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Abstract Flexible flow shop (or a hybrid flow shop)

scheduling problem is an extension of classical flow shop

scheduling problem. In a simple flow shop configuration, a

job having ‘g’ operations is performed on ‘g’ operation

centres (stages) with each stage having only one machine.

If any stage contains more than one machine for providing

alternate processing facility, then the problem becomes a

flexible flow shop problem (FFSP). FFSP which contains

all the complexities involved in a simple flow shop and

parallel machine scheduling problems is a well-known NP-

hard (Non-deterministic polynomial time) problem. Owing

to high computational complexity involved in solving these

problems, it is not always possible to obtain an optimal

solution in a reasonable computation time. To obtain near-

optimal solutions in a reasonable computation time, a large

variety of meta-heuristics have been proposed in the past.

However, tuning algorithm-specific parameters for solving

FFSP is rather tricky and time consuming. To address this

limitation, teaching–learning-based optimization (TLBO)

and JAYA algorithm are chosen for the study because these

are not only recent meta-heuristics but they do not require

tuning of algorithm-specific parameters. Although these

algorithms seem to be elegant, they lose solution diversity

after few iterations and get trapped at the local optima. To

alleviate such drawback, a new local search procedure is

proposed in this paper to improve the solution quality.

Further, mutation strategy (inspired from genetic

algorithm) is incorporated in the basic algorithm to main-

tain solution diversity in the population. Computational

experiments have been conducted on standard benchmark

problems to calculate makespan and computational time. It

is found that the rate of convergence of TLBO is superior

to JAYA. From the results, it is found that TLBO and

JAYA outperform many algorithms reported in the litera-

ture and can be treated as efficient methods for solving the

FFSP.

Keywords Flexible flow shop � JAYA algorithm �
Makespan � Meta-heuristics � Teaching–learning-based
optimization

Introduction

Problems of scheduling occur in many economic domains,

such as airplane scheduling, train scheduling, time

table scheduling and especially in the shop scheduling of

manufacturing organizations. A flexible flow shop (FFS),

which is also known as hybrid flow shop or flow shop with

parallel machines, consists of a set of machine centres with

parallel machines. In other words, it is nothing but an

extension of the simple flow shop scheduling problem

(FSP). In real practice, a shop with a single processor at

each stage is rarely encountered. Generally, processors are

duplicated in parallel at stages. The purpose of duplication

is to balance the capacity of stages, increase the overall

shop floor capacity, reduce, if not eliminate, the impact of

bottleneck stages and so on. A flexible flow shop

scheduling problem (FFSP) has M jobs with ‘g’ number of

operations to be carried out in ‘g’ stages. Each job

n (n = 1, 2, …, M) is to be sequentially processed at each

stage t (t = 1, 2, …, g). Each stage t (t = 1, 2,…, g) has
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MTt identical machines. At least one stage will have more

than one machine and only one operation is carried out in

each stage. The parallel machines in a stage are identical

and take same time to process an operation. At any given

time, a machine can process only one job. The processing

time of each job m at a stage t ‘‘p (n, t)’’ is deterministic

and it is known in advance. The objective is to find per-

mutation of all jobs at each stage so as to reduce the

makespan. For a scheduling problem, the makespan is

defined as the completion time of the last job to leave the

production system (Pinedo 2008). Among all the shop-

scheduling problems, flexible flow shop problem (FFSP) is

treated as one of the difficult NP-hard (Non-deterministic

polynomial time) problems as pointed out by Gupta (1988)

and Hoogeveen et al. (1996). It is unlikely that an exact

solution to FFSP can be found by a polynomial time

algorithm. However, an exact solution can be obtained by

various methods of reduced enumeration, typically by a

branch and bound (B&B) algorithm. In any case, only

small-size instances can be handled by exact methods. To

find a good solution for large size problems of practical

interest within an acceptable amount of time, two types of

algorithms, such as (1) approximation algorithms and (2)

heuristic or meta-heuristic algorithms, are used. An algo-

rithm is called an approximation algorithm if it is possible

to establish analytically how close the generated solution is

to the optimum (either in the worst-case or on average).

The performance of a heuristic algorithm is usually ana-

lyzed experimentally, through a number of runs using

either generated instances or known benchmark instances.

Heuristic algorithms can be very simple but still effective.

Some of modern heuristics based on various ideas of local

search are listed as neighbourhood search, tabu search,

simulated annealing, genetic algorithms, etc.

