed the tabu search
(TS) technique for QAP. After that, Taillard (1991)
demonstrated robust TS for QAP. TS was also proposed
for QAP in later research. Particle swarm optimization
(PSO) is a new approach to solve QAP that Kennedy
and Eberhart (1997), Shi et al. (2004), and Hongbo et al.
presented (Hongbo and Ajith 2007; Hongbo et al. 2007).
Figure 3 shows the application of meta-heuristic meth-
ods for QAP until 2005 (Loiola et al. 2007).
Figure 3 shows that many research used hybrid algo-

rithm for QAP in recent years. Table 1 shows some of
the recent research that applied TS, SA, and PSO for
QAP from 2007 to 2009.
This paper is organized as follows: in the next section,

QAP formulation is displayed; afterwards, the heuristic
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Figure 1 Exact methods for QAP.
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Figure 3 Meta-heuristic approach for QAP.

Table 1 TS, SA, and PSO approach for QAP from 2007 to
2009
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methods are described. After that, the meta-heuristic
methods such as SA, TS, and PSO are presented; the
tuning method is described next. Computational ana-
lyses and comparison results are mentioned in the
‘Results and discussion’ section, and the last section is
the ‘Conclusions’ section.

Methods
QAP formulation
This section is dedicated to introduce the classical for-
mulation of QAP considered in this research. This for-
mulation is as follows:

min
Xn
i¼1

Xn
j¼1

Xn
k¼1

Xn
l¼1

cijklxikxjl; ð1Þ

Xn
i¼1

xij ; 8 j ¼ 1 . . .n; ð2Þ

Xn
i¼1

xij ; 8 i ¼ 1 . . .n; ð3Þ

xij ¼ 0; 1f g ; 8 i; j ¼ 1 . . .n; ð4Þ

where cijkl is the cost of assigning facility i in location k
and simultaneously facility j in location l, and xik = 1 if
location k is assigned to facility i; otherwise, xik = 0.
Also, xjl = 1 if location l is assigned to facility j; other-
wise, xjl = 0. The objective function (Equation 1) of this
model must be minimized. Each location must be
assigned just to one facility, as Equation 2 shows. Equa-
tion 3 displays that each facility must be assigned just in
Heuristic

Meta-heuristic

Figure 2 Heuristic and meta-heuristic methods for QAP.
one location. The number of facility and location is the
same and is equal to n. The variable in this model is
binary.
Heuristic methods
Heuristic algorithms do not provide an assurance for
optimization of the problem. These methods are an
approximation. They have an additional property that
worst-case solutions are known. In this section, some
heuristic methods as procedures to search the better
solution that contains 2-opt, greedy 2-opt, 3-opt,
greedy 3-opt, and Vollman, Nugent, Zartler (VNZ) are
contemplated.
2-Opt algorithm
Among simple local search algorithms, the most famous
ones are 2-opt and 3-opt. The 2-opt algorithm was first
proposed by Croes (1958) for TSP. If there are four loca-
tions and four facilities, the transposition of facility loca-
tion in 2-opt method is like that in Figure 4. This figure
illustrates that for the first transposition, the facility in
location one can be changed with the facility in location
two, and for the second transposition, the facility in lo-
cation one can be changed with the facility in location
three, so that if the number of location and facility is
shown by n, the number of transposition in each iter-
ation will be n(n − 1)/2.
Initially, the algorithm considers the transposition of

facilities 1 and 2. If the resulting solution's objective
function value (OFV) is smaller than that of the initial
solution, then it is stored as a candidate for future
Authors Meta-heuristic

TS SA PSO

Hongbo and Ajith (2007); Hongbo et al. (2007) - - •

Singh and Sharma (2008) - • -

Zhu et al. (2009a,b); James et al. (James et al. 2007,
James et al. 2009); Fescioglu and Kokar (2008)

