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Abstract

Unlike commonly used methods, in this paper, we have introduced a new approach for designing fuzzy controllers. In
this approach, we have simultaneously optimized both objective functions of a supply chain over a two-dimensional
space. Then, we have obtained a spectrum of optimized points, each of which represents a set of optimal parameters
which can be chosen by the manager according to the importance of objective functions. Our used supply chain model
is a member of inventory and order-based production control system family, a generalization of the periodic review
which is termed ‘Order-Up-To policy.’ An auto rule maker, based on non-dominated sorting genetic algorithm-II, has been
applied to the experimental initial fuzzy rules. According to performance measurement, our results indicate the efficiency
of the proposed approach.
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Background
A supply chain is a system of organizations, people, tech-
nology, activities, information, and resources involved in
performing the functions of procurement of raw materials,
transformation of raw materials into intermediate and fin-
ished product that is delivered to the end customer. Re-
cently, enterprises have exposed a growing interest in
efficient supply chain management. This is due to the rising
cost of manufacturing and transportation, the globalization
of market economies, and the customer demand for diverse
products of short life cycles. A properly designed supply
chain system is essential for competitive performance.
Control theory advocates a wide range of attributes and
standard measures for proper design (Towill 1982). There
are different methods to evaluate the performance of a
supply chain especially in different case studies. Wang
et al. (2007) evaluated the performance of a supply chain
for mass customization.
Fundamentally, there are two common objective func-

tions in supply chain systems (Wang et al. 2007): (1)
inventory-level recovery and (2) attenuation of demand
rate fluctuations on the ordering rate. Proper inventory-
level recovery results in lower inventory costs and better
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customer services, although in order to optimize the sys-
tem performance, the designer has to select fixed or
variable stock values (agile production systems; Towill
and McCullen 1999). The second objective function
aims at the reduction of the ‘bullwhip’ effect. According
to Lee et al. (1997), a small variation in the demands of
the downstream end-customer may cause remarkable
variation in the upstream supplier's side which is known
as the bullwhip effect. The term bullwhip is not a new
concept (Forrester 1961; Burbidge 1991; Figure 1).
Many researchers have worked on the bullwhip effect

and its attenuation. Christer and Robert (2002) studied
the complexities of bullwhip by using fuzzy numbers in
the bullwhip models. Peter and Dennis (2002) verified
how proven material flow control principles considerably
reduce the bullwhip in a supply chain. Some researchers
are dedicated to forecasting policy. The bullwhip prob-
lem is studied by exponential smoothing algorithms in
both ‘stand-alone’ passing-on-orders mode and within
inventory-controlled feedback systems in Dejonckheere
et al. (2003). Also, Xiaolong (2004) derived and mea-
sured a forecasting procedure that minimizes the mean
squared forecasting error for the specified demand
process. Disney and Towill (2003) proposed a good analyt-
ical expression in the inventory position and pipeline pos-
ition to quantify the bullwhip effect. Jiuh-Biing (2005)
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Figure 1 Increasing variability of orders up the supply chain. Adapted from Yu and Zhang (2010).
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presented a multi-layer demand-responsive logistics control
strategy for alleviating the bullwhip effect.
In the case of inventory-level recovery, the work of

Disney and Towill (2003) can be mentioned which uses
control theory method to evaluate this objective function
in the general supply chain to cover the dynamic behav-
ior of the chain. However, for a simplified system, we
can make an analytical measure. Disney and Towill
(2003) tried to show how Ti, Ta, and Tw change as the
balance between inventory-carrying costs (first objective)
and production on-costs (second objective) alters. The
sum of objectives in a simplified supply chain model is
defined in Equation 1. Their solution only returns a sin-
gle set of parameters and cannot be extended to a gen-
eral model; in addition, it is not able to add more
constraints to the model. Moreover, it does not cover
the dynamic effect of different demand signals.