Even though the performance of exact methods such as

branch and bound is superior to heuristic and meta-

heuristic techniques, exact methods fail to solve large size

problems. On the other hand, heuristic techniques are

problem-dependent and easily get trapped at the local

optimum. To overcome the drawbacks of both exact and

heuristic methods, researchers focus on meta-heuristic

approaches which happen to be problem-independent and

applied to solve problems independent of their size.

Recently, many meta-heuristics have been applied in recent

past to solve the FFSP to generate near-optimal solutions in

a reasonable computation time (Oguz and Ercan 2005;

Engin and Doyen 2004; Niu et al. 2009; Cui and Gu 2015).

Usually, meta-heuristics are population-based algorithms

which can be broadly classified into two groups. They are

evolutionary algorithms (EA’s)- and swarm intelligence

(SI’s)-based algorithms. Some of the famous EA’s are

genetic algorithm (GA), evolution strategy (ES), differen-

tial equation (DE), evolutionary programming (EP), etc.

Some of the famous swarm intelligence-based algorithms

are particle swarm optimization (PSO), ant colony opti-

mization (ACO), fire fly algorithm (FF), artificial bee col-

ony (ABC) algorithm, etc. Other than these two broad

categories, there are other population-based algorithms,

such as harmony search (HS), bio-geography-based opti-

mization (BBO), eco-geography-based optimization (EBO)

and gravitational search (GS) algorithm, etc. Most of these

algorithms have one thing in common, i.e. tuning of the

respective algorithm-specific parameters. For example, GA

contains parameters, such as mutation and crossover

probabilities. PSO contains parameters, such as inertia

weight and acceleration constants. Artificial bee colony

(ABC) uses the number of scout bees, onlooker bees and

employed bees. HS uses pitch adjusting rate and memory

consideration rate. Similarly, other algorithms also have

their own tuning parameters. To obtain good optimized

solutions to specific problems, tuning of the algorithm-

specific parameters is essential. Since finding the right

tuning parameters is a difficult task, an efficient tuning

parameter-less algorithms is required to overcome this

drawback. Teaching–learning-based optimization (TLBO)

and JAYA are some of the recent optimization techniques

that were proposed without any algorithm-specific tuning

parameters in comparison with any other meta-heuristics.

The present work focuses on the application of TLBO and

JAYA algorithms to solve FFSP. TLBO, proposed by Rao

et al. (2011), has been applied to different kinds of opti-

mization problems in the past and found to be one of the

good algorithms solving NP-hard problems. JAYA algo-

rithm is proposed by Rao (2016) recently. It is observed

that JAYA algorithm seems to be an efficient one in

solving the constrained and unconstrained optimization

benchmark problems. Hence, an attempt is made in this

work to apply JAYA to solve FFSP. Further, TLBO is a

two-phase algorithm, whereas JAYA solves the optimiza-

tion problem in a single phase.

The meta-heuristics in the present work also require

some improvements in the basic algorithm so that their

efficiency may be improved in generating the optimal or

near-optimal solutions. Many researchers have embedded

local search techniques with meta-heuristics to improve the

efficiency of meta-heuristics. For example, Wang et al.

(2011) have used a local search technique to simulated

annealing (SA) to improve its efficiency while solving

FFSP. Choong et al. (2011) have proposed hybrid algo-

rithms combining tabu search (TS) and simulated annealing

(SA) to particle swarm optimization (PSO) to improve

efficiency of PSO in solving FFSP. Liao et al. (2012) have

used a local search technique to PSO. Therefore, a new local

search technique is proposed in the present work to improve

the solution quality of FFSP generated by present algo-

rithms. Although these algorithms seem to be elegant, they
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lose solution diversity after some iteration and may get

trapped at the local optima. To overcome this drawback,

mutation strategy from genetic algorithm is incorporated to

the algorithm to maintain the diversity in the population.

Literature review

A methodology based on branch and bound (B&B), which

is considered to be an exact method, has been proposed by

Arthanari and Ramamurthy (1971) to solve FFSP. Carlier

and Neron (2000) have applied B&B to solve 77 benchmark

problems of FFSP. Lower bound for makespan proposed by

Santos et al. (1995) can be used as a measure to find the

efficiency of the algorithms. To minimize makespan and

flow time, Brah and Loo (1999) have proposed several

heuristics (previously applied to FSP) to solve FFSP. A

regression analysis is proposed to study the effect of prob-

lem characteristics on performance of heuristics. Ruiz et al.

