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Abstract

Great attention should be paid to planning and scheduling surgeries which is the most sensitive ward in
the health context in terms of cost and specific sensitivity due to its association with the life and death
of individuals. In this case, reusable sterile equipment and devices are crucial issues because the hospital
or nosocomial infections result from insufficient sterilization of these instruments. Therefore,
sterilization of reusable medical devices is a necessity in the operating room to prevent possible
infections. This study solves the integrated operating rooms and sterile section planning problem to
minimize the total costs of sterilization, surgery delay, and performance. This study also minimizes the
completion time of surgery considering nondeterministic operating times and emergency-elective
patients. In the real world, surgery time may be nondeterministic based on the conditions of the patient,
surgeon, equipment, and instruments; hence, it is valuable to find a robust solution for planning under
such circumstances. After using a bi-objective model for this problem, an improved e-constraint method
was implied to solve problems with small dimensions, and two metaheuristics NRGA and NSGA-II
were developed for large dimensions regarding NP-hard problems. These two algorithms were analysed
based on five indicators. The obtained results showed the superiority of the NSGA-II algorithm over
NRGA to solve such problems.

Keywords- Operating and Sterile Rooms; Scheduling and Planning; Emergency and Elective Patients;
Robust Optimization; Metaheuristic algorithms.

INTRODUCTION

Scheduling and planning surgeries in operating rooms are critical fields in the health system that should receive
great attention since the life of people would be in danger if there is any improper planning and a minor
postponement or delay. On the other hand, insufficient sterilization of reusable medical devices in the surgery
ward is a reason for hospital infections. Hence, the surgery room must be cleaned and reusable devices and
equipment must be sterilized at the end of surgery and before starting a new surgery. However, 70% of hospital
clients need surgery and more than 15% of time waste in hospitals occurs in operating rooms [1]. Hence, many
researchers have examined hospital planning, particularly surgery room scheduling and planning, by consideration
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of elective or nonelective (emergency) patients. It is worth noting that elective patients are those patients whose
surgeries are planned, and nonelective or emergency patients should be operated on as soon as possible. Many
studies have been conducted on elective patients. Belkhamsa et al. [2] used two metaheuristic iterative local search
and hybrid genetic algorithm approaches to solve operating room scheduling problems. Maghzi et al. [3] used
GAMS software and a random data set to solve operating room and hospital ward planning and scheduling to
minimize patients' attendance time in the hospital. Kayvanfar et al. [4] used the Lagrange liberalization approach
to solve the MIP model for operating room scheduling and recovery ward considering elective patients.

Another category of papers has examined emergency patients that need emergency and prompt services. For
instance, Ali et al. [5] used MILP to solve surgery room scheduling for elective and emergency patients during
the war. Kamran et al. [6] proposed two heuristic approaches for scheduling and planning patients sequence
problems in operating rooms. Bovim et al. [7] used a simulation optimization model for scheduling elective and
emergency surgeries. According to studies conducted by Spagnolo et al. [8], 38% of nosocomial infections are
seen in surgical patients. Infection factors include insufficient sterilization of surgical wards or devices used in
surgery that is required for preventing or reducing potential infections, and sterilization of reusable medical
devices (RMD), such as a clamp, forceps, and endoscope. Hence, some studies have paid attention to sterilization
wards in their studies. For example, Beroule et al. [9] solved operating room scheduling problems and medical
device sterilization, by using a GA, PSO and TS. Ozturk et al. [10] used the MIP model and heuristic approach to
minimize sterilization operation time in services for the sterilization of reusable medical devices. Moreover,
Ozturk et al. [11] proposed a batch scheduling optimization model to reduce utilization and sterilization time using
a MILP and dynamic programming, and an approximate algorithm.

The nature of operating room scheduling and programming faces uncertainty in the real world. Hence, some
researchers have considered uncertainty in their studies. For example, Bruni et al. [12] solved the surgery room
problem considering the uncertainty of surgery duration and emergency patients by using random programming
modelling to maximize weekly revenue and minimize the expected overtime cost. Eun et al. [13] used sample
mean approximation, local search, and tabu search approach to solve scheduling problems with random surgery
duration of elective patients considering different disease severity and pointed to increased waiting time and
worsen patient status. Kroer et al. [14] used two approaches to solve robust operating room scheduling and
planning for elective and emergency surgeries to minimize overtime and release the idle capacity. M'Hallah and
Visintin [15] considered a stochastic model with care unit times, uncertain surgery times, and the length of staying
time after surgeries using a sample mean approximation method. Kamran et al. [16] used a heuristic method based
on the column generation and Bender’s decomposition for scheduling comparative allocation of patients in
operating rooms. They proposed a MILP model to minimize patients' cancellation, tardiness, operating room
overtime, surgeons' idle, and surgery starting time for the emergency patient. Rachuba and Werners [17]
minimized waiting for time, staff overtime, and tardiness by using a robust multiple optimization approach. Liu
et al. [18] examined surgery scheduling problems by consideration of medical devices and operating room
preparation time. Aissaoui et al. [19] used MILP and simulation approaches to solve the integrated allocation
scheduling and resource sequence problem in private healthcare centres. They conducted this study by using a
robust optimization technique. Coban [20] designed a single-purpose model by using a heuristic approach and
rule-of-thumb to minimize costs for elective patients when all parameters are deterministic.