• - -

This research • • •

Dot (•), the authors used the method; hyphen (−), the authors did not use the
method.
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Figure 5 Types of transposition in 3-opt algorithm.Figure 4 Transposition of facility in the 2-opt method.
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consideration. Otherwise, it is discarded, and the algo-
rithm considers the transposing of facilities 1 and 3. If
this exchange generates a better solution, then it is
stored as a candidate for future consideration; otherwise,
it is discarded, and so on. Thus, whenever a better solu-
tion is found, the algorithm discards the previous best
solution. This procedure continues until all the pair-wise
exchanges are considered.
For n location in the QAP problem, the 2-opt algo-

rithm consists of three steps:

Step 1. Let S be the initial feasible solution and Z its
objective function value; then, set S* = S, Z* = Z, i =
1 and j = i + 1 = 2.

Step 2. Consider the exchange results in a solution S´ that
has OFV Z´ < Z*, set Z* = Z´ and S* = S´. If j < n,
then repeat step 2; otherwise, set i = i + 1 and j = i + 1.
If i < n, repeat step 2; otherwise, proceed to step 3.

Step 3. If S 6¼ S*, set S = S*, Z = Z*, i = 1, j = i + 1 = 2
and go to step 2. Otherwise, output S* is selected as
the best solution, and the process is terminated.

Greedy 2-opt algorithm
The greedy 2-opt algorithm is a variant of the 2-opt algo-
rithm. The difference between this method and 2-opt is in
selecting the best transposition. This method transposes
the facility location if the OFV is better than the known
OFV and stabilizes this assignment; it then goes to trans-
pose the facility location from the start. It also consists of
three steps. Like the 2-opt algorithm, greedy 2-opt also
considers pair-wise exchanges. Initially, it considers trans-
posing facilities 1 and 2. If the resulting OFV is less than
the previous one, two facilities are immediately trans-
posed. Otherwise, the algorithm will go on to facility 3
and evaluate the exchange, and so on until improvement
is found. If facilities 1 and 2 are transposed, then the algo-
rithm will take it as an initial solution and will repeat the
algorithm until it is impossible to improve the solution
any further. Greedy 2-opt algorithm makes the exchange
permanent whenever an improvement is found and thus
consumes less computational time than the 2-opt algorithm.
On the other hand, greedy 2-opt algorithm produces slightly
worse solutions than the 2-opt algorithm.
3-Opt algorithm
The 3-opt algorithm is similar to the 2-opt algorithm ex-
cept that it considers transposing two facilities at a time.
This algorithm is originally applied for TSP by Bock
(1958). For example, if there are three facilities in the same
location, two types of transposition can be used with the
3-opt algorithm. These types are shown in Figure 5. Type
(2) is applied in this research.

Greedy 3-opt algorithm
Greedy 3-opt algorithm is also similar to the greedy
2-opt algorithm, but it makes the three facility ex-
change permanent whenever its resulting OFV is bet-
ter than the current OFV and repeats the algorithm
with the new transposition as the initial solution. The
transposition in this method is similar to that in 3-opt.

VNZ method
The VNZ method was introduced by Vollman et al.
(1968). This method is using less storage space than 2-opt.
There is not any randomization, and also, these meth-

ods cannot orient the current solution to the optimum
solution in a limited time. However, the meta-heuristic
methods contain a good search approach with a reason-
able time. These methods are considered in the next
subsection.

Meta-heuristic methods
In the original definition, meta-heuristics are solution
methods that manage an interaction between the local
improvement procedures and higher level strategies to
create a process capable of escaping from local optimum
solution and performing a good search of solution space.
These methods have also come to include any proce-
dures that employ strategies for overcoming the trap of
local optimality in complex solution spaces, especially
those procedures that take advantage of one or more
neighborhood structures as a means of defining accept-
able moves to transformation from one solution to an-
other. In this research, TS, SA, and PSO are applied for
the QAP, and their comparison has been done for the
selected data sets.