Score ¼ K � VRORATEð Þ þ VRAINV ð1Þ
Achieving a well-designed supply chain (SC) is very

difficult since various sources of uncertainty and com-
plex interactions among various entities (suppliers, man-
ufacturers, distributors, retailers) exist in the SC.
Structured uncertainty and unstructured uncertainty are
the two major uncertainties in each model. One of the
best solutions to deal with uncertainty is fuzzy logic. In
Wang and Shu (2005), fuzzy set theory was used to
minimize SC holding cost.
A good attempt to optimize and design a supply chain

using a multi-objective viewpoint is presented by Mah-
nadm et al. (2009). In their work, fuzzy logic is used to
handle the uncertainty of different suppliers. Banerjee
and Roy (2009) considered the application of the intui-
tionistic fuzzy optimization in the constrained multi-
objective stochastic inventory model. Larbani (2009)
surveyed most of the approaches for solving non-
cooperative fuzzy games in normal form. In addition,
applications of these games were also discussed. Yu and
Zhang (2010) proposed a generalized form of fuzzy game
and extended as a cooperative fuzzy game. They also
provided a practical application for production problem.
Chen et al. (2010) formulated a game framework for the
strategic behavior of supply chain partners based on fuzzy
multi-objective programming, but fuzzy rules mostly were
fixed and defined by expert knowledge. Due to the lack of
an intelligent mechanism to derive fuzzy rules, fuzzy
membership functions based on different weights between
objective functions were clear in these attempts.
In this study, a multi-objective approach is used to

optimize fuzzy controllers and forecasting policy simul-
taneously. Structured uncertainty is one of the main
challenges in a well-designed supply chain. In this re-
gard, we use a fuzzy logic controller in inventory policy
and work in process policy.
The paper is organized as follows: simulation results

are presented in the ‘Results and discussion’ section;
concluding remarks and suggestions for future research
directions, in the ‘Conclusions’ section. This paper ends
with the ‘Methods’ section which offers a review on basic
theory of the suggested method.

IOBPCS model description
The first attempts for modeling and controlling decen-
tralized systems were done by Forrester (1961). The ob-
jective of this work was to perform a dynamic analysis,
simulation of industrial systems using discrete dynamic
mass balances, and linear and non-linear delays in the
distribution channels and manufacturing sites. Various
alternative methods have been proposed for modeling sup-
ply chains which are classified into four groups (Beamon
1998; Balan et al. 2007).
A simple decentralized supply chain is shown in Figure 2.
For modeling each echelon of this supply chain, a

powerful generic order-based production control system
(IOBPCS) model was presented by Towill (1982) in a
block diagram form (Figure 3).
The IOBPCS family has been considered in both continu-

ous and discrete time using the Laplace and z-transform
(Chen et al. 2010; Deb 2001). Via specific parameter set-
tings, a range of well-known replenishment algorithms



Figure 2 A simple supply chain model. Adapted from Yu and Zhang (2010).

Tarokh and Ghane Journal of Industrial Engineering International 2012, 8:10 Page 3 of 8
http://www.jiei-tsb.com/content/8/1/10
could be implemented. The IOBPCS family consists of a
range of PIC systems with five main components:

� Demand policy
� Lead-time
� Inventory policy (inventory feedback loop)
� Pipeline policy (work in progress (WIP) feedback loop)
� Target stock setting.

The demand policy is a feed-forward loop, which, in
essence, is a forecasting mechanism that averages the
current market demand to reach smoother orders placed
on a supplier. The more accurate this forecast, the fewer
inventories will be required in the supply chain (Hosoda
and Disney 2005). The lead time simply represents the
time between placing an order and receiving the goods
into inventory. The inventory policy, which is a feedback
loop, is an error-compensating mechanism based on the
inventory or net stock levels. The pipeline policy, which
is a feedback loop, determines the rate at which work in
process (WIP) deficit between desired WIP level and ac-
tual WIP level is recovered.
As is common practice in the design of engineering

systems, and assuming that lead times are not too long,
we have incorporated a proportional controller which, in
this paper, is triggered by multi-objective optimization
into the inventory feedback loop to shape its dynamic
response. The target stock setting can be either fixed or
Figure 3 Block diagram of APVIOBPCS with fuzzy controllers.
a multiple of current average sale rates. Standard no-
menclature used in industrial dynamics is adopted to
stand for input, output, and intermediate signals in the
block diagram (Haralambos et al. 2008):

� AINV: actual inventory holding
� AVCON: average consumption
� AWIP: actual WIP holding
� COMRATE: completion rate
� CONS: consumption or market demand
� DINV: desired inventory level
� DWIP: desired WIP
� EINV: error in inventory holding
� EWIP: error in WIP
� ORATE: order rate

Recently, researchers have studied different properties
of the so-called inventory order-based production con-
trol system (IOBPCS) model. As a case in point, the sta-
bility of the discrete-time IOBPCS model has been
investigated by Disney and Towill (2003, 2005): they pre-
sented a general methodology to derive the critical sta-
bility boundary using a transfer function.