(2008) have conducted tests on several dispatching rules on

realistic FFSP. Results show that modified NEH (Nawaz,

Enscore, Ham) heuristic proposed by Nawaz et al. (1983)

outperform all other heuristics. Ying and Lin (2009) have

proposed an efficient heuristic called the heuristic of mul-

tistage hybrid flow shop (HMHF) to solve FFSP with multi-

processor tasks. Kahraman et al. (2010) have proposed a

parallel greedy algorithm (PGA) to solve FFSP with multi-

processor tasks with four constructive heuristic techniques

that were used to develop the PGA.

Initially, the mostly used meta-heuristic is GA for solv-

ing FFSP with an objective to minimize makespan (Ulusoy

2004; Oguz and Ercan 2005; Ruiz and Maroto 2006;

Kahraman et al. 2008; Shiau et al. 2008; Urlings et al. 2010;

Engin et al. 2011). Artificial immune system (AIS), which

uses the affinity maturation mechanism and clonal selection

principle, has been successfully applied by Engin and

Doyen (2004) to solve FFSP. With the inspiration from

natural phenomenon of ant colony, ant colony optimization

(ACO) has been applied by Ying and Lin (2006) to solve

FFSP. Alaykyran et al. (2007) have conducted a parametric

study on the application of ACO to FFSP and proposed an

improved ACO. Niu et al. (2009) have proposed a quantum-

inspired immune algorithm (QIA), a hybrid algorithm

inspired from quantum algorithm (QA) and immune algo-

rithm (IA), for solving 41 FFSP from Carlier and Neron

(2000) instances. Results indicate that QIA is superior to

QA and IA. Wang et al. (2011) have proposed SA technique

to solve FFSP with multi-processor tasks with an aim to

minimize makespan. They have used three different

decoding techniques (list scheduling, permutation

scheduling, and first-fit method) and a local search tech-

nique to SA to obtain makespan. Mousavi et al. (2013) have

proposed SA local search technique to minimize combined

total tardiness and makespan for FFSP. Choong et al. (2011)

have hybridized PSO with SA and TS techniques and pro-

posed two hybrid PSO algorithms to solve FFSP. Liao et al.

(2012) have proposed PSO hybridized with bottleneck

heuristic to exploit the bottleneck stage and incorporated

SA technique to avoid trapping at the local optima followed

by a local search technique to improve the solution quality.

Singh and Mahapatra (2012) have proposed PSO to solve

FFSP using chaotic numbers generated from logistic map-

ping function instead of random numbers. Based on the

features of integrated greedy algorithms and artificial

immune system (AIS), Ying (2012) has proposed a new

hybrid immune algorithm (HIA) to solve multistage FFSP

with makespan as the objective. Chou (2013) has proposed

a cocktail decoding method capable of improving the

solution quality of any algorithm incorporated with PSO for

solving FFSP with multi-processor tasks. An improved

cuckoo search algorithm has been proposed by Marichel-

vam et al. (2014) to solve multi-stage FFSP. To obtain the

near-optimal solutions rapidly using cuckoo search, initial

solutions are generated with NEH heuristic. Cui and Gu

(2015) have proposed an improved discrete artificial bee

colony (IDABC) algorithm to solve FFSP. The IDABC uses

a combination of modified variable neighbourhood search

(VNS) and differential evolution (DE) techniques to gen-

erate new solutions. A modified harmony search approach

using smallest position value (SPV) rule is applied to solve

multi-stage FFSP with an aim to minimize makespan by

Marichelvam and Geetha (2016). For critical analysis of

FFSP problems, Ribas et al. (2010) have presented a liter-

ature review on exact, heuristic and meta-heuristics meth-

ods proposed to solving FFSP. Careful analysis of literature

on FFSP reveals that meta-heuristic approaches are widely

used for improving solution quality. However, any algo-

rithm or its hybridisation variant needs tuning of algorithm-

specific parameters to obtain good solutions. An algorithm

that does not require algorithm-specific parameters to be

tuned may be another way of generating solution quality

because it may reduce the burden of computation of tuning

the algorithm for each problem instance. A brief description

of the FFSP and its formulation is given in the next section.

