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Abstract
Nowadays in highly competitive precision industries, the micromachining of advanced engineering materials is extremely 
demand as it has extensive application in the fields of automobile, electronic, biomedical and aerospace engineering. The 
present work addresses the modeling and optimization study on dimensional deviations of square-shaped microgroove in 
laser micromachining of aluminum oxide  (Al2O3) ceramic material with pulsed Nd:YAG laser by considering the air pressure, 
lamp current, pulse frequency, pulse width and cutting speed as process parameters. Thirty-two sets of laser microgrooving 
trials based on central composite design (CCD) design of experiments (DOEs) are performed, and response surface method 
(RSM), artificial neural network (ANN) and genetic algorithm (GA) are subsequently applied for mathematical modeling 
and multi-response optimization. The performance of the predictive ANN model based on 5-8-8-3 architecture gave the 
minimum error (MSE = 0.000099) and presented highly promising to confidence with percentage error less than 3% in com-
parison with experimental result data set. The ANN model combined with GA leads to minimum deviation of upper width, 
lower width and depth value of − 0.0278 mm, 0.0102 mm and − 0.0308 mm, respectively, corresponding to optimum laser 
microgrooving process parameters such as 1.2 kgf/cm2 of air pressure, 19.5 Amp of lamp current, 4 kHz of pulse frequency, 
6% of pulse width and 24 mm/s of cutting speed. Finally, the results have been verified by performing a confirmatory test.

Keywords Laser microgrooving · Aluminum oxide · RSM · ANN · GA

Introduction

Advanced engineering ceramics have been widely used in 
the development of critical components, because of their 
superior characteristics such as electrical insulation, high 
hardness, low thermal expansion coefficient, corrosion 
resistance, high temperature resistance and low weight-
to-strength ratio (Doloi et  al. 2007; Hafezalkotob and 
Hafezalkotob 2016), and particularly these are extremely 
hard-to-cut materials due to extreme brittleness. Owing to 
these complexities, the task to machine a component with 
deterministic precision becomes challenging. In the recent 

past, laser beam machining (LBM) has been explored as 
an effective and emerging process for shaping ceramic 
materials. Pulsed laser is efficient for micromachining of 
hard-to-cut material because of low pulse width with high 
peak power. Nd:YAG laser beam emits light or photons of 
shorter wavelength generating high power densities and 
small, focused spot diameter better than the benefits offered 
by conventional  CO2 laser. Laser microgrooving operation 
considers various micromachining input process parameters 
like laser power, pulse width, spot size and cutting speed, 
which are quite compatible as well as in close agreement 
with derived energy equation of heat transfer (Chryssolouris 
1991; Olsen and Alting 1995). Assist gas pressure also sub-
stantially affects the shape, geometry and dimension of cut 
during laser micromachining operation (Darwish et al. 2017; 
Farooq and Kar 1998). During square microgrooving opera-
tion, maintaining of squareness and depth is an essential fac-
tor to inherent focusing quality of laser machining process. 
The above-mentioned parameters are usually adjusted and 
utilized for machining to give the quality of microgroove 
desired, but this consumes exhaustive amounts of time and 
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effort, and still there is scope of researchers for good-quality 
microgrooving conditions. Moreover, to improve its machin-
ing performance effectively and efficiently, the optimized 
process parameters and predictive models are also essen-
tially required.

When manufacturers deal with multiple conflicting objec-
tives, modeling technique helps in enhancing the efficacy 
of machining process. Although many theoretical models 
involve simplifications, assumptions and approximations 
for approaching real machining process, they do not con-
sider any undesirable deficiency in the process. Therefore, 
analytical solutions cannot be easily extended to practical 
usage (Davim 2001), and for this reason, adequate modeling 
is essential to do quality predictions in a function of cut-
ting conditions. The model development by RSM and ANN 
is a convenient method for the product as well as process 
improvement and has received a considerable attention by 
the researchers in the last two decades.

However, due to the complex behavior of the machining 
processes, where a few distinctive and contradictory objec-
tives must be simultaneously optimized, at the same time the 
mono-objective optimization techniques do not permit to find 
the comprehensive optimal cutting conditions value which 
fulfills all the execution attributes in machining; hence, the 
multi-objective optimization has turned into an increasingly 
important and challenging task (Khamel et al. 2012; Das 
et al. 2015). Indeed, it offers most prominent measure of 
data with a specific end goal to make a decision on choosing 
process parameters in machining process. Earlier researchers 
have applied different optimization techniques, like Taguchi 
method (Shivade and Shinde 2014), Grey relation analy-
sis (Kumar A, Soota T, Kumar J Optimisation of wire-cut 
EDM process parameter by Grey-based response surface 
methodology. J Ind Eng Int. https ://doi.org/10.1007/s4009 
2-018-0264-8), desirability function (Kumar et al. 2015), for 
finding out the optimal process parameter values. Research-
ers are now focusing on employment of artificial intelligence 
(AI) techniques, viz. ANN, GA and fuzzy logic (Markopou-
los et al. 2016; Qian X, Ma Y, Feng H Collaboration space 
division in collaborative product development based on a 
genetic algorithm. J Ind Eng Int. https ://doi.org/10.1007/
s4009 2-018-0257-7; Moghaddam and Kolahan 2016), for 
the process modeling and optimization of manufacturing 
processes which are expected to overcome some limitations 
of conventional process modeling techniques. Due to the 
ability to find a set of trade-off solutions in a single simula-
tion run, inclination toward the adaptation of AI-based opti-
mization methods especially evolutionary multi-objective 
optimization (EMO) algorithm shows a growing interest 
not only to control and predict the behavior of the phenom-
enon, but also to accomplish a common goal of improving 
machining performance. Various researchers have employed 
methods which include statistical and analytical approaches 

