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Abstract
In the current global market, organizations use many promotional tools to increase their sales. One such tool is sales teams’

initiatives or promotional policies, i.e., free gifts, discounts, packaging, etc. This phenomenon motivates the retailer/or

buyer to order a large inventory lot so as to take full benefit of promotional policies. In view of this the present paper

considers a two-warehouse (owned and rented) inventory problem for a non-instantaneous deteriorating item with inflation

and time value of money over a finite planning horizon. Here, demand depends on the sales team’s initiatives and shortages

are partially backlogged at a rate dependent on the duration of waiting time up to the arrival of next lot. We design an

algorithm to obtain the optimal replenishment strategies. Numerical analysis is also given to show the applicability of the

proposed model in real-world two-warehouse inventory problems.

Keywords Promotional effort � Two-warehouse � Non-instantaneous � Finite horizon � Inflation

Introduction

In an oligopolistic supply chain environment, the sales

team’s initiative/promotional effort plays an important role

to boost the sale of items or to speed up the movement of

the goods. That is, in recent years, sales team’s initiative

motivates the customers to buy more items. For example,

Wal-Mart frequently encourages the demand for specific

types of electronic equipment by offering price discounts.

McDonalds frequently offers coupons to attract consumers.

Other promotional strategies include free goods, adver-

tisement, and displays. In this direction, Taylor (2002)

considered a situation in which the demand is influenced by

the sales efforts of retailer. Krishnan et al. (2004) analyzed

the coordination of contracts for decentralized supply

chains with the promotional efforts of retailers. Tsao and

Sheen (2008) developed the inventory model with dynamic

pricing, promotion and replenishment policies for a dete-

riorating item under permissible delay in payments.

Sana (2011) recently discussed an EOQ models for

similar products when the demand of the end customers

depends on the stock level with selling price and sales

teams’ initiatives. Sana (2013) formulated an inventory

model with sales team’s initiatives and stock sensitive

demand for a production control system. Cárdenas-Barrón

and Sana (2014) proposed a production-inventory model

for a two-echelon supply chain when demand is depen-

dent on sales teams’ initiatives. Priyan et al. (2015)

considered a two-echelon production-inventory system

with fuzzy production rate and promotional effort-de-

pendent demand.

In some practical situations, when suppliers offer price

discounts for bulk purchases or the products are seasonal,

the retailers may purchase more goods than can be stored in

his/her own warehouse (OW). Therefore, a rented ware-

house (RW) is used to store the excess units over the fixed

capacity W1 of the own warehouse. Usually, the rented

warehouse may charge higher unit holding cost than the

own warehouse due to additional cost of maintenance,
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material handling, etc. To reduce the inventory costs, it will

be economical to consume the goods of RW at the earliest.

Consequently, the firm stores goods in OW before RW, but

clears the stocks in RW before OW. Hartely (1976) was the

first author to consider the effect of a two-warehouse model

in inventory research and developed an inventory model

with a RW storage policy. Then Lee and Ma (2000) dis-

cussed an optimal inventory policy for deteriorating items

with two-warehouse and time-dependent demand. Yang

(2004) presented a two-warehouse inventory model with

constant deteriorating items, constant demand rate and

shortages under inflation. Lee and Hsu (2009) developed a

two-warehouse inventory model for deteriorating items

with time-dependent demand. Yang (2012) analyzed two-

warehouse partial backlogging inventory models with

three-parameter Weibull distribution deterioration under

inflation. Bhunia et al. (2014) discussed a two-warehouse

inventory model for deteriorating items under permissible

delay in payment with partial backlogging. Tiwari et al.

(2016) developed a two-warehouse inventory model for

non-instantaneous deteriorating items and they explored

the role of trade credit and inflation on the optimal policy.

Xianhao et al. (2017) compared the different dispatching

policies in two-warehouse inventory systems for deterio-

rating items over a finite time horizon.