Figure 7 The procedure of tuning the parameters.
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Tabu search
Classical methods often face great difficulty when con-
fronted with hard optimization problems present in real
situations. Tabu search (TS), for the first time, was pro-
posed by Glover (1989, 1990). This meta-heuristic ap-
proach is, in a theatrical manner, changing the ability of
solving problems of practical significance. The pseudo
code of TS, which is applied in this research, is as follows:

Step 1. Let S be the initial feasible solution and Z its
objective function value; then, set S* = S, Z* = Z,
max short-term memory (STM) = 5, and max
iteration = 1,000; iter = 1. Best O value = O value.

Step 2. Random (i, j) = rand/Long-term memory (LTM)
(i, j), (n1, n2) = the indices of maximum value in
random.

Step 3. If there is none (n1, n2) in STM matrix, change
n1 and n2 locations; otherwise, repeat step 2.

Step 4. Insert n1 and n2 in STM and release the last
indices from STM (e.g., m1, m2); and LTM(m1, m2)
= LTM(m1, m2) + 1.

Step 5. Calculate the objective function value (Z) of the
new permutation.

Step 6. If Z ≤ Z*, then Z* = Z, S* = S, and iter = iter + 1.
Step 7. If iter ≤ max iteration, then repeat step 2;

otherwise, print Z* and S*.

Simulated annealing

Simulated annealing is a famous and popular local
search meta-heuristic applied to address discrete and
continuous optimization problems. This method, like
the other meta-heuristic methods, can be escaping from
the local solution. Simulated annealing is so named be-
cause of its similarity to the process of physical anneal-
ing with solids, in which a crystalline solid is heated and
then allowed to cool very slowly until it achieves its
Current Position 

Personal Best 
Position 

Global Best 
Position 

New Position 

Velocity Vector

Figure 6 Each particle movement.
most regular possible crystal lattice configuration and
thus is free of crystal defects. If the cooling schedule is
sufficiently slow, the final configuration results in a solid
with such superior structural integrity. Equation 5 shows
the Metropolis acceptance criteria for each move in the
cooling process (Metropolis et al. 1953).

P ¼ exp
OFVB �OFVð Þ

T

� �
; ð5Þ

where OFV and OFVB are the objective function values
for this iteration and are the best computed one until
this iteration. T is the temperature of the algorithm in
the iteration, and P is the probability of acceptance for
each move in the annealing process. The proposed SA
pseudo code for QAP is as follows:

Step 1. Let S be the initial feasible solution and Z its
objective function value; then, set S* = S, Z* = Z.
T = 100, T0 = 0.1, r = 0.95, nlimit max = 5 and
nover max = 10.

Step 2. nlimit = 0 and nover = 0.
Step 3. Transpose two facilities in the current layout

randomly and calculate the objective function value (Z).
Step 4. If Z ≤ Z*, then accept the transposition; it means

that Z* = Z, S* = S, and then nlimit = nlimit + 1,
nover = nover + 1; if nover = nover max or nlimit =
max_Iteration
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Figure 8 Interaction plot for OFV of ‘Nug27’.
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nlimit max, then proceed to step 6.Otherwise, repeat
step3; if Z > Z*, then proceed to step 5.

Step 5. Calculate Equation 3; if P ≥ rand (0, 1), then Z* =
Z, S* = S, and then nlimit = nlimit + 1, nover = nover
+ 1; if nover = nover max or nlimit = nlimit max, then
proceed to step 6; otherwise, repeat step 3.If P < rand
(0, 1), then nover = nover + 1; if nover = nover max,
then proceed to step 6; otherwise, repeat step 3.

Step 6. T = r × T, where r is the rate of cooling. If T ≤
T0, then proceed to step 7; otherwise, repeat step 2.

Step 7. Print S* and Z*.

