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Abstract Face milling is an important and common

machining operation because of its versatility and capa-

bility to produce various surfaces. Face milling is a

machining process of removing material by the relative

motion between a work piece and rotating cutter with

multiple cutting edges. It is an interrupted cutting operation

in which the teeth of the milling cutter enter and exit the

work piece during each revolution. This paper is concerned

with the experimental and numerical study of face milling

of AISI1045. The proposed approach is based on statistical

analysis on the experimental data gathered using Taguchi

design matrix. Surface roughness is the most important

performance characteristics of the face milling process. In

this study the effect of input face milling process param-

eters on surface roughness of AISI1045 steel milled parts

have been studied. The input parameters are cutting speed

(v), feed rate (fz) and depth of cut (ap). The experimental

data are gathered using Taguchi L9 design matrix. In order

to establish the relations between the input and the output

parameters, various regression functions have been fitted

on the data based on output characteristics. The signifi-

cance of the process parameters on the quality character-

istics of the process was also evaluated quantitatively using

the analysis of variance method. Then, statistical analysis

and validation experiments have been carried out to com-

pare and select the best and most fitted models. In the last

section of this research, mathematical model has been

developed for surface roughness prediction using particle

swarm optimization (PSO) on the basis of experimental

results. The model developed for optimization has been

validated by confirmation experiments. It has been found

that the predicted roughness using PSO is in good agree-

ment with the actual surface roughness.

Keywords Face milling process � Surface roughness �
Optimization � Particle swarm optimization (PSO) �
Analysis of variance (ANOVA) � Taguchi approach

Introduction

The surface quality is one of the most specified customer

requirements and the major indicator of surface quality on

machined parts is surface roughness. The surface rough-

ness is mainly a result of various controllable or uncon-

trollable process parameters and it is harder to attain and

track than physical dimensions are. A considerable number

of studies have researched the effects of the cutting speed,

feed, depth of cut, and other factors on the surface

roughness. In recent studies the effects of some factors on

surface roughness has been evaluated and models has been

developed. A central task in science and engineering

practice is to develop models that give a satisfactory

description of physical systems being observed (Baji et al.

2008; Azadi Moghaddam and Kolahan 2014; Bharathi Raja

and Baskar 2012). The goal of this study is to obtain a

mathematical model that relates the surface roughness to

three cutting parameters in face milling, precisely to the

cutting speed, feed rate and depth of cut (Baji et al. 2008).

There is various simple surface roughness amplitude

parameters used in industry, such as roughness average

(Ra), root-mean-square (RMS) roughness (Rq), and maxi-

mum peak-to-valley roughness (Ry or Rmax), etc. (Azadi
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Moghaddam and Kolahan 2014). The parameter Ra is used

in this study. The average roughness (Ra) is the area

between the roughness profile and its mean line, or the

integral of the absolute value of the roughness profile

height over the evaluation. Therefore, the Ra is specified by

the following equation (Azadi Moghaddam and Kolahan

2014):

Ra ¼ 1

L

ZL

0

Y xð Þj j dx ð1Þ

where Ra is the arithmetic average deviation from the

mean line, L the sampling length, and Y is the ordinate of

the profile curve (Fig. 1). There are many methods of

measuring surface roughness, such as image processing,

microscopes, stylus type instruments, profile tracing

instruments, etc. (Azadi Moghaddam and Kolahan 2014).

There are a great number of factors influencing the

surface roughness and Fig. 2 shows all influential factors

on machined surface roughness (Baji et al. 2008).