Problem description and formulation

FFSP, commonly known as hybrid flow shop problem, has

M jobs with ‘g’ number of operations to be carried out in ‘g’

stages. Each job n (n = 1, 2, …, M) is to be sequentially

processed at each stage t (t = 1, 2,…, g). Each stage

t (t = 1, 2,…, g) have MTt identical machines. At least one

stage will have more than one machine and only one

operation is carried out in each stage. The parallel machines

in a stage are identical and take same time to process an
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operation. At any given time, a machine can process only

one job. The processing time of each job m at a stage

t ‘‘p (n, t)’’ is deterministic and it is known in advance. The

objective is to find permutation of all jobs at each stage to

reduce the makespan. The arrows in the Fig. 1 indicate the

possible ways that a job can be processed from one stage to

another. There are few assumptions (Marichelvam et al.

2014) involved in solving this problem. They are:

• The number of machines at each stage and the number

of stages are known in advance.

• The processing times of jobs on these machines are

deterministic and are known in advance.

• There is no preemption during the process.

• The transportation times and setup times of jobs are

included in the processing times.

• At a time, a machine can process only one job.

• There is no machine breakdown or any other distur-

bance during the process.

The notations used are as follows:

n Number of jobs ðn ¼ 1; 2; . . .:;MÞ
g Number of stages ðt ¼ 1; 2; . . .; gÞ
MTt Total number of machines at stage

t; ðt ¼ 1; 2; . . .; gÞ
Jkt Jobs that are processed on machine k at stage t

Pntk Processing time of job n at stage t on machine k

Cntk Completion time of job n at stage t on machine k

Sntk Starting time of job n at stage t on machine k

Yntk = 1 if job n is processed at stage t on machine k. 0,

otherwise

htk Job h is processed at stage t on machine k.

h ¼ 1; 2; . . .. . .;MTt

The mathematical model of FFSP is as explained below.

The objective is to minimize makespan (Cmax):

Cmax �Cng 8n: ð1Þ

Subject to constraints

XMTt

k¼1

Yntk ¼ 1; n ¼ 1; 2; . . .;M; t ¼ 1; 2; . . .; g; ð2Þ

XMTt

k¼1

Jkt ¼ n; 8t 2 g; ð3Þ

Cntk� Sn t þ 1ð Þr; 8t 2 g; 8r 2 MTt; ð4Þ
Cntk ¼ Sntk þ Pntk 8n; t; k; ð5Þ
Chtk� S hþ 1ð Þtk 8t; k; h; ð6Þ
Cmax �Cng 8n; ð7Þ

Inequality (1) determines the makespan. Constraint (2)

governs the assignment of each job at every stage. Con-

straint (3) assures that the total number of jobs assigned in

a stage is equal to n. Constraint (4) ensures that a job

cannot be processed in a later stage unless it is completely

processed on the current stage. Constraint (5) determines

the completion time of a job at a given stage. Constraint (6)

determines that a machine cannot process next job unless it

processes the current job completely. Constraint (7)

determines that the makespan of a schedule should be

always greater than or equal to completion time of all jobs

at the last stage.

The problem is classified as NP-hard problem (Gupta

1988). The computation time increases exponentially if the

size of the problem increases. Therefore, exact solution

hardly gives a good solution in reasonable time. The

researchers tend to use various meta-heuristic approaches

to solve such type of problems. But turning of algorithm-

specific parameter is really difficult to attain quality solu-

tions. Hence, TLBO and JAYA algorithms which do not

have any algorithm-specific tuning parameters are chosen

for the study to evaluate their performance.

Teaching–learning-based optimization

TLBO is proposed by Rao et al. (2011) with an inspiration

from the general teaching–learning process how a teacher

influence the knowledge of students. Students and teacher

are the two main objects of a class and the algorithm

explains the two modes of learning, i.e. via teacher (teacher

phase) and discussion among the fellow students (student

Fig. 1 Schematic flow diagram

of FFSP
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phase). A group of students of the class constitute the

population of the algorithm. In any iteration ‘i’, the best

student of the class becomes the teacher. Execution of the

TLBO is explained in two phases, such as teacher phase

and student phase.