Fuzzy rule base optimization
We used a fuzzy logic controller (FLC) in inventory pol-
icy and work in process policy. The FLC has two inputs
(premises): error, e(t), and error derivative, de(t), and



Figure 4 Fuzzy logic rule optimizer space.

Figure 5 Multi-objective FLC optimizer.
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one output (consequent): control action, u(t). Each of
these three controller variables is evaluated over a nor-
malized space range of [−1,1], using five membership
functions (NB, NS, Z, PS, PB). The Mamdani interfer-
ence method and the AND connective are utilized with
equal rule weighting. Then, a rule base consisting of 25
rules is produced.
One approach could be to optimize the rule base using

all possible combinations of premise/consequent possi-
bilities. We, therefore, have to test 450 different rules to
achieve the best set of rules, which is time-consuming.
Another alternative method is to diminish the rules. In
this respect, there are different rule decreasing methods
(Foran 2002). Before applying the method described in
Foran (2002), some assumptions should be considered
which are essentially based on experience.
The magnitude of the output control action is consistent

with the magnitude of the input value; in other words, an
extreme input value (premise) results in an extreme output
value (consequent), a mid-range input value causes a mid-
range output value, and a small/zero input value is syn-
onymous with a small/zero output value.
If a large negative (positive) input generates a large

negative (positive) response, then it is likely that smaller
negative (positive) inputs will demand a response with
the same polarity, but it would be with a smaller magni-
tude, and so on until a zero-crossing point is reached at
the point whose response polarity changes.
The above-mentioned approach is a variation of the

method used in Ross (1995). The consequent rule space is
then ‘overlaid’ upon the premise coordinate system and is
partitioned into regions where each region represents a
consequent fuzzy set. The rule base is then extracted by de-
termining the consequent region in which each premise
combination point lies. Different possible consequent space
partitions are defined using two parameters: consequent-
line angle, θ, and consequent-region spacing, Cs.
The consequent-line angle defines the slope of the

consequent line, which is used to create the space parti-
tions. Cs is a proportion of the fixed distance between
premises on the coordinate system and is used to define
the distance between consequent points along the conse-
quent line defined by angle θ.
This method is illustrated in Figure 4, considering

θ= 50° and Cs = 1 with fixed premise spacing which is
equal to consequent spacing. It should be noted that this
may not be a real rule base in our study and it is just
used to show the method.

Results and discussion
Structure description
In this part, we are going to present the results of our
simulation to reflect the efficiency and the flexibility of
our proposed method in finding optimal fuzzy controller
parameters. We will use a discrete model of the most
general member of the IOBPCS family, the automatic
pipeline inventory and the order-based production con-
trol system (APVIOBPCS).
Figure 5 illustrates a block diagram of our proposed

structure. Inputs of the multi-objective optimizer block
are system objective functions. Notwithstanding the fact
that this is a general structure, in our study, objective
functions are inventory recovery response and attenuat-
ing bullwhip. According to these objective functions,
and using the non-dominated sorting genetic algorithm-
II (NSGA-II) method as an algorithm for multi-objective
optimization, two sets of optimal parameters are pro-
duced. The first set directly affects the system dynamics,
and the other set is used as the fuzzy tuning block input
to optimize rule base and scaling gains. Outputs of
multi-objective optimizer block and boundaries are
shown in Table 1.
For evaluating objective functions, bullwhip is quanti-

fied as the ratio of output variance (ORATE) to the vari-
ance of input (Demand) while white noise represents



