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Abstract Traditional supply chain inventory modes with

trade credit usually only assumed that the up-stream sup-

pliers offered the down-stream retailers a fixed credit per-

iod. However, in practice the retailers will also provide a

credit period to customers to promote the market compe-

tition. In this paper, we formulate an optimal supply chain

inventory model under two levels of trade credit policy

with default risk consideration. Here, the demand is

assumed to be credit-sensitive and increasing function of

time. The major objective is to determine the retailer’s

optimal credit period and cycle time such that the total

profit per unit time is maximized. The existence and

uniqueness of the optimal solution to the presented model

are examined, and an easy method is also shown to find the

optimal inventory policies of the considered problem.

Finally, numerical examples and sensitive analysis are

presented to illustrate the developed model and to provide

some managerial insights.

Keywords Supply chain management � Trade credit �
Inventory � Time and credit period sensitive demand �
Default risk

Introduction

The managing of inventories is one of the most significant

tasks that every manager must do efficiently and effectively

in any organization so that their organization can grow.

Now, all the organizations are involved in a global com-

petitive market and then these organizations are taking

seriously the activities related to manage inventories. Thus,

recently the practitioners and researchers have been

increasing their interest in optimizing the inventory deci-

sions in a holistic way. Thus, the manager tries to find out

different ways through which the cost associated with

inventory can reduce and the profit of the organization can

increase. Recently, the business operations such as share

marketing and trade credit financing have been a powerful

tool to increase sales and profits. In practice, vendors allow

a fixed period to settle the payment without penalty for

their customers to increase sales and reduce on-hand

inventory. In fact, a permissible delay in payment decrea-

ses the cost of inventory holding because this action

decreases the amount of capital invested in inventory for

the duration of the permissible period. Furthermore, for the

period of the delay in payment, the retailer can accumulate

revenue on sales and earn interest on that revenue via share

marketing investment or banking business. This type of

inventory problem is known as inventory problem with

permissible delay in payments. In today’s severely com-

petitive business environment, business men are increas-

ingly using trade credit to stimulate the demand of the

products and attract more customers. As a result, the trade

credit financing plays an important role in modern business

operations as a source of funds aside from banks and other

financial institutions (Yang and Birge 2013). In India, the

non-state-owned enterprises often obtain limited support

from banks. Therefore, the trade credit policy is adopted as
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a very important short-term financing method. On the other

hand, the policy of granting trade credit adds not only an

additional cost but also an additional dimension of default

risk (i.e., the event in which the buyer will be unable to

payoff its debt obligations) to the retailer (Teng et al.

2005).

During the past few years, many articles dealing with a

range of inventory models under trade credit have appeared

in various journals. At the earliest, Goyal (1985) estab-

lished a single-item inventory model under permissible

delay in payments when selling price equals the purchase

cost. Aggarwal and Jaggi (1995) extended Goyal (1985)

model to consider the deteriorating items. Jamal et al.

(1997) further generalized the model to allow for shortages.

Teng (2002) amended Goyal (1985) model by considering

the difference between selling price and purchasing cost,

and found that it makes economic sense for a well-estab-

lished retailer to order less quantity and take the benefits of

payment delay more frequently. Chang et al. (2003)

developed an EOQ model for deteriorating items under

supplier credits linked to ordering quantity. Huang (2003)

extended Goyal (1985) model to develop an EOQ model

with up-stream and down-stream trade credits in which the

length of down-stream trade credit period is less than or

equal to the length of the up-stream trade credit period.

Teng and Goyal (2007) complemented the shortcoming of

Huang (2003) model and proposed a generalized formu-

lation. Mahata and Goswami (2007) developed an inven-

tory model to determine an optimal ordering policy for

deteriorating items under two-level trade credit policy in

the fuzzy sense. Huang (2007) incorporated Huang (2003)

model to investigate the two-level trade credit policy in the

EPQ frame work. Recently, Mahata (2012) proposed an

EPQ model for deteriorating items with up-stream full

trade credit and down-stream partial trade credit with a

constant demand. Annadurai and Uthayakumar (2012)

analyzed partial trade credit financing in a supply chain by

EOQ-based model for decaying items with shortages.

Taleizadeh et al. (2013) considered an EOQ problem under

partial delayed payment and partial backordering. Chen

et al. (2014) discussed the EPQ model under retailer partial

trade policy. Taleizadeh and Nematollahi (2014) investi-

gated the effects of time value of money and inflation on

the optimal ordering policy in an inventory control system

to manage a perishable item over the finite horizon plan-

ning under backordering and delayed payment. Ouyang

et al. (2015) discussed the integrated inventory model with

the order-size dependent trade credit and a constant

demand. Lashgari et al. (2015) proposed a lot-sizing model

with partial up-stream advanced payment and partial down-

stream delayed payment in a three-level supply chain.

Recently, Zia and Taleizadeh (2015) presented a lot-sizing

model with backordering under hybrid linked-to-order

multiple advance payments and delayed payment. Many

related articles can be found in Chang and Teng (2004),

Chung (2008), Chung and Liao (2004), Goyal et al. (2007),

Huang and Hsu (2008), Mahata and Mahata

(2011, 2014a, b), Lashgari et al. (2016) and their

references.

All the Above researchers established their EOQ or EPQ

inventory models under trade credit financing based on the

assumption that the demand rate is constant over time.

However, in practice, the market demand is always

changing rapidly and is affected by several factors such as

price, time, inventory level, and delayed payment period.

From a product life cycle perspective, it is only in the

maturity stage that demand is near constant. During the

growth stage of a product life cycle (especially for high-

tech products), the demand function increases with time.

Moreover, the marginal influence of the credit period on

sales is associated with the unrealized potential market

demand. To obtain robust and generalized results, we

extend the constant demand to a credit-sensitive and linear

non-decreasing function of time.