Teacher phase

A teacher puts his/her best to increase the knowledge of

his/her students to his level. But practically it is not pos-

sible as learning by a student depends on his/her potential

to learn. In this process, each student’s knowledge

increases and in turn the average knowledge of the class

increases. At any iteration ‘i’, let Zmean denote the mean

knowledge of the class and teacher of the class is denoted

as Zteacher. Then increased knowledge of a student is given

by the expression:

Znewi ¼ Zoldi þ r � Zteacher� Tf � Zmeanð Þð Þ; ð8Þ

where r is a random number between zero to one and Tf is

called teaching factor whose value is randomly chosen as

one or two, and there is no tuning of this teaching factor

even though Tf is an algorithm-specific parameter of

TLBO. Znew i is the new knowledge of the student ‘i’ after

learning from the teacher. Zold i is the previous knowledge

of the student ‘i’. Accept Znew i if it gives a better func-

tional value.

Student phase

After a class is taught, students discuss among themselves.

In this process, the knowledge of all students increases. At

any iteration ‘i’, let Za and Zb be two students who discuss

after the class, a = b. Then increased knowledge of the

student is given by the expression:

Znewa ¼ Zolda þ ri � Za � Zbð Þ if F Zað Þ\ ¼ F Zbð Þ;
ð9Þ

Znewa ¼ Zolda þ ri � Zb� Zað Þ if F Zbð Þ \ F Zað Þ:
ð10Þ

Znew a is the new knowledge of the student ‘a’ after

learning from the co-student ‘b’. Zold a is the previous

knowledge of the student ‘a’. Accept Znew a if it gives a

better function value. The pseudo code of proposed TLBO

is given in Fig. 3.

JAYA algorithm

JAYA algorithm is proposed by Rao (2016). This algo-

rithm is designed on the simple logic that any solution of

the given population should always move towards the best

solution and move away from the worst solution. The

beauty of this algorithm is that it contains only one equa-

tion and it does not contain any algorithm-specific

parameters to be tuned to get optimal solution, which

makes it very easy to understand and uniquely different

from any other meta-heuristics. As compared to TLBO,

JAYA has only one phase.

The mathematical description of JAYA algorithm is as

follows. Let f(x) be the objective function to be optimized.

At any iteration ‘i’, let Zbest and Zworst denote the best and

worst solutions, respectively, among the population, then a

solution of the population is modified as follows:

Znewi ¼ Zoldi þ r1 � Zbest � j Zijð Þ � r2
� Zworst � j Zijð Þ; ð11Þ

where r1 and r2 are the two random numbers between zero

and one. The term r1 9 (Zbest-|Zi|) denotes the nature of

solution to move towards the best solution and the term

-r2 9 (Zworst-|Zi|) denotes the nature of the solution to

move away from the worst solution. The new solution is

accepted if it gives a better value. The flow chart of JAYA

algorithm is given in Fig. 2. The pseudo code of proposed

JAYA algorithm is given in Fig. 3.

Although the TLBO and JAYA algorithms seem to be

elegant, they lose solution diversity after few iterations and

get trapped at the local optima. To alleviate such drawback,

a new local search procedure is proposed in this paper to

improve the solution quality. A brief description of the

proposed local search is given in the next section of the

paper as follows.

Local search

Literature suggests that researchers use local search tech-

niques to improve the efficiency of meta-heuristics. For

example, Wang et al. (2011) have used a local search

technique to SA to improve solution quality. Choong et al.

(2011) have embedded TS and SA to PSO separately to

improve PSO efficiency. Liao et al. (2012) have used a

local search technique to improve the efficiency of PSO.

The present tuning parameter-less algorithms also require

some improvements in the basic algorithm so that their

efficiency may be improved in generating the optimal or

near-optimal solutions. Although these algorithms seem to

be elegant, they lose solution diversity after few iterations

and may get trapped at the local optima. To overcome this

drawback, a new local search technique is proposed in the

present work to improve the solution quality of FFSP. This

method is explained in two steps: (1) Sequence swap (2)

machine swap.
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Sequence swap

Before going to the sequence swap, all the critical opera-

tions of the schedule are to be found. Then two or more

jobs that are allotted on the same machine adjacent to each

other are picked and adjacent swapping [pair exchange

method used by Xia and Wu (2005) and Buddala and

Mahapatra (2016)] will be done to check whether there is

Initialize the variables, population size and termination 

condition

Find the best and worst solutions among the 

population

New solutions are found using the equation

Znew i = Zold i + r1 * (Zbest - | Zi |) – r2 * (Zworst - | Zi |)

Is Znew i 

better than 

Zold i

Replace Zold i with Z’new i Zold i remains the same

Is the 
termination 
criteria met?