Partial swarm optimization
The particle swarm optimization (PSO) is a population-
based search algorithm founded on the simulation of the
social behavior of bees, birds, or a school of fish. This
method is a significant member of the swarm intelligence.
It was proposed by Eberhart and Kennedy as an
optimization method (Eberhart and Kennedy 1995; Kennedy
and Eberhart 1995). Each individual within the swarm is
represented by a vector in multidimensional search space.
This vector has one assigned vector that determines the
next movement of the particle and is called the velocity
vector. This technique also determines how to update the
Table 2 Heuristic computational results for the test problems

Names of
instances

n 2-Opt Greedy 2-opt 3-

Best OFV Time (s) Best OFV Time (s) Best OFV

Nug12 12 630 0.035 720 0.070 612

Nug14 14 1040 0.033 1270 0.031 1076

Nug15 15 1168 0.080 1410 0.031 1194

Nug16a 16 1636 0.036 2032 0.061 1710

Nug16b 16 1312 0.062 1478 0.039 1304

Nug17 17 1764 0.043 2204 0.051 1824

Nug18 18 1988 0.033 2438 0.038 2002

Nug20 20 2676 0.095 3070 0.037 2700

Nug21 21 2560 0.055 3224 0.073 2528

Nug22 22 3836 0.050 4580 0.043 3706

Nug24 24 3670 0.051 4550 0.052 3580

Nug25 25 3816 0.056 4746 0.053 3850

Nug27 27 5582 0.069 6436 0.037 5622

Nug30 30 6180 0.081 7450 0.052 6282

Bur26a 26 5536606 0.104 5686514 0.079 5450887

Bur26b 26 3865109 0.201 4078658 0.082 3825543

Bur26c 26 5559892 0.158 5691003 0.089 5432628

Bur26d 26 3955005 0.160 4032499 0.079 3822905

Bur26e 26 5457341 0.131 5656466 0.082 5387936

Bur26f 26 3882393 0.149 4038741 0.079 3783547

Bur26g 26 10178342 0.148 10668053 0.080 10119845

Bur26h 26 7246369 0.101 7644484 0.085 7100009
velocity of a particle. Each particle updates its velocity
based on the current velocity and the best position
(pbest) it has explored so far, as well as based on the glo-
bal best position (gbest) explored by a swarm. Movement
of each particle is shown in Figure 6, and it is based on
Equations 6 and 7. Equation 6 illustrates that the velocity
vector is updated by the global best position, personal
best position, and current position of each particle. Equa-
tion 7 shows that each particle moves by its velocity.

vi t þ 1ð Þ ¼ w:vi tð Þ þ b1:rand pbest� xi tð Þð Þ
þ b2:rand gbest� xi tð Þð Þ; ð6Þ

xi t þ 1ð Þ ¼ xi tð Þ þ vi tð Þ; ð7Þ

where i is the index of the particle, t is the index of an
iteration, vi is the vector of velocity, xi is the position, w
is the weight of current velocity, b1 is the weight of dif-
ference between personal best and current positions, b2 is
the weight of difference between global best and current
positions, and rand is used for randomization. The PSO
Opt Greedy 3-opt VNZ Exact