for mathematical modeling (Ciurana et al. 2009; Kibria et al. 
2013; Mishra and Yadava 2013; Madić et al. 2015) in order 
to predict the responses and for multi-response optimiza-
tion (Dhupal et al. 2008; Wang et al. 2016; Giorleo et al. 
2016) in order to control the process parameters during laser 
micromachining process. Recently, Shivakoti et al. (2017) 
highlighted the use of fuzzy TOPSIS method for the selec-
tion of optimal laser micromarking process parameters to 
improve the marking performance on high strength tempera-
ture resistance material such as gallium nitride (GaN). In an 
another study Kalita et al. (2017) performed an investiga-
tion with same workpiece material for optimization of pro-
cess parameters in laser beam micromarking using genetic 
algorithm (GA) and particle swarm optimization (PSO). 
The results showed that there is a close agreement between 
the GA parameter settings with PSO results. Kibria et al. 
(Kibria et al. 2014) modeled the relationship between the 
laser microturning process parameters (laser power, pulse 
frequency, rotational speed, air pressure and feed rate) and 
quality characteristics using ANN and performed multi-
objective optimization using RSM in order to achieve the 
desired surface roughness and minimum depth deviation of 
turned part. Mukherjee et al. (Mukherjee et al. 2013) used 
artificial bee colony (ABC) algorithm for parametric optimi-
zation of two different Nd:YAG laser beam micromachining 
processes (microdrilling and microgrooving).

From the existing literature, most of the studies are on 
laser micromachining, viz. microdrilling (Biswas et al. 2010; 
Kuar et al. 2012; Nandi and Kuar 2015; Biswas et al. 2015; 
Zhang et al. 2015), microturning (Dhupal et al. 2008; Kib-
ria et al. 2010, 2012, 2013; Hao et al. 2018), micromilling 
(Campanelli et al. 2013; Mohammed et al. 2017; Darwish 
et al. 2017; Yang et al. 2018) and micromarking (Shivakoti 
et al. 2017; Kalita et al. 2017; Peter et al. 2013; Brihmat-
Hamadi et al. 2017); work in the field of laser microgroov-
ing (Dhupal et al. 2007; Kuar et al. 2008) is very limited. 
Laser microgrooving is based on the interaction of a laser 
beam with the workpiece surface, non-uniform melting and 
ejection of material from the groove walls, and laser power 
reduction, as the beam propagates into the groove, can be 
identified as a cause for the variation in lower width and 
depth formation which is of prime importance to enhance 
the product quality. With the intention of achieving good-
quality microgroove machined surface and better dimen-
sional accuracy on alumina ceramic workpiece, intensive 
research is needed. Also, an extensive research work is 
much needed to develop a technology guidance for laser 
microgrooving of such a useful material for modern manu-
facturing industries. Moreover, appropriate combination 
and utilization, along with proper adjustment of pre-cited 
machining parameters, are of prime importance for acquir-
ing good grade of microgroove, which is a challenging task 
as it consumes precious time and effort due to the dynamic 
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behavior of the laser micromachining process. Yet almost 
no systematic study has been reported in laser microgroov-
ing operation that would ensure scope for researchers, and 
also no method currently results in the same level of effi-
ciency for all processes. The novelty aspect of the present 
study focuses on the development of computational as well 
as empirical models and multi-response parametric optimi-
zation in microgrooving of alumina  (Al2O3) ceramic mate-
rial through Nd:YAG laser treatment. Particularly, design 
of experiments (DOEs), response surface methodology 
(RSM), artificial neural network (ANN) and genetic algo-
rithm (GA) have been applied to process improvement. The 
following dimensional deviations of the microgroove are 
addressed: upper width deviation, lower width deviation and 

depth deviation. The manuscript is arranged in the following 
form: “Introduction” section contains a brief overview of the 
motivation of the problem and shows the updated progress. 
“Experimental setup and procedure” section provides a brief 
description of the experimentation process, the material and 
the methods involved. “Results and discussion” section criti-
cally discusses the results obtained. The statistical analysis 
of the experiments and formation of the mathematical model 
are covered in section “Results and discussion.” This section 
also highlights the use of ANN and GA as a suitable opti-
mization technique for the current problem. Additionally, 
the final part of the manuscript derives conclusions based 
on the study.