Related to this context, few papers explore the optimal

replenishment policies of the retailer under trade credit

financing by considering demands that are sensitive to

either time stock and/or credit period. Sarkar (2012), Teng

et al. (2012) and Mahata and Mahata (2014b) build the

economic order quantity model with trade credit financing

for time-dependent demand. Mahata (2015a) discuss the

inventory replenishment problems with up-stream full

trade credit and down-stream partial trade credit financing

by considering a price-sensitive demand. Soni (2013)

developed the optimal replenishment policies under trade

credit financing by considering price and stock-sensitive

demand. Some studies focus on demand dependence on

delayed payment time. The inventory model with the

credit-linked demand are discussed by Jaggi et al. (2008),

Jaggi et al. (2012). Thangam and Uthayakumar (2009)

discuss trade credit financing for perishable items in a

supply chain when demand depends on both selling price

and credit period. Lou and Wang (2012) study optimal

trade credit and order quantity by considering trade credit

with a positive correlation of market sales, but are nega-

tively correlated with credit risk. Giri and Maiti (2013)

discuss the supply chain model with price and trade credit-

sensitive demand with trade credit by considering the fact

that a retailer shares a fraction of the profit earned during

the credit period. Wu (2014) explore optimal credit period

and lot size by considering demand dependence on delayed

payment time with default risk for deteriorating items with

expiration dates. Annadurai and Uthayakumar (2015)

develop the decaying inventory model with stock-depen-

dent demand and shortages under two-level trade credit.

Dye and Yang (2015) discuss the sustainable trade credit
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and replenishment policy with credit-linked demand and

credit risk considering the carbon emission constraints.

Mahata (2015b) propose an EOQ model for the retailer to

obtain his/her optimal credit period and cycle time under

two-level trade credit by considering demand dependence

on delayed payment time with default risk for deteriorating

items.

In traditional supplier-retailer-buyer supply chain

inventory models, the supplier frequently offers the retailer

a trade credit of M periods, and the retailer in turn provides

a trade credit of N periods to her/his buyer to stimulate

sales and reduce inventory. From the seller’s perspective,

granting trade credit increases sales and revenue but also

increases opportunity cost (i.e., the capital opportunity loss

during credit period) and default risk. Also, from a product

life cycle perspective, it is only in the maturity stage that

demand is near constant. During the growth stage of a

product life cycle (especially for high-tech products), the

demand function increases with time. To obtain robust and

generalized results, we extend the constant demand to a

linear non-decreasing demand function of time. As a result,

the fundamental theoretical results obtained here are suit-

able for both the growth and maturity stages of a product

life cycle. However, none of the paper discusses the opti-

mal trade credit and order policy by considering demand to

a credit-sensitive and linear non-decreasing function of

time involving default risk. Therefore, in-depth research is

required on the inventory policy that considers demand

sensitive to time and credit period involving default risk to

extend the traditional EOQ model. The main aspects of this

paper is to develop an economic order quantity model for

the retailer where: (1) the supplier provides an up-stream

trade credit and the retailer also offers a down-stream trade

credit, (2) the retailer’s down-stream trade credit to the

buyer not only increases sales and revenue but also

opportunity cost and default risk, and (3) the demand rate

of which varies simultaneously with time and the length of

credit period that is offered to the customers. We model the

retailer’s inventory system under these conditions as a

profit maximization problem. We then show that the

retailer’s optimal credit period and cycle time not only

exist but also are unique. Furthermore, we run some

numerical examples to illustrate the problem and provide

managerial insights.

Problem description and formulation

In this paper, we formulate a supplier-retailer-customer

supply chain inventory model under two levels of trade

credit policy with default risk consideration. The supplier

frequently offers the retailer a trade credit of M periods,

and the retailer in turn provides a trade credit of N periods

to her/his buyer to stimulate sales and reduce inventory.

From the seller’s perspective, granting trade credit

increases sales and revenue but also increases default risk

(i.e., the percentage that the buyer will not be able to pay

off her/his debt obligations). Here, the demand is assumed

to be credit-sensitive and increasing function of time. The

aim of this paper is to maximize the retailer’s annual total

profit in each cycle by making decisions regarding the

credit period and lot size. The following notation is used to

model the problem

A ordering cost per order for the retailer

h unit stock holding cost per item per year (excluding

interest charges) for the retailer

c unit purchasing cost of the retailer

s unit selling price with s[ c

Ie interest earned per $ per year by the retailer

Ip interest charged per $ in stocks per year to the retailer

M the retailer’s trade credit period offered by supplier in

years

N the customer’s trade credit period offered by retailer in

years

T replenishment time interval for the retailer, where

T � 0

Q the order quantity for the retailer

I(t) the inventory level in units at time t

D(t, N) the market annual demand rate in units, which is

a function of time t and the trade credit period.

T� the optimal replenishment period for the retailer

N� the optimal trade credit period offered to the

customers by the retailer

PðN; TÞ the profit per year for the retailer

Also, the mathematical model proposed in this paper are

based on the following assumptions:

1. Time horizon is infinite.

2. Replenishment is instantaneous; shortage is not

allowed.

3. The supplier provides the trade credit period M to the

retailer, and the retailer offers its customers trade

credit period N.

4. Demand rate D(t, N) is a function of time t and the

credit period N. For simplicity, we assume that

Dðt;NÞ ¼ aþ bt þ kðNÞ, where a and b are non-

negative constants, and t is within a positive time

frame, governing the linear trend of the demand with

respect to time t as the demand rate in today’s high-

tech products increases significantly during the growth

stage; k0ðNÞ[ 0 reflects the demand increasing with

the credit period as trade credit attracts new buyers

who consider it a type of price reduction.

5. When the credit period is longer, the default risk to the

retailer is higher. For simplicity, the rate of the default
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risk given the credit period offered by the retailer is

FðNÞ ¼ 1� e�kN , where k[ 0. This default risk

pattern is used in some studies (Lou and Wang 2012;

Zhang et al. 2014).

Given the above assumptions, it is possible to formulate a

mathematical inventory EOQ model with trade credit

financing.