Mazloumian et al. [21] used a robust optimization approach for multi-objective integrated surgery scheduling
and allocation model. Harris and Claudio [22] had a literature review for scheduling operating rooms between
2015 to 2020. Wang et al. [23] used a hybrid algorithm for fuzzy surgical scheduling. Yu et al. [24] verified the
schedulinf of surgeries for saving time and money. Ghasemi et al. [25] used constraint programming and TOPSIS
for solving surgery room scheduling. Bargetto et al. [26] used an exact algorithm for surgery room scheduling.
Recently, Arjmandi and Samouei [27] considered robust scheduling and planning of sterile unit and surgery rooms
for reusable surgical items. But they only used epsilon-constraint method, and they did not present any heuristic
or metaheuristic for their problem. Since, decision-making in hospital, especially for surgeries and operating
rooms which saving time is necessary and valuable, we present two metaheuristic algorithms for the problem.
This study examines the total costs of emergency and elective operations, tardiness cost in surgery for elective
patients, and maximum waiting time for emergency patients.

In addition, this paper minimizes the completion time of surgeries regarding the limited available resources,
such as operating rooms, number of available devices, etc. An augmented e-constraint method is used to solve
the proposed model, and two metaheuristic algorithms of NRGA NSGA-I1 and are investigated regarding the NP-
hard problem to evaluate it in terms of different indicators. Furthermore, several statistical analyses are used to
verify which algorithm is better. Table 1 reports the studies that have examined our research scope indicating
initiative aspects of the extant study compared to other studies.
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TABLE 1
THE RELATED PAPERS OF THIS STUDY
Number of
Scheduling and planning  Uncertainty objective .
Authors  vear  DHED ncertainty —funetions [0S
Operating  Sterilization  Yes No Single  Multi
room unit
Kayvanfar 2021 Elective * * * Lagrange
et al. [4] relaxation
Alietal. [S] 2019 Emergency * * * MILP
and
Elective
Bovimetal. 2020 Emergency * * Stochastic * Simulation
[7] and and stochastic
Elective programming
Ozturk etal. 2010 Elective * * * Heuristic
[10] method
Xu&Wang 2018 Elective * * * GA
[28]
Kroeretal. 2019  Emergency * * Stochastic * MIP
[14] and
Elective
Rachuba & 2015  Emergency * * Robust * robust
Werners and optimization
[17] Elective
Liu et al. 2017 Elective * * Robust * Simulation
[18] and robust
optimization
Coban [20] 2020 Elective * * * * Heuristic
method
Mazloumian 2022 Elective * * Robust * robust
etal. [21] optimization
Wangetal. 2022 Elective * * Fuzzy * a hybrid
[23] algorithm
Yuetal. 2022 Elective * * * ICA and VNS
[24]
Ghasemiet 2023 Elective * * * TOPSIS and
al. [25] constraint
programming
Bargettoet 2023  Emergency * * * A branch &
al. [26] and price& cut
Elective algorithm
This paper 2023  Emergency * * * Robust * Robust
and optimization,
Elective NSGA-II and
NRGA

LITERATURE REVIREW

Each operating rooms is the vital resource in hospital that provides services while incurring high costs. Hence,
scheduling and planning are required to costs reduction and improve the services quality. Furthermore, medical
devices are vital resources used in surgery, and any shortage in this field may result in surgery tardiness, which
may put the life of emergency patients at risk of death. Medical devices are sterilized which classified as single-
use and reusable medical devices (RMD). Single-use items, such as needles, are disposed of after being used for
one patient's surgery. Reusable medical devices, such as clamps, forceps, and endoscopes are sterilized and
disinfected fully then reused. Therefore, RMD planning is highly crucial.

The present paper considers elective and emergency operations in which emergency patients should undergo
surgery as soon as possible. The number and time of considered emergency patients have been planned based on
the model proposed by Kroer et al. [14]. A cost has been considered for elective and emergency operations; in
this case, the cost of surgery for emergency patients is less than it is for elective surgeries to prioritize emergency
patients. Furthermore, a maximum waiting time is considered for each emergency patient. Operation is not started
before the arrival of emergency patients, and they should not wait more than the maximum waiting time. Those
surgeries are impossible to do during working hours are postponed or traded. The minimum number of reusable
medical devices is kept sterilized in each period. The number of RMDs differs for each patient based on their
physical condition. The sterilization length of RMD is predetermined. On the other hand, the number of sterilizing
devices must not exceed the number of sterile devices. A certain capacity of each sterile device must be
considered. Surgery length has uncertainty regarding the conditions of patients, surgeons, and devices. Hence, a
robust approach was proposed to overcome this uncertainty. Moreover, two objectives were considered in this
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problem: minimizing the total cost of using sterilization devices, the penalty paid for tardiness in elective patients'
surgery and operation cost, and minimizing the last surgery completion time in operating rooms to release rooms
for the next operations.