Fig. 1  Schematic diagram 
of Nd:YAG laser machining 
system
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Experimental setup and procedure

Microgrooving experiments were conducted on  TEM00 
operating mode using computer numerical control (CNC) 
pulsed Nd:YAG laser machining system (model: SLT-
SP2000, make: SLT Ltd.) consisting of various subsystems. 
For experimentation, the laser beam (focused by the lens 
with focal length of 50 mm) was set at workpiece surface 
as the focal plane which resulted in laser beam spot size 
of nearly 0.1 mm.  Al2O3 flat plate was subjected to micro-
grooving by multiple laser pulses using Nd:YAG laser treat-
ment with actual peak power moving between 0.7 and 5 kW. 
The compressed as well as regulated gas (air) is supplied 
into a fine coaxial nozzle to allow the grooving as per the 
experimental design. The movement of lens is controlled by 
the CNC Z-axis controller unit to attain the desired height 
(here, depth) of the microgroove. Figure 1 shows the sche-
matic layout of the experimental setup for Nd:YAG laser 
machining unit. Figure 2 presents the pictorial view of a cut, 
showing shape and geometry to be produced by laser micro-
grooving. Multi-sawing software is used to generate square 
microgroove of size 200 × 200 × 200 micron by setting zero 
taper angle. Prior to machining, the location of workpiece 
and focusing condition on workpiece surface were observed 
as well as checked by charged coupled device (CCD) camera 
including CCTV monitor in order to govern the position of 
laser beam spot precisely.

In the present work, response surface methodology 
(RSM) as well as artificial neural network (ANN) was con-
sidered for predictive modeling and genetic algorithm (GA) 
for multi-objective optimization by utilizing the observa-
tional data based on design of experiments (DOEs). Alu-
minum oxide  (Al2O3) ceramic plate of size 30 mm × 30 mm 
is considered as a workpiece material for the experimenta-
tion due to its excellent material characteristics such as high 
electrical insulation, mechanical strength, wear as well as 
corrosion resistance which make the choice of components 
in a wide range of industrial and medical applications. The 
various leading properties of aluminum oxide are presented 
in Table 1.

In the current investigation, air pressure, lamp current, 
pulse frequency, pulse width and cutting speed are consid-
ered to be the process parameters which affect the response 
of interest in laser microgrooving operation, namely upper 
width deviation, lower width deviation and depth devia-
tion. The input parameters have predominant impacts on 
the output criteria of laser microgrooving, as the lamp cur-
rent combined with the pulse frequency provides the energy 
to remove the material and achieve the desired depth. The 
pulse width provides the accuracy of the microgroove shape. 
Air pressure is helpful to eject the debris from the narrow 
gap, and at the same time adequate cutting speed is required 
to generate a good-quality microgroove in sufficient time. 
Hence, the range of process parameters setting has been 
selected after performing some pilot experiments using 
fixed focal length and also by inspecting the workpiece for 
a through microgroove of acceptable quality. Also, a detailed 
literature survey has been performed to select the working 
range of process parameters. The identified process param-
eters and their associated levels are presented in Table 2. 
Using the selected factors (five) and parameters levels (five), 
a design matrix was formulated in conformance to central 
composite design (CCD) design of experiments (DOEs) 
associated with thirty-two (32) experimental runs. Design of 
experimental plan with actual value of process parameters, 

Fig. 2  Pictorial view of square 
microgroove on flat surface

Table 1  Properties of workpiece material (alumina,  Al2O3)

Properties Units Value

Density gm/cc 3.96
Specific heat J/kgk 775
Thermal conductivity (cal/s)/(cm2C/cm) 0.072–100 °C

0.15–1000 °C
Compressive strength MPa 2500
Modulus of elasticity GPa 393
Hardness GPa 1800, HB-30
Fracture toughness MPa-√m 4
Sintering temperature °C 1600
Melting temperature °C 2050
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measured responses and estimated deviation parameters are 
presented in Table 3. The different dimensional deviations 
(responses) of machined microgroove were measured by 

utilizing optical microscope (model: STM6, make: Olym-
pus) at the magnification level of 10 ×. Figure 3 shows the 
schematic layout of methodology followed in the current 

Table 2  Process parameters and 
levels

Parameters Unit Levels

−2 −1 0 1 2

Air pressure (X1) kgf/cm2 0.4 0.8 1.2 1.6 2.0
Lamp current (X2) Amp 14.5 17 19.5 22 24.5
Pulse frequency (X3) kHz 1 2 3 4 5
Pulse width (X4) % 0 2 4 6 8
Cutting speed (X5) mm/s 12 16 20 24 28

Table 3  Design of experimental plan and experimental results

Test no. Actual setting of parameters Dimensions of microgroove (mm) Dimensional deviations of microgroove (mm)