Table 1 Fuzzy controller parameters and boundaries

Parameters Boundaries Sample

Inventory policy FLC θ_inv [5,170] 79.53

Cs_inv [0.5,2] 1.346

Scaling gain G1_e [0.5,3] 0.9282

G1_de [0.5,3] 0.7175

G1_out [−2,2] 1.0013

Work in process policy FLC θ_wip [5,170] 17.496

Cs_wip [0.5,2] 0.9529

Scaling gain G2_e [0.5,3] 1.1328

G2_de [0.5,3] 0.7797

G2_out [−2,2] 0.9529

Forecasting Ta [1,10] 2.578
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random demand in the market place, and the metric for
quantifying inventory recovery responsiveness is the in-
tegral of time multiplied by absolute error (ITAE) which
is defined by Equation 2 (Disney and Towill 2003):

ITAEAINV ¼
X1

n¼0

n Ej j: ð2Þ

This error is the difference between desired inventory
and actual inventory. Also, the desired inventory level
may be fixed or be a multiple of average order.

Results and comparisons
As we mentioned, NSGA-II is used inside the multi-
objective optimizer block. In this study, we fix the popu-
lation of NSGA-II to 165 individuals. The optimal Pareto
front, obtained through the multi-objective optimization
of the parameters, is presented in Figure 6.
Figure 6 compares the fuzzy controller with the p-

action controller. In some area, the fuzzy controller acts
Figure 6 Pareto optimal front. The arrow refers to a set of parameters w
better than the p-action controller, and in some area, it
does not. The major feature of fuzzy controllers is their
ability in dealing with uncertainty, which is discussed in
the subsequent part; nevertheless, in this study, we de-
crease the number of rules and use only 165 individuals
in our simulation. Probably, it could be more optimal if
a different setting is used for multi-objective block.
Uncertainty analysis
P-action controller is compared with fuzzy controller in
the case of structured uncertainty. These may happen in
inventory policy or forecasting policy. Exponential
smoothing forecasting is used with the parameter Ta,
which is shown in Figure 3. Lead time (Tp) is the pa-
rameter of forecasting policy which plays a crucial role
because it defines the order of the system. A sample is
selected from the Pareto front. Optimized parameters
and their boundaries are shown in Table 1 for fuzzy
controller, and p-action controller parameters are
shown in Table 2.
Rule bases which resulted from our method for inventory

loop and work in process loop are presented in Figures 7
and 8, respectively.
The order quantity of the system is presented for these

controllers in normal situation in Figure 9. Normal para-
meters are shown in Tables 1 and 2. Now, we assume
that there is some structured uncertainty in both fore-
casting mechanism and lead time. Hence, we assume
Tp= 1.5 and Ta = 3 instead of Tp = 1 and Ta = 1.7213.
The response is shown in Figure 10.
Although Ta is an important parameter in forecasting

mechanism, uncertainty in Tp as lead time is more im-
portant because it defines the order of the system. It is
clear that fuzzy controller acts much better than p-
action controller.
hich are presented in the subsequent part.



Table 2 P-action controller parameters and boundaries

Parameters Sample

P-action Ti 7.9353

Ta 1.7213

Tw 2.2507

de/e NB NS Z PS PB 
NB NB NB NS Z PS 
NS NB NS Z PS PB 
Z NB NS Z PS PB 

PS NB NS Z PS PB 
PB NS Z PS PB PB 

Figure 8 Rule base for work in process loop.
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Conclusions
In supply chain, control parameter settings for different
policies and different cases are very important. It is more
critical when we face uncertainty. In this study, based on
a fuzzy controller, the bi-objective supply chain model
has been analyzed. In this manner, a rule base-maker al-
gorithm has been used to make new fuzzy rule bases to
achieve the optimum rule base. Using a multi-objective
manner based on NSGA-II, the optimum parameters for
rule maker's input and scaling and forecasting gains have
been obtained, and then they have been used for an
optimum design of fuzzy controller. In case of the pres-
ence of uncertainty, both p-action and fuzzy controllers
have been compared, and the obtained results indicate
excellent robustness in designed fuzzy controller com-
pared to p-action controller. This robustness becomes
more important when we face uncertain lead time because
it changes system dynamic (the order of the system). This
new bi-objective approach for supply chain design has been
proposed which, in the case of uncertainty, is more robust
than formerly used p-action controllers.
The results also show that combination of fuzzy logic and

other soft computing methods is a good candidate for fu-
ture development work because of its non-linear approxi-
mation capability and adaptability. Further perspective and
attractive challenges for future research are the modifica-
tion of different membership functions and the establish-
ment of a non-linear-based modeling approach for real
supply chain, e.g., the improvement of forecasting mechan-
ism due to its fundamental effect on bullwhip.