Model formulation

The retailer orders and receives the order quantity Q units

at time t ¼ 0 of a single product from the supplier. Hence,

the inventory starts with Q units at time t ¼ 0, and grad-

ually depletes in the interval [0, T] due to increasing

demand from the customers. At time t ¼ T , the inventory

level reaches zero. Hence, inventory level I(t) with respect

to time is governed by the following differential equation:

dIðtÞ
dt

¼ �Dðt;NÞ ¼ �½aþ bt þ kðNÞ� 0� t� T; ð1Þ

with the boundary condition IðTÞ ¼ 0. By solving the

differential equation (1), we can obtain

IðtÞ ¼ qðT � tÞ þ 1

2
bðT2 � t2Þ; 0� t� T ;

where q ¼ aþ kðNÞ:
ð2Þ

Consequently, the retailer’s order quantity is

Q ¼ Ið0Þ ¼ qT þ 1

2
bT2: ð3Þ

The retailer’s annual profit per cycle consists of the fol-

lowing elements: revenue, ordering cost, purchasing cost,

holding cost, interest charged, and interest earned. The

components are evaluated as follows.

1. Annual ordering cost per cycle is A
T
.

2. Annual purchasing cost per cycle is

cQ
T
¼ c

T

�
qT þ 1

2
bT2

�
.

3. Annual holding cost excluding interest charges per

cycle is

h

T

Z T

0

IðtÞdt ¼ h

T

� 1

2
qT2 þ 1

3
bT3

�
:

4. The sales revenue considering default risk is

se�kN

T

Z T

0

DðtÞdt ¼ se�kN

T

�
qT þ 1

2
bT2

�
:

5. The interest earned and interest charged is shown in

Case 1 and 2 below.

The following two potential cases are obtained from the

values of M and N: (1) N�M, and (2) N �M. Let us

discuss them separately.

Case 1 N �M In this case, we have two possible sub-

cases: (1) T þ N �M and (2) T þ N� T þ N. Now, let us

discuss the detailed formulation in each sub-case.

Sub-case 1.1 T þ N�M With T þ N�M, the retailer

receives the sales revenue at time T þ N and is able to

pay off the total purchasing cost at time M. Therefore,

there is no interest charged. During the period ½N; T þ N�,
the retailer can obtain the interest earned on the sales

revenues received and on the full sales revenue during

the period ½T þ N;M�. Therefore, the annual interest

earned is

sIe

T

Z TþN

0

Z tþN

N

Dðu� NÞdudt þ ðM � T � NÞ
Z T

0

DðuÞdu
� �

¼ sIe

T

1

2
qT2 þ 1

6
bT3 þ ðM � T � NÞ

�
qT þ 1

2
bT2

�� �
:

Combining the above results, the retailer’s annual total

profit can be expressed as follows.

P1ðN;TÞ¼ Net revenue after default risk

� annual ordering cost � annual purchasing cost

� annual holding cost þ annual interest earned

� interest charged

¼ 1

T

(h
se�kN�cþsIeðM�NÞ

i�
qTþ1

2
bT2

�

�ðhþsIeÞ
�1
2
qT2þ1

3
bT3

�
�A

)
: ð4Þ

Next, we discuss the other sub-case in which M� T þ N.

Sub-case 1.2 M� T þ N During the interval ½M; T þ N�,
the retailer must pay the interest for the items unsold.

Therefore, we can have the interest charged in the

following:

cIp

T

Z TþN

M

Iðt � NÞdt ¼ cIp

T

Z T

M�N

IðtÞdt

¼ cIp

T

1

2
qfT � ðM � NÞg2 þ 1

2
bT2fT � ðM � NÞg

�

� 1

6
bfT3 � ðM � NÞ3g

�
:

The retailer can earn interest from the delayed payment

during period [N, M]. Therefore, we have the interest

earned in the following:

sIe

T

Z M

N

Z tþN

N

Dðu� NÞdudt ¼ sIe

T

h 1
2
qðM � NÞ2 þ 1

6
bðM � NÞ3

i
:

Hence, similar to (4), we know that the retailer’s annual

total profit is
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P2ðN; TÞ ¼
1

T

(h
se�kN � cþ cIpðM � NÞ

i�
qT þ 1

2
bT2

�

þ ðsIe � cIpÞ
h 1
2
qðM � NÞ2

þ 1

6
bðM � NÞ3

i
� ðhþ cIpÞ

� 1

2
qT2 þ 1

3
bT3

�
� A

)
:

ð5Þ

Combining (4) and (5), we have P1ðN;M � NÞ ¼
P2ðN;M � NÞ. Then, we formulate the retailer’s annual

total profit for the case of N �M below.

Case 2 N �M Since M�N, there is no interest earned.

The retailer must finance all the purchasing cost from

[M, N] and pay off the loan from ½N;T þ N�. Therefore, the
interest charged per cycle is

cIp

T

h
ðN �MÞQþ

Z TþN

N

Iðt � NÞdt
i

¼ cIp

T

h�
qT þ 1

2
bT2

�
ðN �MÞ þ

� 1

2
qT2 þ 1

3
bT3

�i
:

Consequently, the retailer’s annual total profit function per

cycle can be expressed as

P3ðN; TÞ ¼
1

T

(h
se�kN � cþ cIpðM � NÞ

i�
qT þ 1

2
bT2

�

� ðhþ cIpÞ
� 1

2
qT2 þ 1

3
bT3

�
� A

)
: ð6Þ

Therefore, the retailer’s objective is to determine the

optimal credit period N� and cycle time T� such that the

annual total profit PiðN; TÞ for i ¼ 1; 2; and 3 is

maximized.

Theoretical results and optimal solutions

The main purpose of this paper is to determine the optimal

replenishment and trade credit policies that correspond to

maximizing the total profit per unit time. To achieve our

purpose, in all cases, we first establish conditions where for

any given N, the optimal solution of T not only exists but

also is unique. Then, for any given value of T, there exists a

unique N that maximizes the total profit per unit time.