Report best solution obtained so far

Yes

Yes No

No

Fig. 2 Flow chart of Jaya algorithm
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any improvement in the quality of solution. This technique

is called sequence swap. If the swap gives a better make-

span value, then old solution is replaced by the new

solution.

Machine swap

In a FFSP problem, at least one stage will have more than

one machine. There is a possibility that critical operations

can be allotted to the same machine in a stage with multiple

machines. In such condition if one of the jobs is transferred

to other parallel machine of the same stage, then there is a

possibility for makespan reduction. This is called machine

swap technique. If this swap gives a better makespan value,

then old solution is replaced by the new solution.

Even though the TLBO and JAYA algorithms converge

quickly, it is observed that the population of these algo-

rithms lose diversity and get trapped at the local optimum.

Therefore, to maintain diversity in the population, mutation

strategy from GA is incorporated to these algorithms with

an inspiration from Singh and Mahapatra (2012). Sing and

Mahapatra have incorporated mutation strategy to PSO to

maintain the diversity in the population. The working of

mutation strategy is as follows.

Pseudo code for TLBO algorithm

Start

Initialize the random population, maximum iteration

number and iteration count variable iter=0.

While (iter < max iter number)

Iter =iter +1

Calculate mean of the population

Evaluate functional value of each student

Start teacher phase

Obtain new solutions using equation 8.

Accept new solution if it gives a better 

functional value.

End teacher phase

Start student phase

Obtain new solutions using equation 9&10.

Accept new solution if it gives a better

functional value.

End student phase

Conduct the local search.

Start Mutation strategy

End mutation strategy

End while

End

Pseudo code for JAYA algorithm

Start

Initialize the random population, maximum iteration

number and iteration count variable iter=0.

While (iter < max iter number)

Iter =iter +1

Evaluate functional value of each one of

population

Obtain new solutions using equation 11.

Accept new solution if it gives a better 

functional value.

Conduct the local search.

Start Mutation strategy

End mutation strategy

End while

End

Fig. 3 Pseudo codes for proposed algorithms
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Mutation strategy

Even though the rate of convergence of both the TLBO and

JAYA is good, it is observed that when these algorithms

are directly applied to solve the FFSP, they show a good

tendency to be struck at the local optimum due to lack of

diversity in the population. Therefore, as the iterations

proceed, all the populations get converged to a local opti-

mum and there is no improvement in the solution there

after. To avoid this drawback, mutation strategy from

genetic algorithm is incorporated to each of these basic

algorithms after the local search step. Singh and Mahapatra

(2012) have applied this mutation strategy to PSO for

solving FFSP. Mutation is defined as a sudden change that

occurs in the genes of the offspring when compared to that

of parent genes during the evolution process. Out of the

total population, a fixed percentage of population will

undergo mutation. In this case, the percentage is fixed to

three percent. It is based on the computational experiments

conducted and it is explained in Fig. 5 under results and

discussion. This mutation technique is implemented only if

there is no improvement in the best solution for every fixed

number of iterations. In the present case, mutation is

applied if no improvement is observed in five iterations.

This technique prevents the population converging to the

local optimum and directs the same to the global optimum.

After the incorporation of mutation strategy, we observe a

good improvement in the quality of results produced by

these two algorithms.

Problem mapping mechanism

In this method, a real number encoding system is used to

solve the FFSP where the integer part is used to assign the

machine at each stage and the fractional part is used to

sequence the jobs allotted on each machine. Let us consider

an example with jobs (n = 4) and operations (g = 3), i.e.

three stages. Stages one, two and three have three, two and

one machines, respectively (m1 = 3, m2 = 2, m3 = 1). We

generate 12 (4 9 3) real numbers randomly as shown in

second row of Fig. 4 by uniform distribution between [1,

1 ? m(k)] for each stage. The processing times p(n,

t) =

4 6 2
2

7

3

1

5

2
1 2 3

0
B@

1
CA. In stage 1, job 1 is allotted to

machine 1, job 2 and job 4 are allotted to machine 2, and

job 3 is allotted to machine 3. The method adopted here is

that for stage one the jobs on same machine are sequenced

in the increasing order of fractional values. So job 2 is

followed by job 4 in stage 1 as fractional value of job 2 is

less than that of job 4. For stages greater than one

sequence, priority is given to the completion times of jobs

in their previous stage. A job whose completion time is

small in the previous stage is sequenced first in the current

stage. In stage 2 machine 1, job 3 is followed by job 1

because completion time of job 1 in stage 1 is less than the

job 3 in stage 1. If the completion times are same then a job

is randomly chosen for sequencing.