X1 X2 X3 X4 X5 Upper width Lower width Depth Upper width 
deviation

Lower width 
deviation

Depth deviation

1 1.6 17.0 2 2 16 0.1967 0.1390 0.160 − 0.003 − 0.061 − 0.040
2 0.8 22.0 2 2 16 0.2210 0.2020 0.200 0.021 0.002 0.000
3 1.6 17.0 4 6 16 0.1840 0.1550 0.168 − 0.016 − 0.045 − 0.032
4 1.6 22.0 4 6 24 0.2154 0.1910 0.212 0.0154 − 0.009 0.012
5 0.8 17.0 4 2 16 0.1930 0.1280 0.162 − 0.007 − 0.072 − 0.038
6 1.2 24.5 3 4 20 0.2330 0.2005 0.234 0.033 0.001 0.034
7 1.2 19.5 3 4 28 0.2490 0.1620 0.209 0.049 − 0.038 0.009
8 1.2 19.5 3 4 20 0.2210 0.1355 0.165 0.011 − 0.064 − 0.035
9 1.2 19.5 3 4 20 0.2054 0.1525 0.176 0.005 − 0.047 − 0.024
10 1.2 19.5 3 0 20 0.2137 0.1565 0.142 0.013 − 0.043 − 0.058
11 1.6 22.0 4 2 16 0.2062 0.1495 0.164 0.006 − 0.050 − 0.036
12 1.2 19.5 3 4 20 0.1950 0.1350 0.202 − 0.005 − 0.065 0.002
13 0.4 19.5 3 4 20 0.1853 0.1295 0.164 − 0.014 − 0.070 − 0.036
14 1.2 19.5 3 8 20 0.1792 0.1295 0.149 − 0.021 − 0.070 − 0.051
15 0.8 22.0 4 2 24 0.1915 0.1365 0.185 − 0.008 − 0.063 − 0.015
16 1.2 19.5 3 4 12 0.2090 0.1265 0.189 0.009 − 0.073 − 0.011
17 0.8 17.0 4 6 24 0.2040 0.1135 0.159 0.004 − 0.086 − 0.041
18 0.8 17.0 2 6 16 0.1956 0.1255 0.136 − 0.004 − 0.074 − 0.063
19 1.6 22.0 2 6 16 0.1915 0.1745 0.193 − 0.008 − 0.025 − 0.006
20 1.2 19.5 5 4 20 0.1996 0.1700 0.163 − 0.001 − 0.030 − 0.037
21 1.2 19.5 3 4 20 0.2060 0.1430 0.155 0.006 − 0.057 − 0.045
22 2.0 19.5 3 4 20 0.1995 0.1470 0.142 − 0.001 − 0.053 − 0.058
23 1.2 19.5 3 4 20 0.1992 0.1420 0.142 − 0.001 − 0.058 − 0.057
24 0.8 17.0 2 2 24 0.2040 0.1440 0.132 0.004 − 0.056 − 0.067
25 0.8 22.0 4 6 16 0.2050 0.1425 0.228 0.005 − 0.057 0.028
26 0.8 22.0 2 6 24 0.2370 0.1735 0.183 0.037 − 0.026 − 0.016
27 1.6 22.0 2 2 24 0.2316 0.1700 0.205 0.032 − 0.030 0.005
28 1.2 14.5 3 4 20 0.1940 0.1190 0.117 − 0.006 − 0.081 − 0.083
29 1.6 17.0 2 6 24 0.1907 0.1255 0.120 − 0.009 − 0.074 − 0.080
30 1.6 17.0 4 2 24 0.2160 0.1535 0.126 0.016 − 0.046 − 0.074
31 1.2 19.5 1 4 20 0.2125 0.2091 0.170 0.012 0.009 − 0.030
32 1.2 19.5 3 4 20 0.2067 0.1630 0.168 0.006 − 0.037 − 0.032
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study. The various dimensional deviations like upper width 
deviation (YUWD), lower width deviation (YLWD) and depth 
deviation (YDD) are calculated as follows:

where YAUW  is the actual upper width, YTUW  is target upper 
width, YALW is actual lower with, YTLW is target lower 
width, YTD is target depth and YAD is the actual depth of 
microgroove.

(1)YUWD = YAUW − YTUW

(2)YLWD = YALW − YTLW

(3)YDD = YAD − YTD

Results and discussion

Model prediction using response surface 
methodology

Response surface methodology is an integration of math-
ematical as well as statistical techniques, useful for mode-
ling (Montgomery 2004) in various fields of engineering. In 
RSM, the second-order quadratic equation is the most com-
mon response model, and the approximation of the response 
function is obtained in the form of predictive variables by 
establishing the relationship between input parameters and 

Fig. 3  Schematic layout of 
experimental setup and method-
ology proposed
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desired responses (output). This is usually expressed in the 
following equation,

where Y is the estimated response, β0 is the constant, βi, 
βii and βij represent the coefficients of linear, quadratic and 
cross-product terms, respectively. X reveals the coded vari-
ables that correspond to the studied process parameters.

The empirical models in the form of quadratic regression 
equations to predict the various dimensional deviations of 
microgroove (YUWD, YLWD and YDD) with air pressure (X1), 
lamp current (X2), pulse frequency (X3), pulse width (X4) and 
cutting speed (X5) are given below.

The upper width deviation (YUWD) is presented below in 
Eq. (5). Its coefficients of determination (experimental and 
adjusted) are R2 = 89.1%, R2 (adj.) = 87%, respectively.