Optimal solution for the case of N �M

For any given N, to find the optimal replenishment policy

T�
1 , we take the first-order partial derivative of P1ðTjNÞ

with respect to T, we can obtain

oP1ðT jNÞ
oT

¼ 1

T2

½se�kN � cþ sIeðM � NÞ�b
2

T2

�

� ðhþ sIeÞ
� 1

2
qT2 þ 2

3
bT3

�
þ Ag ¼ 0;

ð7Þ

which implies that

2

3
ðhþ sIeÞbT3

� ½se�kN � cþ sIeðM � NÞ�b� ðhþ sIeÞq
2

T2 � A ¼ 0:

ð8Þ

By taking the second-order partial derivative of P1ðTjNÞ
with respect to T, we can obtain

o2P1ðT jNÞ
oT2

¼ � 2A

T3
� 2

3
bðhþ sIeÞ\0: ð9Þ

Hence, for any given N, P1ðT jNÞ is strictly concave

function of T. For simplicity, let’s define a discrimination

term:

D ¼ ½se�kN � cþ sIeðM � NÞ�b� ðhþ sIeÞq
2

ðM � NÞ2

� 2

3
ðhþ sIeÞbðM � NÞ3 þ A: ð10Þ

Then, we have the following result.

Theorem 1 For any given N, the following theoretical

results can be obtained for the profit function P1ðT jNÞ:

(i) Equation (8) has only one positive solution.

(ii) If the only positive solution T1 to Eq. (8) is less

than or equal to M � N, then T1 is the only

optimal solution to P1ðT jNÞ in Eq. (4).

(iii) If D\0, then P1ðT jNÞ has the unique optimal

solution T1, which is less than M � N. Otherwise,

if D� 0, the optimal solution is T1 ¼ M � N.

Proof See Appendix A. For any given T [ 0, taking the

first-order and second-order partial derivative of PðNjTÞ
with respect to N, we can obtain

oP1ðNjTÞ
oN

¼ ð�kq� kbT=2þ q0Þse�kN

� cq0 � hq0T
2

þ sIe

2
½2ðM � NÞq0 � ðbT þ 2qÞ � q0T�

ð11Þ

o2P1ðNjTÞ
oN2

¼ ½q00 � 2kq0 þ k2ðqþ bT=2Þ�se�kN

� cq00 � hq00T
2

þ sIe

2
½ð2ðM � NÞ � TÞq00 � 4q0�;

ð12Þ

where q0 ¼ k0ðNÞ and q00 ¼ k00ðNÞ. Finding P1ðNjTÞ is a

continuous function of N for N 2 ½0;1Þ is easy. Therefore,

J Ind Eng Int (2018) 14:31–42 35

123



P1ðNjTÞ has a maximum value for N 2 ½0;1Þ. To identify

whether N is 0 or positive, we define the following dis-

crimination term:

DN1
¼

oPðNjTÞ
oN

jN¼0 ¼ ð�kq� kbT=2þ q0Þs

� cq0 � hq0T
2

þ sIe

2
½2ðM � NÞq0 � ðbT þ 2qÞ � q0T�:

ð13Þ

If
o2P1ðNjTÞ

oN2 \0, P1ðNjTÞ is strictly concave function in N,

hence exists a unique maximum solution bN1. If DN1
� 0,

then P1ðNjTÞ is maximized at N�
1 ¼ 0; if DN1

[ 0,

P1ðNjTÞ is maximized with N�
1 ¼ bN1 [ 0. Based on

Eq. (12), it is easy to obtain if ½q00 � 2kq0 þ k2ðqþ
bT=2Þ�s� ðcþ hT=2Þq00 � 0 and ½2ðM � NÞ � T �q00 � 4

q0 � 0, P1ðNjTÞ is strictly concave function in N. Hence, a

unique maximum solution exists. If
o2P1ðNjTÞ

oN2 � 0, then

P1ðNjTÞ is a convex function of N. Therefore, the optimal

solution of P1ðNjTÞ is at one of the two boundary points 0

or 1. Substituting 1 in Eq. (11), we have

limN!1
oP1ðNjTÞ

oN
\0. Hence N ¼ þ1 is not an optimal

solution, which implies that the optimal solution is N�
1 ¼ 0.

Consequently, the following theoretical result can be

derived. h

Theorem 2 For any given T[ 0, if ½q00 � 2kq0 þ k2ðqþ
bT=2Þ�s� ðcþ hT=2Þq00 � 0 and ½2ðM � NÞ � T �q00 � 4

q0 � 0, then

(1) P1ðNjTÞ is strictly concave function in N, hence

exists a unique maximum solution.

(2) If DN1
� 0, then P1ðNjTÞ is maximizedat N�

1 ¼ 0.

(3) If DN1
[ 0, then there exists a unique bN1 [ 0 such

that P1ðNjTÞ is maximized at N�
1 ¼ bN1 [ 0.

Similarly, for any given N, to find the optimal replenish-

ment policy T�
2 , we take the first-order partial derivative of

P2ðT jNÞ with respect to T, we can obtain

oP2ðT jNÞ
oT

¼ ½se�kN � cþ cIpðM � NÞ�b� ðhþ cIcÞq
2

� 2

3
ðhþ cIpÞbT

� ðsIe � cIpÞ
� qðM � NÞ2

2T2
þ bðM � NÞ3

6T2

�
þ A

T2
¼ 0;

ð14Þ

which implies that

2

3
ðhþ cIpÞbT3 � ½se�kN � cþ cIpðM � NÞ�b� ðhþ cIpÞq

2
T2

�
h
A� ðsIe � cIpÞ

� qðM � NÞ2

2T2
þ bðM � NÞ3

6T2

�
¼ 0:

ð15Þ

By taking the second-order partial derivative of P2ðTjNÞ
with respect to T, we can obtain

o2P2ðT jNÞ
oT2

¼ � 2

3
bðhþ cIpÞ þ ðsIe � cIpÞ

� qðM � NÞ2

2T2
þ bðM � NÞ3

6T2

�
� 2A

T3
:

ð16Þ

For simplicity, we set

Z ¼ 1

3
ðhþ cIcÞbT3 � ðsIe � cIpÞ

h 1
2
qðM � NÞ2 þ 1

6
bðM � NÞ3

i
þ A:

ð17Þ

From Eq. (16) we know that if Z[ 0, then
o2P2ðT jNÞ

oT2 \0,

and P2ðT jNÞ is strictly concave in T. In this case, if the

only positive solution T2 to Eq. (15) is greater than or

equal to M � N, then T2 is the only optimal solution to

P2ðT jNÞ. On the other hand, if the only positive solution T2
to Eq. (14) is less than M � N, then P2ðT jNÞ is a strictly

decreasing function of T from M � N on. Hence,

P2ðT jNÞ\P2ðM � NjNÞ, for all T [M � N. Conse-

quently, the only optimal solution to P2ðT jNÞ is

T2 ¼ M � N. Next, we discuss the other case in which

Z� 0. If Z� 0 then
o2P2ðT jNÞ

oT2 � 0 and P2ðTjNÞ is a convex

function of T. Therefore, the optimal solution ofP2ðTjNÞ is
at one of the two boundary points (i.e., T ¼ M � N or

T ¼ þ1. Substituting Z� 0 into Eq. (14), we have

oP2ðTjNÞ
oT

¼ ½se�kN � cþ cIpðM � NÞ�b� ðhþ cIcÞq
2

þ Z3

T2
� ðhþ cIpÞbT

\
½se�kN � cþ cIpðM � NÞ�b� ðhþ cIcÞq

2

� ðhþ cIpÞbT\0; if T ! þ1: ð18Þ

Hence, T ¼ þ1 is not an optimal solution, which implies

that the optimal solution is T2 ¼ M � N. Consequently, the

following theoretical results for P2ðTjNÞ can be derived.

Theorem 3 For any given N, the following theoretical

results can be obtained for the profit function P2ðT jNÞ:

(i) Equation (15) has only one positive solution.

(ii) If the only positive solution T2 to Eq. (15) is

greater than or equal to M � N, then T2 is the

only optimal solution to P2ðT jNÞ in Eq. (5).

Otherwise, the only optimal solution to P2ðTjNÞ
is T2 ¼ M � N.

(iii) If D[ 0, then P2ðT jNÞ has the unique optimal

solution T2, which is greater than M � N. Other-

wise, if D� 0, the optimal solution is T2 ¼ M � N.
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Proof See Appendix B.

Based upon the above two Theorems 1 and 3, the

following main theorem can be derived to determine the

optimal solution T� to be T1 or T2. h

Theorem 4 For any given N� 0,

(1) If D\0, thenPðT�jNÞ ¼ P1ðT1jNÞ. Hence T� ¼ T1,

and T1\M � N.

(2) If D ¼ 0, then PðT�jNÞ ¼ P1ðM � NjNÞ ¼
P2ðM � NjNÞ. Hence T� ¼ M � N.

(3) If D[ 0, then PðT�jNÞ ¼ P2ðT2jNÞ. Hence

T� ¼ T2, and T2 [M � N.

Proof See Appendix C. For any given T, taking the first-

order and second-order partial derivative of P2ðNjTÞ with
respect to N, we can obtain

oP2ðNjTÞ
oN

¼ ½q0 � kq� 1

2
kbT �se�kN

� cq0 � 1

2
hq0T � cIp

2T

h
ðT � ðM � NÞÞ2q0

þ 2ðT � ðM � NÞÞq

þ bðT2 � ðM � NÞ2Þ
i
þ sIe

T

h
q0ðM � NÞ2

� 2qðM � NÞ � bðM � NÞ2
i

ð19Þ

o2P2ðNjTÞ
oN2

¼ ½q00 � 2kq0 þ k2ðqþ 1

2
bT�se�kN

� cq00 � 1

2
hq00T

� cIp

2T

h
ðT � ðM � NÞÞ2q00 þ 4ðT � ðM � NÞÞq0

þ 2qþ 2bðM � NÞ
i

þ sIe

2T

h
q00ðM � NÞ2 � 4q0ðM � NÞ þ 2qþ 2bðM � NÞ

i
:

ð20Þ

To identify whether N2 is 0 or positive, we define the

following discrimination term:

DN2
¼ oP2ðNjTÞ

oN
jN¼0 ¼ ½q0 � kq� 1

2
kbT �s

� cq0 � 1

2
hq0T � cIp

2T

h
ðT �MÞ2q0 þ 2ðT �MÞq

þ bðT2 �M2Þ
i
þ sIe

T

h
q0M2 � 2qM � bM2

i
:

ð21Þ

If
o2P2ðNjTÞ

oN2 \0,P2ðNjTÞ is strictly concave function in N, a
unique maximum solution bN2 exists. If DN2

� 0, then

P2ðNjTÞ is maximized at N�
2 ¼ 0; if DN2

[ 0, then there

exists a unique N�
2 ¼ bN2 [ 0 solution, such that P2ðNjTÞ

is maximized. Based on Eq. (20), for any given T,

if ½q00 � 2kq0 þ k2ðqþ bT=2Þ�s� ðcþ hT=2Þq00 � 0 and

q00ðM � NÞ2 � 4q0ðM � NÞ þ 2qþ 2bðM � NÞ� 0, then

P2ðNjTÞ is strictly concave function in N, resulting to a

unique maximum solution. If
o2P2ðNjTÞ

oN2 � 0, thenP2ðNjTÞ is
a convex function of N. Therefore, the optimal solution of

P2ðNjTÞ is at one of the two boundary points 0 or 1.

Substituting 1 in Eq. (19), we have limN!1
oP2ðNjTÞ

oN
\0.

Hence N ¼ þ1 is not an optimal solution, which implies

that the optimal solution is N�
2 ¼ 0. Consequently, the

following theoretical result can be derived based on the

analysis above. h

Theorem 5 For any given T [ 0, if ½q00 � 2kq0 þ k2ðqþ
bT=2Þ�s� ðcþ hT=2Þq00 � 0 and q00ðM � NÞ2 � 4q0ðM �
NÞ þ2qþ 2bðM � NÞ� 0, then

(1) P2ðNjTÞ is strictly concave function in N, hence

exists a unique maximum solution.

(2) If DN2
� 0, then P2ðNjTÞ is maximized at N�

2 ¼ 0.

(3) If DN2
[ 0, then there exists a unique bN2 [ 0 such

that P2ðNjTÞ is maximized at N�
2 ¼ bN2 [ 0.