Time (s) Best OFV Time (s) Best OFV Time (s) Best OFV

0.060 662 0.038 630 0.115 578

0.120 1122 0.037 1094 0.079 1014

0.158 1266 0.081 1210 0.094 1150

0.150 1744 0.092 1708 0.160 1610

0.175 1342 0.047 1338 0.092 1240

0.183 1900 0.052 1812 0.094 1732

0.325 2102 0.078 2084 0.104 1930

0.300 2780 0.089 2762 0.076 2570

0.482 2612 0.145 2568 0.096 2438

0.702 3850 0.070 4002 0.172 3596

0.889 3776 0.121 3826 0.143 3488

0.999 4014 0.194 3946 0.186 3744

1.580 5932 0.214 5792 0.138 5234

3.476 6670 0.260 6648 0.238 6124

5.318 5499462 0.390 5642823 0.269 5426670

6.888 3921950 0.390 3898585 0.340 3817852

6.066 5488940 0.377 5560520 0.300 5426795

5.472 3845665 0.408 3999274 0.324 3821225

6.510 5441312 0.382 5610566 0.351 5386879

4.828 3818354 0.390 3982126 0.282 3782044

5.332 10243826 0.389 10405839 0.281 10117172

5.651 7216120 0.391 7286571 0.281 7098658



Table 3 Solution qualities with CPU time of small-size test problems

Names of
instances

n SA TS PSO IFLS with local search (OXPM) Exact

RPD Time (s) RPD Time (s) RPD Time (s) RPD Time (s) OFV

Nug12 12 0.00 0.16 0.00 0.12 7.61 0.27 1.38 0.70 578

Nug14 14 1.78 0.19 0.39 0.17 1.38 0.29 1.58 1.28 1,014

Nug15 15 3.30 0.16 0.87 0.15 2.26 0.27 0.17 1.69 1,150

Nug16a 16 0.75 0.16 1.37 0.14 0.75 0.31 0.00 2.17 1,610

Nug16b 16 0.65 0.17 0.00 0.14 0.00 0.32 0.00 2.14 1,240

Nug17 17 1.04 0.17 0.69 0.15 3.00 0.32 1.27 2.77 1,732

Nug18 18 2.69 0.18 1.04 0.14 3.01 0.34 0.93 3.42 1,930

Nug20 20 2.49 0.20 1.56 0.16 1.95 0.36 0.70 5.28 2,570

Nug21 21 1.72 0.20 0.25 0.17 2.71 0.40 0.25 6.89 2,438

Nug22 22 1.78 0.20 0.50 0.17 1.33 0.41 1.33 7.77 3,596

Nug24 24 4.59 0.21 1.15 0.18 3.96 0.45 2.87 10.91 3,488
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pseudo code, which is presented for QAP in this re-
search, is as follows:

Step 1. max iteration = 100, number of particle = 15,
and w = n − 1, b1 = n/2 and b2 = (n/2) + 2, where n
is the dimension of the problem. Make 15
permutations as the initial solutions and Z* = min
(OFV), S* = S, and iter = 1.

Step 2. For i = 1 to w, transpose two facility. Do this
step for each particle.
Table 4 Solution qualities with CPU time of medium-size test p

Names of
instances

n SA TS P

RPD Time (s) RPD Time (s) RPD

Nug25 25 3.69 0.24 1.55 0.18 1.92

Bur26a 26 0.10 0.62 0.09 0.53 0.20

Bur26b 26 0.67 0.61 0.19 0.54 0.42

Bur26c 26 0.06 0.60 0.26 0.55 0.30

Bur26d 26 0.12 0.60 0.02 0.54 0.05

Bur26e 26 0.01 0.60 0.03 0.51 0.05

Bur26f 26 0.26 0.61 0.05 0.54 0.33

Bur26g 26 0.06 0.59 0.01 0.54 0.42

Bur26h 26 0.03 0.60 0.01 0.52 0.35

Nug27 27 2.67 0.26 1.38 0.22 4.43

Nug30 30 5.94 0.27 2.65 0.22 6.01

Tai30a 30 4.70 0.27 4.75 0.25 5.90

Tai30b 30 3.55 0.26 1.62 0.25 5.18

Tai40a 40 5.31 0.37 6.12 0.32 5.53

Tai40b 40 5.00 0.34 3.07 0.29 3.84

Tai50a 50 5.90 0.47 6.49 0.39 7.19

Tai50b 50 3.86 0.45 5.15 0.40 7.23
Step 3. Calculate objective function value (Z) for
each new particle; find the personal best OFV for
each particle (pbest), and find the global best
OFV (gbest).

Step 4. Generate a random discrete number between 0
and b1, and for i = 1 to this random number,
simulate each particle to pbest.