(4)Y = �0 +

k
∑

i=1

�iiXi +

k
∑

i=1

�iiX
2
i
+
∑

⋅

i

∑
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�ijXiXj
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The lower width deviation (YLWD) is presented below in 
Eq. (6). Its coefficients of determination (experimental and 
adjusted) are R2 = 91.7%, R2 (adj.) = 90.1%, respectively.

The depth deviation (YDD) is presented below in Eq. (7). Its 
coefficients of determination (experimental and adjusted) are 
R2 = 89.4%, R2 (adj.) = 87.4%, respectively.

R2 = 89.1% R2 (adj.) = 87%

(6)
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R2 = 91.7% R2 (adj.) = 90.1%
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R2 = 89.4% R2 (adj.) = 87.4%

Table 4  Results of ANOVA for 
dimensional deviations model

Source DOF Sequential SS Adjusted SS Adjusted MS F P value Remark

(a) Upper width deviation, YUWD model
 Regression 20 0.007120 0.007120 0.000356 6.26 0.002 Significant
 Linear 5 0.003599 0.000640 0.000128 2.25 0.121
 Interaction 10 0.001786 0.001786 0.000179 3.14 0.037
 Square 5 0.001735 0.001735 0.000347 6.11 0.006
 Residual error 11 0.000625 0.000625 0.000057
 Total 31 0.007745

(b) Lower width deviation, YLWD model
 Regression 20 0.017356 0.017356 0.000868 6.04 0.002 Significant
 Linear 5 0.009493 0.001259 0.000252 1.75 0.203
 Interaction 10 0.004190 0.004190 0.000419 2.92 0.047
 Square 5 0.003672 0.003672 0.000734 5.11 0.011
 Residual error 11 0.001580 0.001580 0.000144
 Total 31 0.018935

(c) Depth deviation, YDD model
 Regression 20 0.025359 0.025359 0.001268 4.61 0.006 Significant
 Linear 5 0.017916 0.002651 0.000530 1.93 0.169
 Interaction 10 0.003912 0.003912 0.000391 1.42 0.286
 Square 5 0.003531 0.003531 0.000706 2.57 0.089
 Residual error 11 0.003027 0.003027 0.000275
 Total 31 0.028386
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Fig. 4  PLSR model selection plot: a UWD; b LWD; c DD

Fig. 5  Developed 5-8-8-3 ANN 
architecture
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To avoid the misleading conclusion, the statistical signifi-
cance as well as the adequacy of developed quadratic models 
for dimensional deviation criteria (YUWD, YLWD and YDD) is 
checked by ANOVA based on P value and F-value, as shown 
in Table 4. Generally, it is used to summarize the test of the 
regression equation (model), test of significance parameters 
and their interactions. If P value of proposed model is less 
than 0.05 (95% confidence level), it results in excellent sta-
tistical significance of model. From dimensional deviation 
models ANOVA for YUWD, YLWD and YDD, it is observed 
that mathematical models are significant as their P value 
is less than 0.05. Additionally, the models are adequate as 
model F values 6.26, 6.04 and 4.61 to dimensional deviation 
criteria UWD, LWD and DD, respectively, which are more 
than F-table value (2.65) at 95% confidence level. Further, 
the effectiveness of the proposed models is performed with 
the help of R2 value. When R2 approaches to the value of 1, 
implying the response models has closely resembled to the 
actual (experimental) data. In the present work, the R2 values 
for the dimensional deviations of laser microgroove (UWD, 
LWD and DD) are 87%, 90.1% and 87.4%, respectively, 
which indicate high statistical significance of the model and 
the goodness of fit for the model. It presents the good agree-
ment existing between the predicted values and experimental 

values. The adjusted R2 values for UWD, LWD and DD are 
87%, 90.1% and 87.4%, respectively, after observing the sig-
nificant factors. Thus, the developed regression models can 
be successfully employed as objective functions for multi-
response optimization via genetic algorithm (GA). Further, 
the R2-value of the developed models (YUWD, YLWD and YDD) 
is analyzed for cross-validation with predicted R2-value 
(denoted by “crossval”) using model selection plot of partial 
least squares regression (PLSR), as shown in Fig. 4. The plot 
shows a good agreement between fitted-R2 (blue circles) and 
predicted-R2 (red squares) values, which indicates that the 
model has a greater predictive ability.

Model prediction using artificial neural network

Artificial neural network has been designed to mimic the lin-
ear order characteristics of structure interlinked nerve cells 
of human brain called biological neurons. Briefly, a group 
of certain inputs are mostly employed; each one designates 
the output of any other neuron. Each input is multiplied by 
a corresponding weight analogous to a synaptic strength, 
and these are summed up to determine the activation level 
of the neuron.