Selection of appropriate machining parameters is an

important step in the process planning of any machining

operation. The present method of selection of machining

parameters mainly depends either on previous work expe-

rience of the process planner or thumb rule or any

machining data hand book. But it is a known fact that the

machining parameters obtained from these resources are

far from the optimal parameters and may be very much

useful for theoretical investigations. The other possibility

of selecting machining parameters is by conducting ‘trial

and error’ experiments. But this act of experiments is

purely non-technical and, moreover, time and cost are

unnecessarily wasted for this purpose. The surface rough-

ness of any manufacturing process has become critical

because of increased quality demands. Sometimes, even if

the dimensions of the component are well within the

dimensional tolerances, still there are possibilities of

rejecting the component for the lack of required surface

finish. Moreover, surface roughness determines mechanical

properties such as wear, corrosion, lubrication, electrical

conductivity and fatigue behavior. Surface roughness is an

important measure of the quality of a product and also

greatly influences the production cost. Production of

required surface finish on a component is mainly dependent

on many parameters such as cutting speed, feed, depth of

cut, tool nomenclature, cutting force, rigidity of the

machine and so on. Among these parameters, cutting

speed, feed and depth of cut are parameters which are

easily controllable during the process of machining

(Bharathi Raja and Baskar 2012).

The main objectives of the present study are: (1) to

establish the relationship between face milling process

parameters and the process output characteristic (surface

roughness), and (2) to determine the optimal parameter

levels for minimum surface roughness by application of

particle swarm optimization (PSO) algorithm. The pro-

posed procedure is based on statistical analysis of the

experimental data. The article concludes with the verifi-

cation of the proposed approach and a summary of the

major findings.

Experimental details

Review of the research work reveals that much work has

been done on surface roughness of face milling process.

These studies have mostly emphasized on the modeling

and optimization of the process parameters (Jeang 2011;

Patricia Mũnoz-Escalona and Maropoulos 2014; Reddy

and Venkateswara 2006; Jesuthanam et al. 2007; Zhang

et al. 2007; Bharathi Raja and Baskar 2012; Arrazola et al.

2013).

Jeang (2011) determined the optimal cutting parameters

required to minimize the cutting time while maintaining an

acceptable quality level. The equation for predicting cut-

ting time was determined by CATIA software along with

response surface methodology. The proposed approach

could produce automatic product and process design that

may lead to cost reduction and quality improvement.

Patricia Mũnoz-Escalona and Maropoulos (2014)

reported a research study on the development of a geo-

metrical model for surface roughness prediction when face

milling with square inserts. The model is based on a geo-

metrical analysis of the recreation of the tool trail left on

the machined surface. The model has been validated with

experimental data obtained for high speed milling of alu-

minum alloy (Al 7075-T7351) when using a wide range of

cutting speed, feed per tooth, axial depth of cut and dif-

ferent values of tool nose radius (0.8 and 2.5 mm), using

the Taguchi method as the design of experiments. The
Fig. 1 The method used for calculation of SR (Azadi Moghaddam

and Kolahan 2014)
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experimental roughness was obtained by measuring the

surface roughness of the milled surfaces with a non-contact

profile meter. The developed model can be used for any

combination of material work piece and tool, when tool

flank wear is not considered and is suitable for using any

tool diameter with any number of teeth and tool nose

radius. The results showed that the developed model

achieved an excellent performance with almost 98 %

accuracy in terms of predicting the surface roughness when

compared to the experimental data.

Reddy and Venkateswara (2006) studied the effect of

tool geometry (radial rake angle and tool nose radius) and

cutting conditions (cut-ting speed and feed rate) on the

machining performance during end milling of medium

carbon steel. First and second order mathematical models,

in terms of machining parameters were developed for

surface roughness prediction using RSM. The results

showed that the cutting speed, the feed, the radial rake

angle and the tool nose radius are the primary factors

influencing the surface roughness of medium carbon steel

during end milling processes.

Jesuthanam et al. (2007) proposed the development of a

novel hybrid neural network (NN) trained with genetic

algorithm (GA) and particle swarm optimization (PSO) for

the prediction of surface roughness. The proposed hybrid

NN was found to be competent in terms of computational

speed and efficiency over the NN model.

Zhang et al. (2007) studied the Taguchi design appli-

cation to optimize the surface quality of a face milling

operation when using a CNC. The results verified that the

Taguchi design was successfully in optimizing the milling

parameters for surface roughness.

Bharathi Raja and Baskar (2012) developed a generalized

model based on particle swarm optimization (PSO) technique

to achieve a desired surface roughness when face milling

aluminum. The machining time was included as input

parameter together with cutting speed, feed and depth of cut.