Step 5. Generate a random discrete number between 0
and b2, and for i = 1 to this random number,
simulate each particle to gbest.
roblems

SO IFLS with local search (OXPM) Exact

Time (s) RPD Time (s) OFV

0.48 0.21 12.97 3,744

1.32 0.09 15.86 5,426,670

1.30 0.17 15.56 3,817,852

1.34 0.00 15.41 5,426,795

1.30 0.01 15.38 3,821,225

1.33 0.26 15.16 5,386,879

1.29 0.00 15.55 3,782,044

1.34 0.01 15.28 10,117,172

1.32 0.00 14.88 7,098,658

0.48 2.79 17.42 5,234

0.54 1.32 22.45 6,124

0.85 2.46 18.28 1,818,146

0.87 2.33 18.23 637,117,113

1.16 3.16 62.66 3,139,370

1.07 4.18 60.44 637,250,948

1.36 2.90 158.94 4,938,796

1.35 1.87 161.27 458,821,517



Table 5 Solution qualities with CPU time of large size test problems

Names of
instances

n SA TS PSO IFLS with local search (OXPM) Exact

RPD Time (s) RPD Time (s) RPD Time (s) RPD Time (s) OFV

Lipa80a 80 0.25 0.89 0.15 0.79 40.70 2.39 0.72 1734.11 253,195

Lipa80b 80 23.46 0.94 23.55 0.80 23.93 2.38 20.65 1889.81 7,763,962

Tai80a 80 6.13 0.94 6.66 0.79 7.01 2.37 2.87 1390.58 13,527,910

Tai80b 80 2.93 0.96 3.91 0.82 4.55 2.48 0.71 1122.56 841,223,593

Lipa90a 90 2.01 1.12 0.49 0.93 1.03 3.07 0.67 2964.41 360,630

Lipa90b 90 13.55 1.17 14.59 0.96 14.71 3.35 0.00 3200.88 12,490,441

Tai100a 100 4.66 1.69 4.11 1.20 4.33 4.82 2.69 3560.03 21,090,402

Tai100b 100 3.06 2.15 2.02 1.73 4.17 5.21 0.93 3595.17 1.186E + 09
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Step 6. iter = iter + 1; if iter < max iteration, then
repeat step 2;otherwise, proceed to step 7.

Step 7. Print Z* = gbest S* = gbest permutation (S).
Tuning method
The parameters in meta-heuristic methods which are
introduced, such as max STM and max iteration, were
tuned by carrying out the general factorial design. To
achieving this purpose, some levels were defined initially
for each parameter. These levels are determined to be
focused on the logic of meta-heuristics. For instance,
when the number of iteration in PSO is increased, then
the time of search is intensified. This is just one charac-
teristic of this meta-heuristic approach. After defining
the levels, an experimental design is determined by gen-
eral factorial design. The meta-heuristic for these experi-
ments is then run, and their results are analyzed. Thus,
the best parameter level can be found. Figure 7 illus-
trates this tuning method.
For example, for ‘Nug’ instances taken from the Quad-

ratic Assignment Problem Library (QAPLIB), the ana-
lysis is done for ‘Nug27’ for the TS method. The
proposed levels for max STM are 5, 7, 9, and 11, and for
max iteration, they are 1,000, 1,500, and 2,000. We con-
sider two replicates for each combination of factor levels;
hence, for this instance, 24 treatment combinations are
arranged. Figure 8 shows the interaction plot for OFV,
and it also shows the best combination of these factors.
The best max STM is 5, and the best max iteration is
1,000. Hence, we tune the TS parameter based on this
experiment. Moreover, the parameters like nover max,
nlimit max, T, T0, and others were set by analyzing the
general factorial design similar to TS.
Figure 9 Average gaps for heuristics.
Results and discussion
Computational analyses
In this research, an analytical comparison between heur-
istics and meta-heuristics, which are described as the
Nug and ‘Bur’ instances selected from QAPLIB, are
applied. The computer which carried out the experi-
ments is equipped with a 2 53-GHz processor with pro-
gramming coded in MATLAB7.8 (MathWorks, Natick,
MA, USA). Table 2 shows the computational results for
heuristic methods. Results show that 3-opt as a heuristic
method is the best solution method for QAP among the
presented heuristic methods in this research. In this
table, sizes of the problems are determined by n.
Tables 3, 4, and 5 reveal the computational results for