In this work, artificial neural network is applied to pro-
pose a model to train in order that a set of inputs to return the 
appropriated or useful set of outputs. ANN uses multilayer 
architecture consisting of different layers (input, hidden and 
output) for solving the nonlinear and complex problems with 
the help of feed-forward back-propagation training algorithm 
(Haykin 2002). Usually, in back-propagation NN, the net 
input is expressed as follows:

And the network output (Zj) of each neuron i is obtained by 
processing the net input via an activation or transfer function 
(here, tangent hyperbolic type) as follows:

where Yj net input is considered as linear combination of 
input variables in terms of weights, j number of neurons, 

(8)Yj =

i=n
∑

i=1

wijxi

(9)Zj = f (Yj) =
1 − e−Yj

1 + e−Yj

Fig. 6  Generation curve: MSE versus epochs during training and val-
idation sessions

Table 5  Check data set for 
testing ANN model and 
comparison results of predicted 
and measured dimensions of 
microgroove

Test no. Responses in mm

Upper width Lower width Depth

ANN pred. Experimental 
result

ANN pred. Experimental 
result

ANN pred. Experi-
mental 
result

1 0.18640 0.1840 0.1979 0.202 0.2130 0.2127
2 0.2142 0.2137 0.1499 0.1525 0.1640 0.1621
3 0.2031 0.2050 0.1279 0.1255 0.1168 0.12
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n is the input parameters, xi is the input parameter i of the 
network, wij represents the synaptic weight to jth neuron in 
the output layer from the ith neuron in the previous layer.

In this study, many network architectures were tried, prior 
to use the optimal neural network architecture of 5-8-8-3 
(with the lowest MSE), which is shown in Fig. 5. The net-
work consists of one input layer which has five neurons, two 
hidden layers which have eight neurons each and then output 
layer which have three neurons, respectively. For calculation 
of connection weights, we require a set of desired network 
output values which are sometimes referred to as training 
data set. The training data set of desired outputs generated 
utilizing experimental data set, as reflected in Table 3. In 
order to get a closed-form solution, MATLAB function 
feed-forward back-propagation neural network (TRAINGD) 
was used for training the data of the network, which has 

been widely used for prediction and optimization of various 
machining processes (Dhar et al. 2008; Dhupal et al. 2009; 
Somashekhar et al. 2010; Kuo et al. 2012; Dahbi et al. 2017; 
Behera et al. 2016). TRAINGD is a network training func-
tion which works in accordance with the gradient descent 
method that measures the output error, calculates the gradi-
ent of the error by adjusting as well as updating the weight 
variable repetitively in the direction of the negative gradi-
ent of the performance function and also reduces the mean 
square error (MSE) between expected data and training data 
set. The change in weight variables is given in Eq. (10).

(10)Δwij = −�
�E

�wij

Zj

Table 6  Training data set 
for testing ANN model and 
comparison results of predicted 
and measured dimensions of 
microgroove

Sl. no. Responses (mm)

Upper width Lower width Depth

ANN pred. Experimental 
result

ANN pred. Experimental 
result

ANN pred. Experimental 
result

1 0.1958 0.1967 0.1341 0.1390 0.1601 0.1600
2 0.2215 0.2210 0.1534 0.1550 0.1932 0.2000
3 0.2163 0.2154 0.1715 0.1910 0.1667 0.1680
4 0.1206 0.1930 0.1262 0.1280 0.1524 0.1620
5 0.2327 0.2330 0.1931 0.2005 0.2323 0.2343
6 0.2131 0.2490 0.1515 0.1620 0.1688 0.2090
7 0.2003 0.2210 0.1468 0.1355 0.1669 0.1650
8 0.2003 0.2054 0.1534 0.1565 0.1758 0.1760
9 0.2073 0.2062 0.1479 0.1495 0.1522 0.1420
10 0.2003 0.1950 0.1468 0.1350 0.1609 0.1640
11 0.2035 0.1853 0.1297 0.1295 0.1636 0.1640
12 0.1789 0.1792 0.1348 0.1295 0.1517 0.1495
13 0.2131 0.1915 0.1516 0.1365 0.1819 0.1850
14 0.209 0.2090 0.1292 0.1265 0.1898 0.1893
15 0.2039 0.2040 0.1114 0.1135 0.1605 0.1590
16 0.1957 0.1956 0.1242 0.1255 0.1407 0.1367
17 0.1918 0.1915 0.1714 0.1745 0.1946 0.1937
18 0.1996 0.1996 0.1659 0.1700 0.1685 0.1630
19 0.2003 0.2060 0.1468 0.1430 0.1669 0.1550
20 0.2024 0.1995 0.1569 0.1470 0.1305 0.1420
21 0.2003 0.1992 0.1468 0.1420 0.1669 0.1427
22 0.2124 0.2040 0.1371 0.1440 0.1336 0.1327
23 0.2371 0.2370 0.1396 0.1425 0.2295 0.2280
24 0.2316 0.2316 0.1853 0.1735 0.1909 0.1832
25 0.1937 0.1940 0.194 0.1700 0.2058 0.2057
26 0.2035 0.1907 0.1234 0.1190 0.1229 0.1170
27 0.215 0.2160 0.1589 0.1535 0.127 0.1260
28 0.2151 0.2125 0.1861 0.2091 0.1698 0.1700
29 0.2003 0.2067 0.1468 0.1630 0.1669 0.1683
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where E is the mean square error estimating the gradient of 
the error, η is the learning rate parameter generally controls 
the stability and rate of convergence of the ANN model. η is 
considered as 0.0001 which is the constant value of learn-
ing rate. The MSE value calculated from the ANN is found 
to be 0.000099. Figure 6 shows the data observed based on 
experiment of ANN training by means of MATLAB.