Deterioration plays a major role in many inventory

systems. Deterioration is defined as decay, damage, spoi-

lage, evaporation, obsolescence, pilferage, loss of mar-

ginal value of a commodity that results in decreased

usefulness. The first attempt to describe the optimal

ordering policies for such items was made by Ghare and

Schrader (1963). Many researchers (e.g., Tat et al. 2015;

Taleizadeh 2014) assumed that the deterioration of the

items in inventory starts from the instant of their arrival in

stock. In fact, most goods would have a span of main-

taining quality or original condition (e.g., vegetables, fruit,

fish, meat, etc.), during that period, there is no deteriora-

tion occurring. Wu et al. (2006) defined the phenomenon

as ‘‘non-instantaneous deterioration’’. In the real world,

this type of phenomenon exists commonly such as first-

hand vegetables and fruits have a short span of main-

taining fresh quality, in which there is almost no spoilage.

Afterwards, some of the items will start to decay. For this

kind of items, the assumption that the deterioration starts

from the instant of arrival in stock may cause retailers to

make inappropriate replenishment policies due to over-

value the total annual relevant inventory cost. In this

connection, numerous researchers (see Geetha and

Uthayakumar 2010; Maihami and Abadi 2012; Dye 2013;

Ghoreishi et al. 2014; Palanivel and Uthayakumar 2015;

Malik and Singh 2011; Taleizadeh et al. 2015;

Mukhopadhyay et al. 2004) designed inventory models for

non-instantaneous deteriorating items.

Economic design of an inventory policy for non-in-

stantaneous deteriorating items under permissible delay in

payment is developed by Geetha and Uthayakumar

(2010). Joint control of inventory and its pricing for non-

instantaneous deteriorating items under permissible delay

in payments and partial backlogging is designed by

Maihami and Abadi (2012). Dye (2013) investigated the

effect of preservation technology investment on a non-

instantaneous deteriorating inventory model. Ghoreishi

et al. (2014) derived an optimal pricing and ordering

policy for non-instantaneous deteriorating items under

inflation and customer returns. Palanivel and Uthayaku-

mar (2015) recently considered a finite horizon EOQ

model for non-instantaneous deteriorating items with

probabilistic deterioration and partial backlogging under

inflation.

Inflation plays an essential role in the optimal order

policy and influences the demand of certain products. As

inflation increases, the value of money goes down and

erodes the future worth of saving and forces one for more

current spending. These spending are on peripherals and

luxury items that give rise to demand of these items. As a

result, the effect of inflation and time value of the money

cannot be ignored for determining the optimal inventory

policy. The concept of the inflation should be considered

especially for long term investment and forecasting.

Buzacott (1975) first demonstrated the EOQ model taking

inflation into account. Hou and Lin (2006) developed an

EOQ model for deteriorating items with price and stock-

dependent selling rates under inflation and time value of

money. Mishra (2007) has discussed some problems on

approximations of functions in banach spaces. Mirzazadeh

et al. (2009) analyzed an inventory model under uncertain

inflationary conditions with finite production rate, inflation

dependent demand rate for deteriorating items and short-

ages. Thangam and Uthayakumar (2010) studied an

inventory model for deteriorating items with inflation

induced demand and exponential partial backorders using a

discounted cash flow approach. Sarkar and Moon (2011)

considered an imperfect production process for time

varying demand with inflation and time value of money for

an EMQ model. Guria et al. (2013) formulated an inven-

tory policy for an item with inflation induced purchasing

price, selling price and demand with immediate part pay-

ment. Uthayakumar and Palanivel (2014) developed an

inventory model for defective items with trade credit and

inflation. Palanivel and Uthayakumar (2016) gave an

inventory model with imperfect items, stock-dependent

demand and permissible delay in payments under inflation.

For the case of perishable product, the retailer may need

to backlog demand to avoid costs due to deterioration.

When the shortage occurs, some customers are willing to

wait for back order and others would turn to buy from other
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sellers. In this connection, numerous authors (see Dye et al.

2007; Min and Zhou 2009; Tripathy and Pradhan 2010;

Taleizadeh and Pentico 2013; Taleizadeh 2014; Palanivel

and Uthayakumar 2016; Maihami and Kamalabadi 2012a;

b; Taleizadeh and Nematollahi 2014; Taleizadeh et al.

2017; Taleizadeh 2017; Lashgari and Taleizadeh 2016;

Palanivel and Uthayakumar 2016) addressed inventory

models with backordering under various environments.

Inventory model of deteriorating items with time propor-

tional backlogging rate have been developed by Dye et al.