They concluded that the use of optimization technique replaces

the selection of cutting parameters by trial and error method.

Finally, Arrazola et al. (2013) compiled different

advances in the modeling of machining processes. In its

paper the advances in predictive, analytical, computational

and empirical models among others for the prediction of

variables such as surface roughness, cutting forces, stres-

ses, chip formation, etc. are highlighted.

From analyzing all the literature, it has been observed

that the proposed models are based on computational,

numerical analysis and complex mathematical calculus.

Based on these findings, the aim of this research is:

1. To develop a model for surface roughness prediction

based on experiments gathered Taguchi technique,

where also parameters such as cutting speed (v), feed

rate (fz) and depth of cut (ap) are considered.

Fig. 2 Fishbone diagram with

factors that influence on surface

roughness (Baji et al. 2008)
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2. To derive the optimal parameter levels for minimum

SR using statistical analysis of the experimental data

and partial swarm optimization technique. Finally, the

article concludes with the verification of the proposed

approach and a summary of the major findings.

Conditions of experiment

Test samples made of AISI1045 steel parts with dimen-

sions 15 9 60 9 80 mm were prepared and used in the

experiments. The face milling experiments were performed

by a tool for the face milling R245-12 T3M-PM 4020 using

inserts with four helical right-hand cutting edges, produced

by Iscar (Fig. 3). The experiments were conducted on

MCV 400 CNC milling machine (Fig. 4). The feasible

range for cutting parameters is taken from the machine

limitations. The surface roughness tester is used to measure

the roughness of the milled work piece. The measured

surface roughness was obtained by averaging the surface

roughness values at a minimum of three locations on the

milled surface. A cut-off value of 8 mm was used when

measuring the surface roughness of the milled surface.

Process parameter setting

A challenging task in any process is the selection of opti-

mum machining parameter combinations for obtaining

higher accuracy due to process variables and complicated

process mechanisms.

In design of experiments (DOE), the number of required

experiments (and hence the experiment cost) increases as

the number of parameters and/or their corresponding levels

increase. That is why it is recommended that the parame-

ters with less likely pronounced effects on the process

outputs be evaluated at fewer levels. In addition, the lim-

itations of test equipment may also dictate a certain number

of levels for some of the process parameters. For this

research a lot of experiments had been done to find the

relatively appropriate machine tool parameters and their

proper settings as shown in Table 1.

Taguchi technique

Taguchi technique constructed a special set of general

designs for factorial experiments that overcomes the

drawbacks of partial factorial experiment. The method is

popularly known as Taguchi’s method. The special set of

designs consists of orthogonal arrays (OA). The OA is a

method of setting up experiments that only require a

fraction of full factorial combinations. The treatment

combinations are chosen to provide sufficient information

to determine the factor effects using the analysis of means.

Orthogonal refers to the balance of the various combina-

tions of factors so that no one factor is given more or less

weight in the experiment than the other factors. Orthogonal

also refers to the fact that effect of each factor can be

mathematically assessed independent of the effect of the

Fig. 3 Cutting tool used for machining

Fig. 4 CNC milling machine used

Table 1 Machining parameters

and levels
Parameters Symbol Unit Range Level 1 Level 2 Level 3

Cutting speed (v) C m/min 126–314 126 201 314

Feed rate (fz) F (mm/rev 9 tooth) 0.06–0.18 0.06 0.12 0.18

Depth of cut (ap) D (mm) 1–2 1 1.5 2
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other factors. Taguchi’s method, firstly, clearly defines

orthogonal arrays, each of which can be used for many

experimental situations. Secondly, Taguchi’s method pro-

vides a standard method for analysis of results. Taguchi’s

method provides consistency and reproducibility that is

generally not found in other statistical methods (Roy 2010).