Optimal solution for the case of N[M

For any given N, to find the optimal replenishment policy

T�
3 , we take the first-order partial derivative of P3ðTjNÞ

with respect to T, we can obtain

oP3ðTjNÞ
oT

¼ 1

T2

n ½se�kN � cþ cIpðM � NÞ�b
2

T2

� ðhþ cIpÞ
� 1

2
qT2 þ 2

3
bT3

�
þ A

o
¼ 0;

ð22Þ

By taking the second-order partial derivative of P3ðTjNÞ
with respect to T, we can obtain

o2P3ðT jNÞ
oT2

¼ � 2A

T3
� 2

3
bðhþ cIpÞ\0: ð23Þ

Hence, for any given N, P3ðT jNÞ is strictly concave

function of T. Thus, bT3 does not only exist, but is also

unique. Since limT!0þ
oP3ðT jNÞ

oT
¼

n
½se�kN�cþcIpðM�NÞ�b

2
� 1

2

qðhþ cIpÞ þ limT!0þ
A
T2

o
¼ þ1, and limT!þ1

oP3ðT jNÞ
oT

¼
�1. Therefore, the intermediate value theorem yields that

bT3 exists as the root of Eq. (22) for T 2 ð0;1Þ. Based on

the analysis above, it is easy to obtain Theorem 6.

Theorem 6 For any given N with M�N, P3ðT jNÞ is a
strictly concave function in T, which is a unique maximum

solution bT3 for T 2 ð0;1Þ; the optimal value of T�
3 cor-

responds to bT3. For any given T, taking the first-order and

second-order partial derivative of P3ðNjTÞ with respect to

N, we can obtain
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oP3ðNjTÞ
oN

¼ ðq0 � kðqþ bT=2ÞÞse�kN � cq0 � hq0T
2

� cIp

2
½q0 � 2ðM � NÞq0 þ 2qþ bT �

ð24Þ

o2P1ðNjTÞ
oN2

¼ ðq00 � 2kq0 þ k2ðqþ bT=2ÞÞse�kN � cq00

� hq00T
2

� cIp

2
½ð1þ 2ðN �MÞÞq00 þ 4q0�:

ð25Þ

To identify whether N3 is M or N3 [M, we define the

following discrimination term:

DN3
¼

oPðNjTÞ
oN

jN¼M

¼ ð�kqþ q0Þse�kM � cq0 � hq0T
2

þ sIe

2
½2ðM � NÞq0

� ðbT þ 2qÞ � q0T�:
ð26Þ

If ½q00 � 2kq0 þ k2ðqþ bT=2Þ�s� ðcþ hT=2Þq00\0, then
o2P3ðNjTÞ

oN2 \0, and P3ðNjTÞ is a strictly concave function in

N. Hence, the retailer’s profit exists given the unique

maximum solution bN3. Otherwise, the optimal solution of

P3ðNjTÞ is at one of the two boundary points M or 1.

Substituting 1 in Eq. (24), we have limN!1
oP3ðNjTÞ

oN
\0.

Hence N ¼ þ1 is not an optimal solution, which implies

that the optimal solution is N�
1 ¼ M. Consequently, the

following theoretical result can be derived.

Theorem 7 For any given T [ 0, if ½q00 � 2kq0þ
k2ðqþ bT=2Þ�s� ðcþ hT=2Þq00 � 0, then

(1) P3ðNjTÞ is strictly concave function in N, hence

exists a unique maximum solution.

(2) If DN3
� 0, then P3ðNjTÞ is maximized at N�

1 ¼ M.

(3) If DN3
[ 0, then there exists a unique bN1 [M such

that P3ðNjTÞ is maximized at N�
1 ¼ bN3 [M.

Numerical analysis

In this section, we assume that kðNÞ ¼ deuN (Teng et al.

2014; Wu 2014) to conduct the numerical analysis for

illustrating the theoretical results and obtaining the optimal

solutions using the software Mathematica 7.

Numerical examples

Example 1 Let us assume a ¼ 100 units/year, b ¼ 0:2/

year, d ¼ 1/year, u ¼ 0:1/year, s ¼ $20/unit, k ¼ 0:2/year,

A ¼ $10/order, M ¼ 0:5/year, h ¼ $5/year, c ¼ $10/unit,

Ie ¼ 0:09, Ip ¼ 0:14. Using software Mathematica 7.0, we

have the optimal solution as follow:

N�
1 ¼ 0 years ; T�

1 ¼ 0:1735 years ; and P�
1ðN; TÞ ¼ $1094:54;

N�
2 ¼ 0 years ; T�

2 ¼ 0:5 years ; and P�
2ðN; TÞ ¼ $1043:25;

N�
3 ¼ 0:5 years ; T�

3 ¼ 0:1706 years ; and P�
3ðN; TÞ ¼ $810:23:

Consequently, the retailer’s optimal solution is N� ¼ 0

years ; T� ¼ 0:1735 years ; and P�ðN; TÞ ¼ $1094:54:

Example 2 The parameters are same as in Example 1,

except d ¼ 5/year, u ¼ 5/year, s ¼ $30/unit, k ¼ 0:5/year.

Similar to Example 1, we have the maximum solution to

PðN; TÞ in the following:

N�
1 ¼ 0:4398 years ; T�

1 ¼ 0:1989 years ; and P�
1ðN; TÞ ¼ $2268:82;

N�
2 ¼ 0 years ; T�

2 ¼ 0:5 years ; and P�
2ðN; TÞ ¼ $2098:35;

N�
3 ¼ 1:5486 years ; T�

3 ¼ 0:0256 years ; and P�
3ðN; TÞ ¼ $24867:26

Consequently, the retailer’s optimal solution is N� ¼
1:5486 years ; T� ¼ 0:0256 years ; and P�ðN; TÞ ¼
$24867:26:

Sensitivity analysis and real usage of the model

We visited a Cement retailer shop and his corresponding

Distributer (Supplier) on last January 2017 near Kolkata

Airport, West Bengal, India. After careful study we have

seen that the Cement distributer supply goods to a retailer

offering some credit period under some conditions. If the

retailer fails to pay the cost of the purchased Cement to the

distributer within this credit period then he used to be

charged some interest otherwise the retailer might earn

some interest within this credit period over the unpaid cost

of the purchased goods. Similarly, the retailer offers some

credit period to his customers to increase the demand (sale

of goods) so that he could get more profit from those goods.