Results and discussion

To evaluate the effectiveness of TLBO and JAYA algo-

rithms in solving FFSP, experiments have been conducted

on 77 benchmark problems taken from Carlier and Neron

(2000). All the problems have been solved and the results

are compared with various algorithms, such as BB, PSO,

GA, AIS, IDABC, IA, QA, and QIA, from the literature

available. Experiments have been conducted using

MATLAB software on a 4-GB ram i7 processor running at

3.40 GHz on windows 7 platform. The problem notation,

for instance j15c10a1 from Table 1, means a 15-jobs

10-stages problem where j stands for number of jobs,

c stands for number of stages, a stands for machine dis-

tribution structure and ‘1’ is the index of the problem. In

the present work, the problem sizes vary from jobs

109 stages 5 to jobs 159 stages 10.

Experiments have been carried out for different per-

centage of mutation ranging one to five. It is observed that

best results of most of the problems are obtained when the

mutation probability is fixed to three percent. This is clear

from Fig. 5a, b which shows the variation of results

obtained to some of the difficult problems solved by

varying the mutation percentage for TLBO and JAYA,

respectively. In this mutation process, randomly three

solutions from the population are picked and they are

replaced by new randomly generated solutions. In this way,

a diversity in the population is maintained before con-

verging to the optimal solution.

Exact methods such as B&B fail to produce best results

for large size FFSP problems. Therefore, there is a need for

alternative method to find the best result (least possible

makespan) that can be obtained for a FFSP. The least

possible makespan values are nothing but the lower bound

(LB) values. Therefore, to solve this problem, Santos et al.

(1995) derived a formula to find lower bound for FFSP. In

the present work, the formula to calculate lower bound

values is taken from Santos et al. (1995) and it is given in

the Eq. 12. Also, it is well known that heuristic and meta-

heuristics does not guarantee a best result all the time.

Therefore, lower bounds are essential and are used for

comparing the efficiency of different algorithms.
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LB¼max max
Xg

t¼1

pði; tÞ
( )

;max
1

MTðtÞ
XMTðtÞ

y¼1

LSA y; tð Þ
 ("

þ
Xn

i¼1

pði; tÞþ
XMTðtÞ

y¼1

RSA y; tð Þ
!)#

: ð12Þ

In Eq. 12, MTðtÞ is the total number of machines at

stage t, pði; tÞ is the processing time of job i at stage t, LSA

is left side processing times arranged in ascending order for

stages in left side and RSA is right side processing times

arranged in ascending order for stages in right side. For

more information regarding the derivation of the above

formula, one may refer to Santos et al. (1995).

Since meta-heuristics are stochastic in nature, the per-

formance of the proposed algorithms is carried out through

ten times and best values obtained by these algorithms are

tabulated in Table 1. In Table 1, Cmax stands for makespan

and PD is the percentage deviation of the solution from the

lower bound (LB) value. The second column in Table 1

gives the LB values calculated using Eq. 12. At the end of

the Table 1, average percentage deviation (APD) of each

algorithm to the problems is calculated. The formula to find

PD and APD are given in Eqs. 13 and 14, respectively.

PD ¼ Cmax � LB

LB
� 100; ð13Þ

APD ¼
PN

X¼1 PDðXÞ
N

: ð14Þ

In Eq. 14, N is the total number of problems available

with results to an algorithm and X is the index of the

problem. A comparison of computational times taken by

different algorithms to reach its optimal solution is shown

in Table 2. In Table 2, Cmax stands for makespan, T(s) de-

notes time in seconds, and a denotes that the algorithm

could not reach its optimum in 1600 s. A comparison of the

best and average makespan values obtained by TLBO and

JAYA are shown in Table 3. In Table 3, Cmax stands for

makeskpan.

A comparison of convergence rates for TLBO and

JAYA are given in the following Figs. 6, 7, 8 and 9 (for

Fig. 4 Problem mapping mechanism and solution representation
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few problems, first problem from each set), where blue line

indicates JAYA and black line indicates TLBO algorithms,

respectively. Results show that rate of convergence of

TLBO to reach the optimal result is superior to JAYA.