This study has been undertaken to investigate the effects

of cutting speed (v), feed rate (fz) and depth of cut (ap) on

surface roughness (SR). Therefore, L9 (33) design matrix

has been used to carry out experiments (Table 2). Three

process (input) parameters have been selected on the basis

of literature survey and preliminary investigations. Pre-

liminary experiments were conducted for the wide range of

cutting speed, feed rate and depth of cut. Satisfactory

results were obtained for 126–314 m/min, the range of

cutting speed. Similar observations were made for specified

range of feed rate and depth of cut.

Table 2 lists the machining parameters, their levels and

their corresponding output.

Mathematical modeling

Regression models can be used to predict the behavior of

input variables (independent variables) and values associ-

ated with each test response results (Kolahan et al. 2012).

The last column of Table 2 is the output for each test

setting. These data can be used to develop mathematical

models. Any of the above output is a function of process

parameters which are expressed by linear, curvilinear or

logarithmic functions; as stated in Eqs. 2–4, respectively.

Y1 ¼ b0 þ b1C þ b2F þ b3D ð2Þ

Y2 ¼ b0 þ b1C þ b2F þ b3D þ b11CC þ b22FF

þ b33DD þ b12CF þ b13CD þ b23FD ð3Þ

Y3 ¼ b0 � Cb1 � Fb2 � Db3 ð4Þ

In the above formula b0, b1, b2 and b3 are the regression

coefficients to be estimated. In this study, based on the SR

data given in Table 2, the regression model is developed

using MINITAB software.

The choice of the model depends on the nature of initial

data and the required accuracy. Using regression technique,

in MINITAB Software, three types of mathematical func-

tions (linear, curvilinear and logarithmic) have been fitted

to the experimental data (Asokan et al. 2008): Models

representing the relationship between process parameters

and output characteristics can be stated in Eqs. 5–7.

Stepwise elimination process was used to modify the

initial proposed models.

Linear model

SR Rað Þ ¼ 1:23� 0:00138� vþ 2:72� fz þ 0:377� ap

ð5Þ

Curvilinear model

SR Rað Þ ¼ 2:02� 0:0125� V þ 13:5� fz þ 0:000019

� V2 � 42:2� f 2z þ 0:00184� V � ap

ð6Þ

Logarithmic model

SR Rað Þ ¼ 5:585� V�0:163 � f 0:168z � a0:296p ð7Þ

Adequacies of models were checked by analysis of

variance (ANOVA) technique within the confidence limit

of 95 % (Vishwakarma and Vishal Parashar 2012; Vishnu

et al. 2013; Kolahan and Bironro 2008). Results are shown

in Table 3. Given the required confidence limit (Pr), the

correlation factor (R2) and the adjusted correlation factor

(R2-adj) for these models, it is evidence that Curvilinear

model is superior to other two, thus, this model is con-

sidered as the best representative of the authentic milling

process throughout in this paper.

In the next step, the proposed models were validated

using new set of experiments (Table 4). Table 5 illustrates

the mean error of the new six experiments for the output

characteristics. According to the results the curvilinear

model is the best model among the proposed models for

surface roughness.

For illustrative purposes, the distribution of real data

around regression lines for curvilinear model is illustrated

Table 2 The process characteristics an their corresponding output

after 31 machining pass

No V (m/min) fz (mm/(rev 9 tooth)) ap (mm) SR (lm)

1 1 1 1 1.67

2 1 2 2 2.14

3 1 3 3 2.22

4 2 1 2 1.47

5 2 2 3 2.04

6 2 3 1 1.71

7 3 1 3 1.75

8 3 2 1 1.50

9 3 3 2 1.94

Table 3 ANOVA results for SR

Model Variable R2 (%) R2 (adj) (%) F value Pr[F

Linear SR 80.6 68.9 40.81 \0.0001

Curvilinear SR 98.4 95.1 79.46 \0.0001

Logarithmic SR 75.9 73.6 59.68 \0.0001
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in Fig. 5. This figure demonstrates a good conformability

of the developed model to the real process.

Figure 6 illustrates the predicted versus actual surface

roughness for the model used.