Methods
NSGA-II implementation for multi-objective optimization
Multi-objective optimization (MOO) methods are uti-
lized when two or more objective functions are
de/e NB NS Z PS PB 
NB NB NB NS NS Z 
NS NS NS NS Z Z 
Z NS Z Z Z PS 

PS Z Z PB PS PS 
PB Z PS PB PB PB 

Figure 7 Rule base for inventory loop.
necessary to be optimized simultaneously (Deb 2001). In
the case of MOO methods, relative importance of ob-
jective functions is not generally known until the sys-
tem's best capabilities are determined and trade-off
between the objective functions is fully understood. This
feature is the main advantage of MOO methods in com-
parison with simply weighted cost functions. The definition
of an MOO problem requires substantial acquaintance with
some preliminary definitions which are described as
follows:
Objective functions: some functions of decision vari-

ables and criteria for estimating the appropriateness of a
response. There are numbers of k≥2 objective functions
in MOO which are shown as the vector f �xð Þ ¼
f1 �xð Þ; . . . ; fk �xð Þ½ �.
Decision variables: a set of variables whose values sug-

gest the response the response and can be right or

wrong. These variables are presented in a form of �x ¼
x1; x2; . . . ; xr½ �T where r is the number of variables.

� Constraints: defined in a form of some functions of
decision variables, such as equalities or inequalities:

Equality : gi �xð Þ ¼ 0; i ¼ 1; . . . ; p; ð3Þ
Inequality : hi �xð Þ≤0; i ¼ 1; . . . ;m: ð4Þ

� Feasible region: it is defined as the set of whole
decision variables satisfying all constraints.

� Dominancy: NSGA-II is used in non-dominated
sorting for fitness assignments. All individuals not
dominated by any other individuals are assigned
front number 1. All individuals only dominated by
individuals in front number 1 are assigned front
number 2, and so on. Selection is made using
tournament between two individuals. The individual
with the lowest front number is selected if the two
individuals are from different fronts. The individual
with the highest crowding distance is selected if they
are from the same front.



Figure 9 Order rate placed on a supplier.
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In other words, the decision vector �x2 2 F is dominated
by the decision vector �x1 2 F ; if and only if the decision
vector �x1 is better than or equal to �x2 in all objectives:

�x1 � �x2↔f �x1ð Þ≤f �x2ð Þ: ð5Þ

Pareto: when the cost functions have no confliction
with each other, in MOO problems, it is possible to
come across a unit optimal response which optimizes
the whole cost functions. Otherwise, it is not feasible to
find a response which optimizes all cost functions. In
fact, since F(x) is a vector, any other components of F(x)
are competing with each other and there is no unique
solution for this problem. If �x2 2 F does not exist to
dominate �x1 2 F , the decision vector �x1 is called an
Figure 10 Order rate placed on a supplier with uncertainty.
optimal Pareto response. The set of optimal Pareto
responses is also known as a Pareto optimal front. All
solutions on the Pareto optimal front are optimal.
In fact, according to Equation 5, the aim of MOO is to

find the optimal Pareto front in which every response
minimizes at least one of the two or more objective
functions. In other cases, we have to revise Equation 1.
For example, if we want both objective functions be
maximized, Equation 5 must be rewritten as

�x1 � �x2↔f �x1ð Þ≥f �x2ð Þ: ð6Þ

Now, MOO is defined as follows: Finding vector �x� ¼
x1�; x2�; . . . ; xr�½ �T in a way that p equality constraints
(Equation 3) and m inequality constraints (Equation 4)
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would be satisfied; likewise, the function vector f �xð Þ ¼
f1 �xð Þ; . . . ; fk �xð Þ½ � is optimized. In other words, we estimate
a specific �x� in a feasible region which leads to an optimal
amount for the whole amount of k in the cost function.
In this article, in order to solve the available MOO

problem, MATLAB software is utilized.
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