It is also noted that the retailer has a variable replenishment

time which is decided by how much credit period he avails

from the distributer and how much credit time he already

have offered to his customers and how quick the goods

have been exhausted through sale exclusively. Through the

discussion with the retailer it is also found that though the

commodities have normal linear demand with time but

beyond that, as the offering credit period of the customer

increases the demand rate of the commodity has increased

alone. However, for the case of the retailer, a risk has been

incurred (generally called default risk) from the customers’

side for non receiving of money of the sold goods in due

time. Thus, the problem of the retailer gets more complex

to make the final decision over replenishment time and

order quantity under different scenarios of availed and

offered credit period also. The different cost was as fol-

lows: a ¼ 150 units/year, A ¼ $14/order, s ¼ $35/unit,
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c ¼ $11/unit, h ¼ $7/year, k ¼ 0:6/year, d ¼ 7/year,

b ¼ 0:3/year and u ¼ 6/year. Using software Mathematica

7.0, we have the optimal solution as follow:

N�
1 ¼ 0:4456 years ;T�

1 ¼ 0:1997 years ; and P�
1ðN; TÞ ¼ $2199:98;

N�
2 ¼ 0 years ;T�

2 ¼ 0:5 years ; and P�
2ðN;TÞ ¼ $1998:74;

N�
3 ¼ 1:5448 years ;T�

3 ¼ 0:0257 years ; and P�
3ðN; TÞ ¼ $24947:58

Consequently, the retailer’s optimal solution is N� ¼
1:5448 years, T� ¼ 0:0257 years, and P�ðN; TÞ ¼
$24947:58

Now, we now study the effects of variations in the

values of the system parameters A, a, b, h, c, k, s, d,

and u on the optimal total profit. The sensitivity

analysis is given by changing each of the parameter

taking one parameter at a time and keeping the

remaining parameters unchanged. The analysis is based

on the parameter values of the inventory system are

defined above. The computational results are shown in

Table 1.

The following managerial insights are derived from the

obtained computational results:

1. If the value of A increases, then the optimal order cycle

T� increases while the values of N� and the optimal

profit P�ðN; TÞ decrease. When the ordering cost is

higher, the retailer orders the products in the longer

replenishment period to reduce the order frequency.

Thus, he pays less ordering cost.

2. If the value of a increases, then the values of N� and

the optimal order cycle T� decrease while the value of
the optimal profit P�ðN; TÞ increases. When the initial

market demand is greater, the retailer can make more

profit.

3. If the value of b increases, then the values of N�

decrease, but the optimal order cycle T� and the value

of the optimal profit P�ðN; TÞ increase. When the

market demand is more sensitive to time, the retailer

provides shorter delayed payment time and longer

order cycle to make more profit.

4. If the value of h increases, then the values of N�, the
optimal order cycle T�, and the value of the optimal

profit P�ðN; TÞ decreases. The retailer can adopt some

measurements to reduce the holding cost to make more

profit.

5. If the value of c or k increases, then the values of N�

and the optimal profit P�ðN; TÞ decrease while the

value of the order cycle T� increases. When the unit

purchasing price of the retailer is higher, the retailer

makes less profit. When the default risk of the

customers is higher, the retailer should offer a shorter

delayed payment time to his customers. The retailer

can take some measurements to reduce the default

risk of the customer, such as by adopting the partial

delayed payment policy, to make more profit.

6. If the value of s, d, or u increases, then the values of N�

and the value of the optimal profit P�ðN; TÞ increase

while the optimal order cycle T� decreases. When the

sales price is higher, the retailer offers a shorter delayed

payment time and longer order cycle for his customers to

make more profit. When the market demand is more

sensitive to the trade credit, the retailer should provide a

longer delayed payment time to make more profit.

Table 1 Sensitivity analysis of the parameters

Parameter N� T� P�ðN; TÞ

A 10 1.5486 0.0256 24867.26

14 1.5444 0.0279 24573.32

18 1.5434 0.0297 24321.57

22 1.5424 0.0312 24115.45

a 100 1.5486 0.0256 24867.26

150 1.5448 0.0256 24947.58

200 1.5445 0.0257 25031.84

250 1.5439 0.0258 25112.57

s 30 1.5486 0.0256 24867.26

35 1.7989 0.0198 89352.75

40 2.0194 0.0168 283278.72

45 1.9909 0.0155 813827.72

c 10 1.5486 0.0256 24867.26

11 1.3879 0.0315 10719.69

12 1.0196 0.0389 6972.56

13 0.8813 0.0483 3853.75

h 5 1.5486 0.0256 24867.26

7 1.5447 0.0242 24659.75

9 1.5449 0.0232 24473.46

11 1.5436 0.0225 24303.52

k 0.5 1.5486 0.0256 24867.26

0.6 1.2781 0.0375 8348.57

0.7 1.0676 0.0538 3387.75

0.8 0.8857 0.0751 1796.78

d 5 1.5486 0.0256 24867.26

7 1.5468 0.0238 36342.87

9 1.5479 0.0223 47861.14

11 1.5484 0.0214 59404.67

b 0.2 1.5486 0.0256 24867.26

0.3 1.5456 0.0257 24885.31

0.4 1.3234 0.0258 24904.72

0.5 1.5454 0.0260 24923.88

u 5 1.5486 0.0256 24867.26

6 1.5868 0.0179 120907.56

7 1.6139 0.0151 800056.97

8 1.6334 0.0137 4331072.12
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Conclusions

Most of the existing inventory models under trade credit

financing are assumed that the demand rate remains con-

stant. However, in practice the market demand is always

changing rapidly and is affected by several factors such as

price, time, inventory level, and delayed payment period.

In today’s high-tech products demand rate increases sig-

nificantly during the growth stage. Moreover, the marginal

influence of the credit period on sales is associated with the

unrealized potential market demand. In this paper, we have

developed an EOQ model under two-level trade credit

financing involving default risk by considering demand to a

credit-sensitive and linear non-decreasing function of time.

The objective is to find optimal replenishment and trade

credit policies while maximizing profit per unit time. For

any given credit period, we first prove that the optimal

replenishment policy not only exists, but is also unique in

some conditions. Second, we show how the optimal credit

period for any given replenishment cycle can be decided.