Figure 7 demonstrates the interaction effect of cutting

speed and feed rate (depth of cut remained constant). As

illustrated, by increasing the feed rate within the range of

0.06–0.18 mm/rev 9 tooth, the SR increases. Similarly by

increasing the cutting speed, within the range of

126–314 m/min, the SR decreases.

Figure 8 demonstrates the interaction effect of cutting

speed and depth of cut on SR. As illustrated, by increasing

the depth of cut within the range of 1–2 mm, the SR

increases, Similarly by increasing the cutting speed, within

the range of 126–314 m/min, the SR decreases.

Figure 9 demonstrates the interaction effect of depth of

cut and feed rate on SR. As illustrated, by increasing the

depth of cut within the range of 1–2 mm, the SR increases,

Similarly by increasing the feed rate, within the range of

0.06–0.18 m/min, the SR increases.

Analysis of variance (ANOVA)

The ANOVA is used to investigate the most influential

parameters to the process factor-level response. In this

investigation, the experimental data are analyzed using the

contribution rate. ANOVA has been performed on the

above model to assess their adequacy, within the confi-

dence limit of 95 %. ANOVA results indicate that the

model is adequate within the specified confidence limit.

The calculated determination coefficient (R2) for this

model is 98.1 %. The result of ANOVA is shown in

Table 3.

According to ANOVA procedure, large contribution rate

indicates that the variation of the process parameter makes

a big change on the performance characteristics (Table 6).

In this study, a confidence level of 95 % is selected to

evaluate parameters significances (Azadi Moghaddam and

Kolahan 2014).

ANOVA results may provide the percent contributions

of each parameter (Roy 2010).

Pi ð%Þ ¼ SSi � ðDOFi �MSerrorÞ
Total Sum of Square

ð8Þ

In the above formula according to the ANOVA results

(Table 6), Pi is contribution percentage, SSi is sum of

square, DOFi is degree of freedom of ith factor, and MSerror
is mean sum of square of error (Azadi Moghaddam and

Kolahan 2014).

The percent contributions of the milling parameters on

SR is shown in Fig. 10. According to Fig. 10, v 9 ap is the

major factor affecting the SR with 41 % contribution. It is

followed by fz, v, v 9 v, fz 9 fz with 29, 24, 1 and 1 %

respectively. The remaining (4 %) effects are due to noise

factors or uncontrollable parameters.

Table 4 New process variables

for model validation
NO v fz ap

1 250 0.08 1.4

2 250 0.10 1.6

3 250 0.08 1.8

4 250 0.10 1.8

5 250 0.08 1.6

6 250 0.10 1.4

Table 5 Results of validation experiments

Machining parameters Error (%)

Linear Logarithmic Curvilinear

SR 6.97 8.82 3.54

Fig. 5 Curvilinear model: actual values versus predicted values of

SR

Fig. 6 Predicted versus actual surface roughness
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Proposed methodology

The machining parameters are identified and the best

combinations of parameters are to be selected by the

optimization technique. Different optimization techniques

have been used so far to solve the mathematical models for

machining problems. Based on the previous literatures, the

PSO technique always yielded best result as compared to

other techniques. So the PSO technique is proposed to

solve the mathematical model in this work.

Particle swarm optimization

Particle swarm optimization is a population-based

stochastic optimization technique developed by Dr. Eber-

hart and Dr. Kennedy in 1995, inspired by social behavior

of birds flocking (Bharathi Raja and Baskar 2012). The

intelligence of swarm is based on the principle of social

and psychological behavior of the swarm. The optimization

procedure is initialized with a population of random solu-

tions and searches for optima by updating generations. The

potential solutions called particles fly through the problem

space by following the current optimum particles. PSO is

very easy to implement and there are few parameters to

adjust. The algorithm can be explained based on the fol-

lowing scenario: a group of birds are randomly searching

food in an area. There is only one piece of food in the area

being searched. All the birds do not know where the food

is. But they know how far the food is in their search (Cheng

and Jin 2014). So the best strategy to attain the food is to

simply follow the bird, which is nearest to the food. In

optimization problems, each bird in the search space is

referred to as ‘particle’. All the particles are evaluated by

the fitness function to be optimized and have velocities for

Fig. 7 interaction of v and fz
plot for SR

Fig. 8 interaction of v and ap
plot for SR
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the particles. The particles fly through the problem space