The data results obtained from experimentation and 
predicted data received by neural network were compared. 
Out of the 32 experimental data received in accordance 
with DOEs, 29 data were performed for training the neural 

network model. Subsequently, the remaining three (32–29) 
experimental results (check data) were compared with 
trained ANN model. Tables 5 and 6 show the comparison 
results between the experimental and ANN for 3 check data 
sets and 29 training sets, respectively. It can be seen that 
there is a close agreement between the ANN prediction and 
the experimental results. Figures 7, 8 and 9 compare the 
ANN prediction results for upper width, lower width and 
depth with the results of experiment for training and check 
data sets. It is observed that the variation in ANN and exper-
imental result is under 3%, which avoids the misleading 

Fig. 7  Graphical comparison of 
predicted ANN with measured 
a check data and b training data 
set of upper width

Fig. 8  Graphical comparison of 
predicted ANN with measured 
a check data and b training data 
set of lower width
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conclusion to consider reliable model, particularly ANN 
for predicting the responses satisfactorily under pre-cited 
process parameters in laser microgrooving operations.

Optimization using genetic algorithm

Genetic algorithm is a population-based search methodol-
ogy for solving optimization problems stochastically that is 
based on the mechanism of natural selection that simulates 
the biological progression process developed from Darwin’s 
theory of survival of the fittest (Vosniakos and Krimpenis 
2002; Palanisamy et al. 2007). The mechanics of GAs is 
simple, involving copying of binary strings and the swap-
ping of the binary strings. The simplicity of operation and 
computational efficiency are the two main attractions of the 
GA approach. In this systematic method, originally a set of 
possible solutions or chromosomes (normally as a string of 
genes) are randomly chosen, which serves as the genera-
tion (initial population). A basic GA comprises an encoding 
mechanism (ranks and signifies the chromosomes by means 
of a string of bits): a selection mechanism (choosing bet-
ter fitness function value for minimization or maximization 
problems); a reproduction mechanism (pairing the chromo-
somes by probabilistically to reproduce new generation); a 
crossover mechanism (interchanging the information and 
genes between chromosomes); and a mutation mechanism 
(flipping a particular bit of a chromosome to obtain smart 
convergence). Each of these basic operators works on strings 
in a population only with simple bit changes. Figure 10 illus-
trates the flow of the way by which the GA technique oper-
ates when optimizing a problem.

The following points give a generic view of how GAs 
operate (Krimpenis et al. 2014): (1) a population of individu-
als (solutions) is created that consists of random individuals 
(initialization); (2) a function or a model (objective func-
tion) measures individual performance and determines their 
ability to survive and reproduce; (3) individuals are ranked 
(ranking) and the best/fittest individuals (according to a fit-
ness function, which is an objective function transformation) 
are chosen (selection operator) to mate in pairs (crossover 
operator) and thus create new individuals and hence a whole 
new population. Every new individual (offspring) carries 
genetic characteristics from both parents. Slight mutation 
(mutation operator) occurs from generation to generation 
with given probability. Other population diversion operators, 
such as inversion, may be applied to the offspring; (4) in 
order to satisfy the criteria of the objective function, increas-
ing competition among individuals leads to “survival of the 
fittest.” This way, one generation after the other tends to have 
better genetic material (or characteristics) that help them 
survive. Individuals with best characteristics constitute the 
best solution to the problem; (5) this process continues in a 
repetitive manner until convergence criteria are met, i.e., the 
chromosomes have the best fitness or potential (optimum) 
solution for a specific problem is obtained. Immediately 
after the new generation is created, it is further assessed 
and checked through experimentation for the conformability 
and agreement (Shaik and Srinivas 2017).

In this work, MATLAB toolbox was utilized for optimiza-
tion purpose by implementing GA technique with the aim 
to minimize the dimensional deviation. In laser microgroov-
ing, multi-objective optimization problem can be formally 
defined in the following manner:

Fig. 9  Graphical comparison of 
predicted ANN with measured 
a check data and b training data 
set of depth
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(11)Find: input parameter(X1, X2, X3, X4, and X5)

(12)Minimize: f
(

YUWD, YLWD, and YDD
)

(13)

Allowable range of process parameters are: 0.4 kgf∕cm2

≤ air pressure
(

X1

)

≤ 2.0 kgf∕cm2, 14.5 Amp

≤ lamp current
(

X2

)

≤ 24.5 Amp, 1 kHz

≤ pulse frequency
(

X3

)

≤ 5 kHz, 0% ≤ pulse width
(

X4

)

≤ 8%, and 12 mm∕s ≤ cutting speed
(

X5

)