meta-heuristic methods. In this computational analysis,
the test problems are classified in small-, medium-, and
large-size cases. These groups are taken from the study
of Ramkumar et al. (2008). Our experiment results are
compared with iterated fast local search (IFLS) when the
order crossover with random pair-wise interchange mu-
tation (OXPM) is used (Ramkumar et al 2008). The cri-
terion considered for evaluating the performance is the
relative percentage deviation (RPD) of the solution qual-
ity from the best known solution. The number of loca-
tion is n.
The superior methods in CPU time and OFV are illu-

strated in the boldface. The average of gaps for heuristic
methods and meta-heuristic methods introduced in this
research with the exact solution are shown in Figure 9.
These results are related to the Nug and Bur instances.
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This figure shows that TS is the best in our methods. In
addition, it can be concluded that meta-heuristics have
better solution quality; hence, we compare meta-
heuristic methods with IFLS. Furthermore, Figure 9
shows that the greedy-2opt is not a good method be-
cause the average gap for this method is about 12% in
selected data sets.
The performances of our proposed meta-heuristic

approaches and IFLS with local search are studied by
analysis of variance (ANOVA) test.
Figure 10 summarizes the results of our investigation

where the critical value for this analysis is considered as
0.05. As we can observe from Figure 10, in small-size
test problems, the means of IFLS and PSO are signifi-
cantly different, and no meta-heuristics have means sig-
nificantly different from IFLS in the medium- and large-
test problems. It is clear from this figure that TS and
IFLS have the best solution quality in small-, medium-,
and large-size instances, respectively. Hence, it is not ne-
cessary that the p values of these analyses be declared.
Conclusions
This research considers the heuristic and meta-heuristic
solution methods for QAP, and the comparison among
them has been done. In addition, a tuning method is
declared. The comparison has been executed for the
selected data set which was extracted from QAPLIB.
The results show that 3-opt has better results than the
other heuristic methods. Moreover, our meta-heuristic
methods are better than the heuristic methods in solu-
tion quality. In this paper, some small, medium, and
large test problems are used for comparing our meta-
heuristic methods to a method from literature (i.e., IFLS
with local search). ANOVA test is run for the results,
and it showed that our methods are not considerably
different from IFLS. TS is the most excellent method in
computational time. Comparisons between the selected
solution methods for more instances from the QAPLIB
and comparisons of these algorithms with other meta-
heuristics and hybrid algorithms can be conducted in fu-
ture research.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
MB has worked on the literature and modeling; he also proposed the TS, SA,
and PSO for his work. HK has performed numerical experiments and carried
out sensitivity analysis. Both authors read and approved the final manuscript.

Acknowledgments
The authors would like to thank the anonymous referees for their
constructive comments on earlier version of this work.

Received: 22 May 2010 Accepted: 3 March 2012
Published: 18 July 2012



Bashiri and Karimi Journal of Industrial Engineering International 2012, 8:6 Page 9 of 9
http://www.jiei-tsb.com/content/8/1/6
References
Bock F (1958) An algorithm for solving traveling-salesman and related network

optimization. Research report associated with talk presented at the
Operations Research Society of America 14th National Meeting, St. Louis

Burkard R, Rendl F (1984) A thermodynamically motivated simulation procedure
for combinatorial optimization problems. European Journal of Operational
Research 17:169–174

Croes GA (1958) A method for solving traveling salesman problems. Operation
Research 6:791–812

Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory.
Paper presented at the Proceedings of the Sixth International Symposium on
Micro Machine and Human Science, Nagoya, Japan