by following the current optimum particles. The problem is

initialized with a group of random particles and then

searches for optima by updating generations. In all the

iterations, each particle is updated by following two ‘best’

values. The best solution achieved so far among the par-

ticle is called as ‘particle best’ termed as pbest and the best

solution obtained so far in the population are called as

‘global best’ termed as gbest. A particle takes the entire

particle toward its pbest and gbest locations (Bharathi Raja

and Baskar 2012). After finding the two best values, the

particles are updated with its velocity and positions using

Eqs. (9) and (10) (Bharathi Raja and Baskar 2012)

V ½ � ¼ C1randð Þðpbest½ � � present½ � Þ þ C2randð Þðgbest½ �
� present½ � Þ

ð9Þ
p ½ � ¼ V ½ � þ present½ �: ð10Þ

V[] is the particle velocity, present is the current particle,

pbest and gbest are defined as stated before, rand () is the

random number between 0 and 1, c1, c2 are learning factors

usually varies from 1 to 4, p[] is new particle position.

Compared to other optimization techniques, the informa-

tion sharing mechanism in PSO is significantly different.

Only gbest gives out information to others, which is a one-

way information sharing mechanism. The evolution looks

only for the best solution and hence all the particles tend to

converge to the best solution quickly in most cases. The

advantages of using PSO are that it takes real numbers as

particles and there are few parameters to adjust.

The searching is a repeat process and the stop criteria

are that the maximum iteration is reached or the minimum

Fig. 9 interaction of ap and fz
plot for SR

Table 6 Result of ANOVA for SR

Machining parameters Degree of freedom (Dof) Sum of square (SSj) P value Contribution percentage (%)

V 2 0.151400 0.005 24

fz 2 0.180067 0.012 29

v 9 v 2 0.000000 0.019 1

fz 9 fz 2 0.000000 0.035 1

V 9 ap 4 0.257733 0.039 41

Error 3 0.000000 0.004 –

Total 15 0.58920 – –

0 10 20 30 40 50

v×ap

fz

v

v×v

fz×fz

Error

Fig. 10 The effect of machining parameters on the SR
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error condition is satisfied. The various parameters in PSO

are number of particles, dimension of particles, and range

of particles, learning factor, stop condition and global

versus local version

Algorithm

Step 1 Initialize a population of n particles randomly.

Step 2 Calculate fitness value for each particle. If the

fitness value is better than the best fitness value (pbest) in

history, set current value as the new pbest.

Step 3 Choose particle with the best fitness value of all

the particles considered so far as the gbest.

Step 4 For each particle; calculate particle velocity and

position according to Eqs. (9) and (10).

Step 5 Particle velocities on each dimension are clamped

to a maximum velocity vmax. If the sum of acceleration

would cause the velocity on that dimension to exceed vmax

(Specified by the user), the velocity on the dimension is

limited to vmax.

Step 6 Terminate if maximum number of iterations is

reached.

Else, go to Step 2.

Step 7 End.

Parameters of PSO

The parameters of PSO technique used in the proposed

mathematical model are given below.

Number of iteration performed: 30

Population: 50

Learning factor c1: 2

Learning factor c2: 2

Calculation of optimum machining parameters

Cutting speed is calculated randomly within the limits

using Eq. (11) (Bharathi Raja and Baskar 2012)

v ¼ vmin þ ðvmax � vminÞrandðÞ ð11Þ

Similarly feed is also calculated randomly within the

limits using Eq. (12).

fz ¼ fzmin þ ðfzmax � fzminÞrandðÞ ð12Þ

Similarly depth of cut is also calculated randomly within

the limits using Eq. (13).