(2007). Min and Zhou (2009) derived a perishable inven-

tory model under stock-dependent selling rate and short-

age-dependent partial backlogging with capacity

constraint. An EOQ model for Weibull deteriorating items

with power demand and partial backlogging have been

considered by Tripathy and Pradhan (2010). Taleizadeh

and Pentico (2013) provided an economic order quantity

model with a known price increase and partial backorder-

ing. Taleizadeh (2014) gave an EOQ model with partial

backordering and advance payments for an evaporating

item.

Palanivel and Uthayakumar (2016) recently framed a

two-warehouse inventory model for non-instantaneous

deteriorating items with partial backlogging and inflation

over a finite time horizon. They base their analyses on

simplified assumptions such as demand is constant.

Today’s highly competitive business environment, the

managers of business organizations have a lot of pressure

to sell products to downstream channel members. Thus

nowadays vendors influence their customers with sales

teams’ initiatives or promotional policies, i.e., free gifts,

discounts, delay in payments, packaging, special services

and advertising, among others. So the decision-makers

require superior knowledge to make the best use of their

promotional efforts in order to take optimal decisions in the

inventory system. The topic that has separately received

considerable attention in the inventory control literature is

promotional effort. In this connection, we develop a model

that combines the promotional effort extension of the two-

warehouse inventory model developed by Palanivel and

Uthayakumar (2016). The aim of this study is to provide

the optimal time interval and order quantity while mini-

mizing the system total cost so as to make the best use of

their promotional efforts. In addition, our model has a new

managerial insight that helps a retailer to optimize the

replenishment strategies when demand is dependent on

sales teams’ initiatives.

The rest of the paper is organized as follows: in Nota-

tions and assumptions section, the notations and assump-

tions, which are used throughout this article, are described.

In Model Formulation section, the mathematical model to

minimize the total annual inventory cost is established.

Solution procedure section presents the solution procedure

to find the optimal length of time and order quantity.

Numerical example is provided in Numerical example

section to illustrate the theory and the solution procedure.

This is followed by conclusion.

Notations and assumptions

Notations

The following notations are used throughout this paper:

A The ordering cost per order

Chr The holding cost per item in RW

Cho The holding cost per item in OW, Chr[Cho

C2 The deterioration cost per unit per cycle

C3 The shortage cost for backlogged items per unit

per cycle

C4 The unit cost of lost sales per unit per cycle

p The purchasing cost per unit

s The selling price per unit, with s[ p

l1 The life time of the items in OW

l2 The life time of the items in RW, l1\ l2

a The deterioration rate in OW, 0 B a\ 1

b The deterioration rate in RW, 0 B b\ 1, a[ b
T The length of the order cycle

H The planning horizon

m The number of replenishments during planning

horizon, m = H/T

W1 The capacity of the OW

W2 The maximum inventory level in RW

S The maximum inventory level per cycle

BI The maximum amount of shortage demand to be

backlogged

Q The 2nd, 3rd, …, mth order size

r The discount rate represents the time value of

money

f The inflation rate

R The net discount rate of inflation, i.e., R = r – f

qr (t) The inventory level in RW at time t

q0 (t) The inventory level in OW at time t

qs (t) The negative inventory level at time t

Tj The total time that elapsed up to and including the

jth replenishment cycle (j = 1, 2, …, m), where

T0 = 0, T1 = T, …, Tm = H

tr Length of the period during which the inventory

level reaches to zero in RW

tj Time at which the inventory level in OW in the

jth replenishment cycle drops to zero (j = 1, 2,

…, m)

Tj - tj The time period when shortage occurs (j = 1, 2,

…, m)

TCF The total cost for first replenishment cycle
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TC The total cost of the system over a finite planning

horizon H

Assumptions

To develop the mathematical model, the following

assumptions are being made:

1. There is no replacement or repair of deteriorated items

takes place in a given cycle.

2. Deterioration takes place after the life time of items.

That is, during the fixed period, the product has no

deterioration. After that, it will deteriorate with

constant rate.

3. The effects of inflation and time value of money are

considered.

4. The rate of demand for the customer D is given by the

following expression DðqÞ ¼ d0 þ s 1 � 1
1þq

� �
, where

d0 is the first part of the demand rate which is

independent on the sales teams’ initiatives q. And s
is a scale parameter of 2nd part of the demand

which varies with the sales teams’ initiatives q. We

shall use D and DðqÞ interchangeable in the rest of

the paper.