Furthermore, we use the Mathematica 7.0 to obtain the

optimal inventory policies for the proposed model. Sensi-

tivity analysis is conducted to provide some managerial

insights. To the authors’ knowledge, this type of model has

not yet been considered by any of the researchers/scientists

in inventory literature. Therefore, this model has a new

managerial insight that helps a manufacturing system/in-

dustry to gain maximum profit. The model can be extended

in several ways, for example, we may consider the dete-

riorating items with a constant deterioration rate. Also, we

can extend the model to allow for shortages and partially

backlogging. Finally, the effect of inflation rates on the

economic order quantity can also be considered.
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Appendix A

Proof of Theorem 1

(i) For simplicity, let

2

3
ðhþ sIeÞbT3

� ½se�kN � cþ sIeðM � NÞ�b� ðhþ sIeÞq
2

T2 � A ¼ 0:

� a1T
3 � a2T

2 þ a3T � a4 ¼ 0

ð27Þ

where a1 ¼ 2
3
ðhþ sIeÞb[ 0, a2 ¼

½se�kN�cþsIeðM�NÞ�b�ðhþsIeÞq
2

, a3 ¼ 0, a4 ¼ A[ 0.

Dividing Eq. (27) by the leading coefficient a1, we

know that Eq. (27) has the same solutions as

T3 � ða2=a1ÞT2 þ ða3=a1ÞT � ða4=a1Þ ¼ 0:

ð28Þ

Let a, b, c be those three roots for (28), then

ðT � aÞðT � bÞðT � cÞ ¼ T3 � ðaþ bþ cÞT2

þ ðabþ bcþ caÞT � abc ¼ 0: ð29Þ

If Eq. (27) has zero or two positive roots, then the

constant term (i.e., �abc in Eq. (29)) should be

positive, which contradicts to the fact that

�a4=a1\0 in Eq. (28). If Eq. (27) has three

positive roots, then the coefficient of T term (i.e.,

abþ bcþ ca in Equation (29)) should be positive,
which contradicts the result a3=a1 ¼ 0 in Eq.

(28). Hence, Eq. (27) [i.e., Eq. (8)] should not

have three positive roots. Thus, Equation (8) has

only one positive root.

(ii) P1ðT jNÞ in Eq. (4) is a continuous function on a

compact set ½0;M � N�. Hence, there exists at

least one optimal solution. Notice that

P1ð0jNÞ ¼ 0 because nothing can be achieved

when T ¼ 0. If the only positive solution T1 to

Equation (8) is less than or equal to M � N (i.e.,

T1 is the only optimal solution to P1ðT jNÞ),
then we know from Eqs. (7) and (9) that

P1ðT1jNÞ�P1ðM � NjNÞ, and P1ðT1jNÞ[P1

ð0jNÞ. On the other hand, if the only positive

solution T1 to Eq. (8) is greater than M � N,

then P1ðT jNÞ is a strictly increasing function of

T from 0 to M � N because of Eqs. (7) and (9).

Hence, P1ðT jNÞ\P1ðM � NjNÞ, for all

T\M � N. Consequently, the only optimal

solution to P1ðT jNÞ is T ¼ M � N. Accord-

ingly, the above proves Part (ii) of Theorem 1.

(iii) From Eq. (9), we know that
oP1ðT jNÞ

oT
is strictly

decreasing function in T on the closed interval

½0;M � N�. It is clear that limT!0þ
oP1ðT jNÞ

oT
¼ 0. If
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oP1ðTjNÞ
oT

jT¼M�N

¼ ½se�kN � cþ sIeðM � NÞ�b� ðhþ sIeÞq
2

� 2

3
ðhþ sIeÞbðM � NÞ þ A

ðM � NÞ2

¼ D

ðM � NÞ2
\0; ð30Þ

then
oP1ðT jNÞ

oT
has unique root T1 on ð0;M � NÞ,

which is the only optimal solution to P1ðT jNÞ on
ð0;M � NÞ for any given N. However, if D� 0,

then
oP1ðT jNÞ

oT
[ 0 on ½0;M � N�, which implies

that P1ðT jNÞ is strictly increasing on ð0;M � NÞ.
Hence, the unique optimal solution to P1ðNjTÞ is
T1 ¼ M � N. This completes the proof of

Theorem 1. h

Appendix B

Proof of Theorem 3 The proof of Part (i) in Theorem 3 is

similar to that of Part (i) in Theorem 1. The proof of Part

(ii) is immediately followed from Eqs. (14)–(18). As to

Part (iii) of Theorem 3, we know from Eq. (18) that
oP2ðT jNÞ

oT

is a strictly decreasing function on ½M � N;1Þ. It is

obvious that limT!þ1
oP2ðT jNÞ

oT
¼ �1. Since

oP2ðTjNÞ
oT

jT¼M�N ¼ A

ðM � NÞ2
� 2

3
ðhþ sIeÞbðM � NÞ

þ ðse�kN � cþ sIeðM � NÞÞb� ðhþ sIeÞq
2

¼ D

ðM � NÞ2
[ 0;

ð31Þ

there exists a unique T2 on ½M;þ1� such that T2 satisfies

Eq. (15). Therefore, T2 is the only optimal solution to

P2ðT jNÞ on ½M;þ1�. However, if
oP2ðT jNÞ

oT
jT¼M�N � 0,

then P2ðTjNÞ is strictly decreasing on ½M;þ1�. Hence,
the only optimal solution to Pi2ðT jNÞ is T ¼ M � N. h

Appendix C

Proof of Theorem 4 If D\0, from Part (3) of Theorem 1,

the following is obtained P1ðT1jNÞ[P1ðM � NjNÞ.
Using the fact that P1ðM � NjNÞ ¼ P2ðM � NjNÞ, and

Part (3) of Theorem 3, we obtain P1ðT1jNÞ[P1ðM �
NjNÞ ¼ P2ðM � NjNÞ[P2ðT jNÞ for all T [M � N.

This proves Part (1) of Theorem 4. Likewise, Parts (2) and

(3) of Theorem 4 can be proved in a similar way. h
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