Out of these 77 problems, only forty-one problems have

been solved by IA, QA and QIA whose APD values for

these 41 problems are 6.31, 8.23 and 3.9, respectively. The

APD value of TLBO for these 41 problems is 2.47 whose

value is superior to QA, IA and QIA, and hence outper-

formed these three algorithms. Also, TLBO (APD = 2.32)

outperformed BB (APD = 4.14). The total APD (for 77)

value of TLBO is 2.32 which is very much closer to APD

values of remaining algorithms, such as PSO

(APD = 2.03), AIS (APD = 2.3), GA (APD = 2.28) and

IDABC (APD = 2.22). Thus, we can conclude that TLBO

is also one of the best meta-heuristic techniques that can be

applied to solve FFSP.

The APD value of JAYA for the forty-one problems

solved by IA, QA and QIA is 3.5 which outperformed all

these three QA (APD = 6.31), IA (APD = 8.23) and QIA

(APD = 3.9) algorithms. JAYA’s total APD (for 77

problems) value is 3.63 which also outperformed BB

(APD = 4.14). The remaining algorithms PSO

(APD = 2.03), AIS (APD = 2.3), GA (APD = 2.28) and

IDABC (APD = 2.22) are superior in APD to JAYA

(APD = 3.63). Thus, we can conclude that JAYA is one of

the competitive meta-heuristic techniques that can be

applied to solve FFSP.

Conclusions

In case of application of meta-heuristics of solving NP-

hard problems, tuning of algorithm-specific parameters is

essential to obtain near-optimal solutions. The present

research work focuses on the strength of ‘‘algorithm-

specific tuning parameter-less algorithms’’ as tuning of the

‘‘algorithm-specific tuning parameters’’ is a difficult task.

A problem needs to be solved again and again until the

right tuning parameters are found for that problem. This

further increases the computational burden. This paper

discusses the problem of flexible flow shop scheduling

problems with an objective to minimize makespan. To the

best of our knowledge, all the meta-heuristic algorithms

that were used to solve FFSP are either very complex or

have algorithm-specific parameters to be tuned or a com-

bination of both. Therefore, the present paper focuses on

simple meta-heuristic techniques which do not have any

algorithm-specific tuning parameters that can be used to

solve NP-hard FFSP problem. TLBO and JAYA are

selected for the study as they proved to be simple and

efficient algorithms in the recent past. A new local search

technique followed by mutation strategy borrowed fromT
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GA has been incorporated in these basic algorithms to

improve the efficiency. The proposed TLBO and JAYA

have been applied to conduct computational experiments

on 77 benchmark problems of FFSP and the makespan

results obtained by these algorithms are compared with all

the other eight algorithms available in the literature.
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Makespan and APD results from the Table 1 show that

TLBO is one of the efficient algorithms that can be applied

to solve FFSP since it produces results comparable to best

results suggested by other algorithms. It is also observed

that TLBO outperforms many algorithms, such as QA, IA,

QIA and BB, in solving FFSP. On the other hand, JAYA

which is an easy and simple to understand having only one

algorithm-specific equation has also outperformed some

algorithms, such as QA, IA, QIA and BB. It also gives

near-optimal makespan results to best algorithms available

in the literature. Thus, it can be concluded that JAYA is

one of the best competitive meta-heuristic technique that

can be applied to solve FFSP.

This paper encourages the future researchers to focus on

‘‘algorithm-specific tuning parameter-less algorithms’’ that

can be applied to solve FFSP. As finding the right tuning
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Table 3 Comparison of best and average makespan values

Problem Proposed TLBO Proposed JAYA

Best Cmax Average Cmax Best Cmax Average Cmax

j10c5a3 117 117 117 117

j10c5b3 109 109 109 109

j10c5c3 71 71.4 74 74.8

j10c5d3 65 65.6 67 68.4

j10c10a3 148 148 148 148

j10c10b3 169 169 169 169.2

j10c10c3 116 116.8 119 122

j15c5a3 130 130 130 130

j15c5b3 157 157 157 157.4

j15c5c3 88 89.4 91 92.2

j15c5d3 83 84.4 87 88.6

j15c10a3 198 198 200 200

j15c10b3 222 222 222 222.5
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parameters is a difficult task, this drawback can be

addressed using the algorithm-specific tuning parameter-

less algorithms, such as TLBO and JAYA. The present

study can be extended to hybridize TLBO and JAYA with

other algorithms in the future. The study can also be

extended considering different uncertainties, such as

machine breakdown and variable processing times in

future.
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