5. The promotional effort cost PEC is an increasing

function of the promotional effort/sales teams’ initia-

tives and the basic demand PEC ¼ c ðq�1Þ2 RT
0

Ddt

� �c
,

where c is the cost per unit effort of the sales teams’

initiatives, c[ 0 and c is a constant.

6. Shortages are allowed and partially backlogged. Dur-

ing stock out period, the backlogging rate is a variable

and is dependent on the length of the waiting time for

the next replenishment. So the backlogging rate for

negative inventory is, BðtÞ ¼ 1
1þdðT�tÞ ; where d is a

backlogging parameter 0� d� 1 and ðT � tÞ is waiting

time ðtj � t� TÞ, (j = 1, 2, …, m). The remaining

fraction ð1 � BðtÞÞ is lost.

7. The OW has limited capacity of W1 units and the RW

has unlimited capacity. For economic reasons, the

items of RW are consumed first and next the items of

OW.

Model formulation

Suppose that the planning horizon H is divided into

m equal parts of length T = H/m. Hence the reorder times

over the planning horizon H are Tj = jT (j = 0, 1, 2, …,

m). When the inventory is positive, demand rate is con-

stant, whereas for negative inventory, the demand is

partially backlogged. The period for which there is no-

shortage in each interval [jT, (j ? 1)T] is a fraction of the

scheduling period T and is equal to kT (0\ k\ 1).

Shortages occur at time tj = (k ? j - 1)T, (j = 1, 2, …,

m) and are build up until time t = jT (j = 1, 2, …, m) be-

fore they are backordered. This model is demonstrated in

Fig. 1. The first replenishment lot size of S which is

replenished at T0 = 0. W1 units are kept in OW and the rest

is stored in RW. The items of OW are consumed only after

consuming the goods kept in RW.

In the RW, during the time interval ½0; l2�, the

inventory level is decreasing only due to demand rate and

the inventory level is dropping to zero owing to demand

and deterioration during the time interval ½l2; tr�. In OW,

during the time interval ½0; l1�, there is no change in the

inventory level. However, the inventory W1 decreases

during ½l1; tr� due to deterioration only, but during

½tr; t1�, the inventory is depleted due to both demand and

deterioration. By the time t1, both warehouses are empty.

Finally, during the interval ½t1; T�, shortages occur and

are accumulated until t = T1 before they are partially

backlogged.

Based on the above description, during the time interval

½0; l2�, the inventory level in RW is decreasing only due to

demand rate and the differential equation representing the

inventory status is given by

dqrðtÞ
dt

¼ �D; 0� t� l2: ð1Þ

With the condition qrð0Þ ¼ W2; the solution of Eq. (1) is

qrðtÞ ¼ W2 � Dt; 0� t� l2: ð2Þ

In the second interval ½l2; tr� in RW, the inventory level

decreases due to demand and deterioration. Thus, the dif-

ferential equation given below represents the inventory

status:

dqrðtÞ
dt

þ b qrðtÞ ¼ �D; l2 � t� tr: ð3Þ

With the condition qrðtrÞ ¼ 0, we get the solution of

Eq. (3) as:

qrðtÞ ¼
D

b
ebðtr�tÞ � 1
h i

; l2 � t� tr: ð4Þ

Putting t ¼ l2 in Eqs. (2) and (4), we find the value of

W2 as

W2 ¼ D l2 þ
eb ðtr�l2Þ � 1

b

� �
: ð5Þ

Substituting Eq. (5) in Eq. (2) we get

qrðtÞ ¼ D l2 � t þ eb ðtr�l2Þ � 1

b

� �
; 0� t� l2: ð6Þ

606 Journal of Industrial Engineering International (2018) 14:603–612

123



In OW, during the time interval ½0; l1�, there is no

change in the inventory level and during ½l1; tr� the

inventory W1 decreases due to deterioration only. There-

fore, the rate of change in the inventory is given by

dqoðtÞ
dt

¼ 0; 0� t� l1; ð7Þ

dqoðtÞ
dt

þ a qoðtÞ ¼ 0; l1 � t� tr: ð8Þ

With the conditions qoð0Þ ¼ W1 and qoðl1Þ ¼ W1, the

solutions of Eqs. (7) and (8) are

qoðtÞ ¼ W1; 0� t� l1; ð9Þ

qoðtÞ ¼ W1e
a ðl1�tÞ; l1 � t� tr: ð10Þ

In the interval ½tr; t1� in OW, the inventory level

decreases due to demand and deterioration. Thus, the dif-

ferential equation is

dqoðtÞ
dt

þ a qoðtÞ ¼ �D; tr � t� t1: ð11Þ

With the condition qoðt1Þ ¼ 0, we get the solution of

Eq. (11) as

qoðtÞ ¼
D

a
eaðt1�tÞ � 1
h i

; tr � t� t1: ð12Þ

Putting t ¼ tr in Eqs. (10) and (12), we get

tr ¼ t1 � l1 �
1

a
ln

W1a
D

� �
: ð13Þ

During the interval ½t1; T�, shortages occur and the

demand is partially backlogged. That is, the inventory level

at time t is governed by the following differential equation:

dqsðtÞ
dt

¼ �D

1 þ dðT � tÞ ; t1 � t� T : ð14Þ

With the condition qsðt1Þ ¼ 0, the solution of Eq. (14) is

qsðtÞ ¼ Dðt1 � tÞ 1 � dT þ d
2
ðt1 þ tÞ

� �
; t1 � t� T :

ð15Þ

Therefore, the maximum inventory level and maximum

amount of shortage demand to be backlogged during the

first replenishment cycle are:

S ¼ W1 þ D l2 þ
eb ðtr�l2Þ � 1

b

� �
; ð16Þ

BI ¼ DHð1 � kÞ
2m2

2m� dHð1 � kÞ½ �; ð17Þ

respectively, where

tr ¼
kH

m
� l1 �

1

a
ln

W1a
D

� �
: ð18Þ

There are m cycles during the planning horizon. Since,

inventory is assumed to start and end at zero, an extra

replenishment at Tm = H is required to satisfy the backorders

of the last cycle in the planning horizon. Therefore, there are

m ? 1 replenishments in the entire planning horizon H.

The first replenishment lot size is S.

The 2nd, 3rd, …, mth replenishment order size is

Q ¼ Sþ BI: ð19Þ

The last or (m ? 1)th replenishment lot size is BI.

Since replenishment in each cycle is done at the start of

each cycle, the present value of ordering cost during the first

cycle is

OC ¼ A: ð20Þ

Fig. 1 Graphical representation of the inventory system
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The holding cost HCr for the RW during the first

replenishment cycle is

HCr ¼ Chr

Zl2

0

qrðtÞ e�Rtdt þ
Ztr

l2

qrðtÞ e�R tdt

2
64

3
75

¼ Chr

D

R

eb ðtr�l2Þ � 1

b
� 1

R

� �
1 � e�R l2
� 	

þ l2


 �


þ D

b
e�R tr

b
Rðbþ RÞ

� �
þ e�Rl2

eb ðtr�l2Þ

bþ R
� 1

R

� �
 ��
:

ð21Þ

The holding cost HCo for the OW during the first

replenishment cycle is

HCo ¼ Cho

Zl1

0

qoðtÞ e�R tdt þ
Ztr

l1

qoðtÞe�Rtdt þ
Zt1

tr

qoðtÞe�Rtdt

2
64

3
75

¼ Cho

W1

R
1 e�R l1

� �

þW1e

a l1

aþ R
e�ðaþRÞ l1 e�ðaþRÞ tr

� �

þ D

a
e�R kH=m a

Rðaþ RÞ

� �
þ e�R tr

ea ððkH=mÞ �trÞ

aþ R
� 1

R

� �
 ��
:

ð22Þ

The deteriorating cost DCr for RW during the first

replenishment cycle is

DCr ¼ C2

Ztr

l2

bqrðtÞe�Rtdt

¼ DC2 e�R tr
b

Rðbþ RÞ

� �
þ e�Rl2

eb ðtr�l2Þ

bþ R
� 1

R

� �
 �
:

ð23Þ

The deteriorating cost DCo for OW during the first

replenishment cycle is

DCo ¼ C2a
Ztr

l1

qoðtÞe�Rtdt þ
Zt1

tr

qoðtÞe�Rtdt

2
64

3
75

¼ C2a
W1e

a l1

aþ R
e�ðaþRÞl1 e�ðaþRÞ tr

� �


þ D

a
e�R kH=m a

Rðaþ RÞ

� �
þ e�R tr

ea ððkH=mÞ�trÞ

aþ R
� 1

R

� �
 ��
:

ð24Þ

Total shortage cost SC during the first replenishment

cycle is given by

SC ¼ �C3

ZT

t1

qsðtÞe�R tdt

¼ �C3D

R

e�RH=m kH2d
m2

1 � k

2
� m

dH

� �
þ H

m
1 � dH

2m

� �
þ 1

R
1 þ d

R

� �� �

þ e�R k H=m

R

dH
m

1 � k � m

HR

� �
� 1

� �

8
>>><
>>>:

9
>>>=
>>>;

ð25Þ

The lost sales cost LC during the first replenishment

cycle is

LC ¼ C4

ZT

t1

1 � 1

1 þ dðT � tÞ

� �
De�R tdt

¼ �C4Dd
R2

e�RH=m þ e�R kH=m RH

m
ð1 � kÞ � 1

� �� �
:

ð26Þ

Replenishment is done at t ¼ 0 and T. The present value

of purchasing cost PC during the first replenishment cycle

is

PC ¼ pSþ pe�RTðBIÞ

¼ p W1 þ D l2 þ
eb ðtr�l2Þ � 1

b

� �


þDe�RH=m H

m
ð1 � kÞ 1 þ dH

2m
ðk � 1Þ

� ��
:

ð27Þ

The promotional effort cost PEC for the first replen-

ishment cycle is given by

PEC ¼ cðq� 1Þ2

ZT

0

D dt

2
4

3
5
c

¼ cðq� 1Þ2ðDTÞc: ð28Þ

Hence, the system inventory total cost = ordering

cost ? inventory holding cost in RW ? inventory holding

cost in OW ? deterioration cost in RW ? deterioration

cost in OW ? shortage cost ? lost sales cost ? purchas-

ing cost ? promotional effort cost. Mathematical expres-

sion of the system cost is given below:

TCF ¼ OC þ HCr þ HCo þ DCr þ DCo þ SC þ LC þ PC

þ PEC:

ð29Þ

So, the present value of total cost of the system over a

finite planning horizon H is

TC q;m; kð Þ ¼
Xm�1

j¼0

TCF e
�R jT þ Ae�RH

¼ TCF

1 � e�RH

1 � e�RH=m

� �
þ Ae�RH ; ð30Þ

where T ¼ H=m and TCF is derived by substituting

Eqs. (20) to (28) in Eq. (29).
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On simplification, we get

TCðq;m; kÞ ¼ Ae�RH þ G

Aþ c ðq� 1Þ2ðDTÞc þ Ch r D

R

eb ðtr�l2Þ � 1

b
� 1

R

� �
1 � e�R l2
� 	

þ l2


 �


þ Chr D

b
þ DC2
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where G ¼ 1�e�RH

1�e�RH=m

� �
:

Solution procedure

The problem formulated in the previous section appears as

nonlinear programming problem. To solve this kind of

nonlinear problem, we follow the similar procedure of most

of the literature dealing with nonlinear problem. That is,

minimize the total relevant cost function TC q;m; kð Þ over

the variables q, m and k with classical differential calculus

optimization techniques by taking the first partial deriva-

tives of TC q;m; kð Þ with respect to k only since q and m are

discrete variables and k is a continuous variable. Then, for

a given value of q and m, the necessary condition for

TC q;m; kð Þ to be minimized is dTC q;m; kð Þ=dk ¼ 0 which

gives

dTCðq;m; kÞ
dk

¼ Chre
b ðtr�l2Þ

R
1 � e�R l2
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b
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� �

� b
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Furthermore, Eq. (33) shows that TC q;m; kð Þ is convex

with respect to k. So, for given positive integers q and m,

the optimal value of k can be obtained from (32).

Computational algorithm

Step 1 Start with q = 0

Step 2 Set m = 1

Step 3 Compute k from Eq. (32)

Step 4 Substitute the solution obtained for (32) into (31)

to compute the total inventory cost TC

Step 5 Increase m by 1 and repeat steps 3–4 until TC(q,

m - 1, k) C TC(q, m, k) B TC(q, m ? 1, k)

Step 6 Set TC(q, m*, k*) = TC(q, m, k)

Step 7 Increase q by 1 and repeat steps 2–6 until TC(q-1,

m*, k*) C TC(q, m*, k*) B TC(q ? 1, m*, k*)

Step 8 Set TC(q*, m*, k*) = TC(q, m*, k*) is the

optimal solution.