Fescioglu U, Kokar M (2008) Application of Self Controlling Software Approach to
Reactive Tabu Search. SASO, Venezia, pp 297–305

Glover F (1989) Tabu search: Part I. ORSA J Comput 1:190–206
Glover F (1990) Tabu search: Part II. ORSA J Comput 2:4–32
Hongbo L, Ajith A (2007) An hybrid fuzzy variable neighborhood particle swarm

optimization algorithm for solving quadratic assignment problems. Jucs 13
(9):1309–1331

Hongbo L, Ajith A, Jianying Z (2007) A particle swarm approach to quadratic
assignment problems. Soft Comput Ind App 39:213–222

James T, Rego C, Glover F (2007) A cooperative parallel tabu search algorithm for
the quadratic assignment problem. Eur J Oper Res 195:810–826

James T, Rego C, Glover F (2009) Multistart tabu search and diversification
strategies for the quadratic assignment problem. Systems, Man and
Cybernetics, Part A: Systems and Humans 39(3):579–596

Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of
IEEE International Conference on Neural Networks, Nov-Dec 1995, 4th edn.
IEEE, Piscataway, pp 1942–1948

Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm
algorithm. In: Proceedings of International Conference on Systems, Man, and
Cybernetics, October 1994, 1st edn. IEEE Computer Society Press, New York,
pp 4104–4108

Koopmans T, Beckmann M (1957) Assignment problems and the location of
economic activities. Econometrica 25:53–76

Loiola E, de Abreo N, Boaventura-Nett P, Hahn P, Querido T (2007) A survey for
the quadratic assignment problem. Eur J Oper Res 176:657–690

Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller M (1953) Equation of
state calculations for fast computing machines. Journal of Chemical 21:
1087–1092

Ramkumar AS, Ponnambalam SG, Jawahar N, Suresh RK (2008) Iterated fast local
search algorithm for solving quadratic assignment problems. Rob Comput-
Integr Manuf 24:392–401

Sahni S, Gonzalez T (1976) P-complete approximation problems. J Assoc Comput
Mach 23:555–565

Shi X, Xing X, Wang Q (2004) A discrete PSO method for generalized TSP
problem. In: Proceedings of International Conference on Machine Learning
and Cybernetics, August 2004, 4th edn. IEEE Computer Society Press, New
York, pp 2378–2383

Singh SP, Sharma RK (2008) Two-level modified simulated annealing based
approach for solving facility layout problem. Int J Prod Res 46(13):3563–3582

Skorin-Kapov J (1990) Tabu search applied to the quadratic assignment problem.
ORSA J Comput 2:33–45

Taillard E (1991) Robust taboo search for the quadratic assignment problem.
Parallel Comput 17:443–455

Vollman TE, Nugent CE, Zartler RL (1968) A computerized model for office layout.
J Ind Eng 19:321–327

Wilhelm MR, Ward TL (1987) Solving quadratic assignment problems by
simulated annealing. IEEE Trans 19:107–119

Zhu W, Curry J, Marquez A (2009a) GPU-accelerated simt tabu search for the
quadratic assignment problem. NAMRC, Greenville, pp 435–442

Zhu W, Curry J, Marquez A (2009b) SIMD tabu search for the quadratic
assignment problem with graphics hardware acceleration. Int J Prod Res
48:1035–1047

doi:10.1186/2251-712X-8-6
Cite this article as: Bashiri and Karimi: Effective heuristics and meta-
heuristics for the quadratic assignment problem with tuned parameters
and analytical comparisons. Journal of Industrial Engineering International
2012 8:6.
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Background
	Methods
	QAP formulation
	Heuristic methods
	2-Opt algorithm
	Greedy 2-opt algorithm
	3-Opt algorithm
	Greedy 3-opt algorithm
	VNZ method

	Meta-heuristic methods
	Tabu search
	Simulated annealing
	Partial swarm optimization

	Tuning method

	Results and discussion
	Computational analyses

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgments
	References