ap ¼ apmin þ ðapmax � apminÞrandðÞ ð13Þ

Confirmation of the proposed algorithm using

simulated annealing algorithm

Simulated annealing (SA) algorithm is an optimization

process whose operation is strongly reminiscent of the

physical annealing of crystalline compounds such as metals

and metallic alloys (Kirkpatrick et al. 1983). In condensed

matter physics, annealing is a physical process that is used

to reconstruct the crystal structure of a solid with a low

energy state. A solid in a state bath is first heated up to a

temperature above the melting point of the solid. At this

temperature, all particles of the solid are in violent random

motion. The temperature of the heat bath is then slowly

cooled down. All particles of the solid rearrange them-

selves and tend toward a low energy state. As the cooling

of the particle is carried out sufficiently slowly, lower and

lower energy states are obtained until the lowest energy

state is reached. Similarly, in face milling an energy

function is created which is minimized. While minimizing

efforts are made to avoid local minima and to achieve

global minima. The lowest energy level gives the opti-

mized value of face milling parameters.

A standard SA procedure begins by generating an initial

solution at random. At initial stages, a small random

change is made in the current solution. Then the objective

function value of new solution is calculated and compared

with that of current solution. A move is made to the new

solution if it has better value or if the probability function

implemented in SA has a higher value than a randomly

generated number. The probability of accepting a new

solution is given as follows:

Fig. 11 PSO and SA convergence curve for SR
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p ¼ 1 if D\0

e�D=t if D� 0

�
ð14Þ

The calculation of this probability relies on a tempera-

ture parameter, T, which is referred to as temperature, since

it plays a similar role as the temperature in the physical

annealing process. To avoid getting trapped at a local

minimum point, the rate of reduction should be slow

(Kirkpatrick et al. 1983). In our problem the following

method to reduce the temperature has been used:

Tiþ1 ¼ cTi i ¼ 0; 1; . . . and 0:9� c\1 ð15Þ

Thus, at the start of SA most worsening moves may be

accepted, but at the end only improving ones are likely to

be allowed. This can help the procedure jump out of a local

minimum. The algorithm may be terminated after a certain

volume fraction for the structure has been reached or after a

pre-specified run time.

Simulated annealing algorithm has diverse applications

including improving the performance of other artificial

intelligence techniques and determining the optimal set of

process parameter (Kirkpatrick et al. 1983; Yang et al.

2009). In this research, SA has been used in order to check

the performance of the PSO. Results indicate that the

proposed optimization procedure is quite efficient in opti-

mization of face milling process parameters.

Optimization based on PSO and SA was executed using

MATLAB software in which 30 iterations with 50 popu-

lations were used to run the program. The program is

executed to get optimized machining parameters for min-

imizing SR. Figure 11 shows the convergence curve

towards the optimal solution for SR.

Validation of machining parameters

The optimum machining parameters found using PSO is

validated by conducting experiments on the same specifi-

cation of AISI1045 material. Table 7 shows the results of

the confirmation experiments.

Results and discussion

The effect of machining parameters on the surface rough-

ness was considered. 9 experiments were conducted on

AISI1045 and their corresponding surface roughness val-

ues measured. Then optimization based on PSO was exe-

cuted using MATLAB software in which 30 iterations with

50 populations were used to run the program. The com-

putational time for execution of single run in a Core 2 Duo

processor computer is observed to be 15 s in an average.

Then once again experiments were conducted based on the

recommended machining parameters of PSO. It is observed

from the conducted experiments, the surface roughness

decreases with an increase in cutting speed and surface

roughness decreases with a decrease in feed. The predicted

surface roughness largely agrees with the experimental

results. The difference (2.5 %) between the results of

proposed technique and the experiments may be attributed

to the effects of vibration, spindle run-out, and work piece

material property in actual machining.

Scope for future work

In this work, the minimum surface roughness has been

predicted using PSO and the same is confirmed by con-

ducting experiments using the same parameters. But,

machining is a complex phenomenon and so inclusion of

many other machining parameters and constraints may

enhance the end result. Cutting force, tool life and many

other performance measures can be predicted using the

proposed methodology. Multi-pass milling or component

based attempts can be carried out to show the ability and

effectiveness of non-traditional optimization techniques.
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