Using the optimal solution procedure described above, we

can find the optimal order quantity and maximum inven-

tory levels to be
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W�
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� �
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b

� �
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eb ðtr�l2Þ � 1
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� �

þ DHð1 � k�Þ
2m�2

2m� � dHð1 � k�Þ½ �;

where tr ¼ k�H
m� � l1 � 1

a ln W1a
D

� 	
:

Numerical example

To illustrate the solution procedure, let us solve the fol-

lowing numerical example and the results can be found by

applying the computer coding of Matlab 6.5.

Consider an inventory system with the following data:

d0 = 100 units; s ¼ 50; c ¼ 2; c ¼ 1; W1 = 50 units;

p = $4; s = $15; A = $150; Chr = $2; Cho = $1.2;

C2 = $1.5; C3 = $5; C4 = $10; a = 0.8; b = 0.2;

d = 0.008; l1 = 5/12 year; l2 = 8/12 year; R = 0.2;

H = 20 years.

Using the solution procedure described above, the

optimal values of q, m and k are q = 1, m* = 7,

k* = 0.2805, respectively, and the minimum total cost TC

(q*, m*, k*) = $7555. We then have, T* = H/m* = 20/

7 = 2.8571 year, tr
* = 0.8014 year, t1

* = k*H/m* -

= 1.8091 year, W2 = 243 units, S = 293 units, Q* = 548

units.

Moreover, if l1 = 0 and l2 = 0, this model becomes

the instantaneous deteriorating item case, and the optimal

values of q, m and k are q = 1, m* = 6, k* = 0.2529,

respectively. Furthermore, T* = 3.3333 year,

tr
* = 0.8432 year, t1

* = 2.2675 year, W2 = 358 units,

S = 408 units, Q* = 716 units and the minimum total cost

TC (q*, m*, k*) = $9229.

Managerial insights

There are some interesting managerial implications in the

above analyses. We make the following observations:

• From the comparison of the proposed model with

Palanivel and Uthayakumar (2016), we can observe that

the optimal decisions of both papers are distinct. That

is, the lot size of the proposed model Q* = 548 units is

higher than the lot size Q* = 417 units of Palanivel and

Uthayakumar (2016). This is true in real-life inventor

system because promotional tools only for increasing

their sales.

• In real-life market, we know that if sales increases then

automatically the total cost increase. Our results proved

this fact.

• It can be seen that there is a decrease in total cost for

the non-instantaneous deteriorating item model. This

implies that if the retailer can convert the instanta-

neously deteriorating items to non-instantaneous dete-

riorating items by improving stock control, then the

total cost per unit time will decrease.

• The computational results of the proposed model show

that there is a decrease in total cost from the non-

instantaneously deteriorating items compared with

instantaneously deteriorating items.

• This model can be adopted in the inventory control of

retail business such as food industries, seasonable

clothes, domestic goods, automobile, electronic com-

ponents, etc.

Conclusion

In oligopolistic marketing environment, the sales team’s

initiatives/promotional effort plays an important role to

inspire the customers to buy more items that result in less

inventory cost. In view of this we have complemented the

shortcomings in Palanivel and Uthayakumar (2016), and

relaxed the improbable assumption that the demand is

constant. We developed a two-warehouse inventory model

over the finite planning horizon for non-instantaneous

deteriorating items with the consideration of sales team’s

initiative-dependent demand with partial backlogging

under inflation and time value of money. Holding costs and

deterioration costs are different in OW and RW due to

different preservation environments. Mathematical model-

ing, differential calculus and computational algorithm are

employed in this study for optimizing the lot size and setup

cost simultaneously. A computer code using the software

Matlab is developed to derive the optimal solution of the

system.

There are several extensions of this work that could

constitute future research related to this field. One imme-

diate probable extension could be to discuss the constant

demand to a more generalized demand pattern that fluc-

tuates with price, displayed stock level, time and their

combination. Another possible extension of this work may

be conducted by considering the trade credit policy. Fur-

thermore, some of major parameter of the model such as

demand rate, deterioration rate, holding cost, and ordering

cost may be fuzzy variable.
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