≤ 28 mm∕s

Here for mathematical descriptions, the objective functions 
f(YUWD), f(YLWD) and f(YDD) are developed by RSM model 
in Eqs. (5)–(7) for deviation of upper width, lower width 
and depth, respectively. Figure 11 presents the optimization 
history, which aims to minimize the various dimensional 
deviations (YUPD, YLWD, YDD) of microgroove in the pres-
ence of algorithm-specific parameters of GA. In the pre-
sent study, the critical (algorithm-specific) parameters are 
taken concerning population size of 250, mutation rate of 
0.10, crossover rate of 1.0, number of genes in each popula-
tion member equal to 20 and maximum number of itera-
tions equal to 500. By solving the optimization problem 
with GA, the optimized process parameters for minimizing 
microgrooving variables in laser machining of aluminum 
oxide  (Al2O3) ceramic material are pressure 1.2 kgf/cm2, 
lamp current 19.5 Amp, pulse frequency 4 kHz, pulse width 
6%, cutting speed 24 mm/s, with estimated deviations of 
upper width (UWD) of − 0.0278 mm, lower width (LWD) 
of 0.0102 mm and depth (DD) of − 0.0308 mm. The same 
is presented in Table 7. Figure 12 shows the microscopic 
image of laser microgroove produced at optimum parametric 
conditions.

Finally, an additional experiment is performed with the 
optimal configuration (suggested by GA) in order to com-
pare this result with the ANN prediction model using same 
pre-cited optimum conditions, as listed in Table 8. As can 
be seen, the experimental result obtained by confirmation 
test matches the predicted results obtained by ANN and 
GA fairly well with a realistic degree of approximation. 
Therefore, the proposed approach (RSM-ANN-GA) can 
be effectively used to predict the various responses in laser 
microgrooving operation. The comparison results of ANN-
GA-experimental are presented in Fig. 13, which predicts 
that the upper width and depth are continuously negative, 
while lower width is constantly positive.

Fig. 10  Flowchart of GA-based algorithm

Fig. 11  GA-based multi-objective optimization results for upper 
width, lower width and depth
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Conclusions

In the present study, design of experiments (DOEs), response 
surface methodology (RSM), artificial neural network 
(ANN) and genetic algorithm (GA) have been applied for 
experimentation, mathematical modeling and multi-response 
optimization of laser microgrooving operation on aluminum 
oxide ceramic workpiece. Based on the series of experiment 
and analysis of results, the following conclusions are drawn.

• Experimentations have been successfully conducted 
using central composite design of RSM. The results are 
used to develop the mathematical model. The quadratic 
(second-order) mathematical model proposed for vari-
ous dimensional deviations of microgroove using RSM is 
not only capable of achieving precise required dimension 
of microgrooves on aluminum oxide but also useful for 
predicting new experiments. The models are found to 
be adequate and statistically significant because of their 
higher R2 value (89.1% for UWD, 91.7% for LWD, and 
89.4% in case of DD), and P-value is lower than 0.05.

• The experimental results are used to develop a multilayer 
feed-forward back propagation. The performance of pre-
dictive ANN model based on 5-8-8-3 architecture gave 
the minimum error (MSE = 0.000099) and presented 
highly promising confidence with percentage of error 
less than 3% while compared with experimental result 
data sets.

• Optimization employing GA technique shows the optimal 
setting of process parameters in microgrooving opera-
tion of aluminum oxide by Nd:YAG laser treatment at 
lamp current of 19.5 Amp, pulse frequency of 4 kHz, 
pulse width 6%, cutting speed of 24 mm/s and air pres-
sure of 1.2 kgf/cm2 with estimated minimal deviation of Ta
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upper width − 0.0278 mm, lower width of 0.0102 mm 
and depth of − 0.0308 mm. The experimental result for 
the optimal setting shows that there is a considerable 
improvement in the laser microgrooving process.

• The present research based on GA, ANN and statistically 
multi-regression analysis (RSM) has demonstrated the 
ability to optimize and to accurately model the dimen-
sional deviations of microgroove through advances in 
computer technology.

• The proposed multiple approaches (experimental, evolu-
tional, statistic and stochastic) present reliable method-
ologies to improve laser microgrooving process, and they 
can be employed in real-time process monitoring, model 
predictive control and optimization in several machining 
processes.

• The outcome of the present research in the area of pulsed 
Nd:YAG laser micromachining of engineering ceramics 
can be effectively utilized by manufacturing engineers for 
the investigation and prediction of Nd:YAG laser process 
parametric settings for micromachining and microfabri-
cation of different ceramic materials with intricate shape 
geometries.

• The present research study of pulsed Nd:YAG laser 
microgrooving operation on aluminum oxide ceramic 
will be useful as technological guidelines for further 
research in the area of laser microgrooving process of 
structural ceramics.

• This work will open up (1) future scope to study the cut 
surface quality with integrity for utilizing laser micro-
grooving more effectively and (2) challenging possibili-
ties for exploring effective applications of laser technol-
ogy for microgrooving of advanced ceramics in the field 
of high-precision microengineering.
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