MODELLING AND PRESENTING SOLUTION METHODS

The extant study used a model to minimize total costs and completion time of the last surgery for scheduling and
planning the operating rooms considering the elective and emergency patients in two deterministic and robust
modes. These models are presents in Arjmandi and Samouei [27]. For this purpose, assumptions, indexes,
parameters, sets, and decision variables of these two models are introduced herein:

| Model’s Assumptions

Elective and emergency patients are considered.

Emergency patients cannot wait for more than the reasonable waiting time due to their conditions.
Several operating rooms exist that are suitable for all surgeries.

The required manpower is not a constraint during the planning period

Planning horizon length is periodic considering 15-min duration.

I1. Indexes, Parameters, Sets, ad Decision Variables

Indexes

I, J: surgeries i, jel

a: emergency surgeries a€A
b: elective surgeries beB

t: period teT

r: operating rooms reR

Sets

A: Emergency surgeries
B: Elective surgeries

I: Operations I=AUB
T: Times

R: Operating rooms

Parameters

ho= number of clean RMDs in time 0

do= number of dirty RMDs in time 0

M: a very large positive number

T': planning horizon length

ni= number of RMDs required for surgery i

pi= length of surgery i

ster: Sterilization required time

cap: capacity of each sterile device

mach: number of sterile devices

costl: cost of using sterile devices

cost2y: cost of tardiness in elective surgery

cost3a: cost of emergency surgeries that is lower than the surgery for elective patients to prioritize surgery for
emergency patients

cost4y,: cost of elective surgeries

€a: maximum waiting time for emergency patients a
Va: arrival time of emergency patient a

buffer: minimum clean RMD required for each period

Decision Variables

Xigr: 1 if surgery i is done in time t in surgery room r, 0 otherwise

fijr: 1 if the surgery i id done sooner than operation j in operating room r, 0 otherwise
he: number of clean RMDs at the beginning of period t

di: number of dirty RMDs at the beginning of period t

or: number of sterilized RMDs at the beginning of period t

my: number of sterile devices start sterilization at the beginning of period t
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ti: start time of surgery i in operating room r
ci,: end time of surgery i in operating room r
Cmax: completion time of last surgery

I11. Mathematical Model with Deterministic Times

A mathematical model of the problem under certain or deterministic conditions is designed as follows:

mln Z COStlmt + Z Z Z t Costzb Xb,t,I' + Z Z Z COSt3a Xa,t,r (1)

teT beB teT reR a€A teT reR
+ Z Z Z costyp Xpr
beB teT reR

min Cp,,« 2
S.to:

ht—l - ZrER ZaEA Ny Xaer — ZrER ZbeB Ny Xp t,r + Ot—ster — ht Vte T,t =1+ (3)
ster

hi_1 — Yrer XaeaNa Xatr — Zrer 2beB Db Xbtr = Dy VteTt< 4)
ster

dt—l — Ot + ZreR ZaeA:t—pazl Ny Xatr + ZrER ZbeB:t—pbzl Ny Xp,tr = dt VteT (5)
oy < cap m, VteT (6)
m; < mach VteT,t>1+4ster @)
ZaeA Xa,t,r + ZbeB Xb,t,r <1 Vte Tr reR (8)
ZteT:tsTl—pb Direr Xpr = 1 vb € B ©)
Z::zz+ea YreRXatr = 1 va€gA (10)
h; = buffer VteT (11)
tar = tXaer VaeEATreRteET,t=2v,t<v, +e, (12)
thr = tXper VbEBTreRLET (13)
Cir — Cir + M(1 — ZeerXjer) + M(1 — BperXier) + M(1 —fjj,) = pj+ster  Vj€Lie€ (14)
LreRi+#]j

Cir — Cjr + M(1 — Zeerxier) + M(1 — Zeerxjer) + M(fijr) = pi + ster Vielie (15)
LreRi+#]j

Cir = Deer(t + p) (Xier ) vVielLreR (16)
Cmax = G, VielLreR (17)
Xitr €1{0,1} VieLteT,reR (18)
fi;r € {0,1} viel,jeLreR (19)
hi,d¢, 0, m; = 0 and integer VteT (20)

In the model, objective function (1) minimizes the total cost of sterilization, tardiness cost in elective operations,
and the timely operation cost. Objective function (2) minimizes the last surgery completion time. Equations (3)
and (4) point to the balanced inventory of sterilization devices regarding their sterilization times. The term (5)
indicates the number of dirty (unsterilized) devices in each period. Constraint (6) points to the capacity of
sterilization devices. Constraint (7) indicates the maximum number of sterilization devices. Constraint (8) explains
that at most one surgery is done at each time and operating room. Constraints (9) and (10) denote the requirement
for emergency and elective surgeries. Constraint (11) indicates the minimum number of sterilization devices in
each period. Constraint (12) determines the start time of emergency surgery. Surgery does not begin before an
emergency patient arrival, and the surgery must not be delayed more than the maximum reasonable time regarding
the patient's condition. Constraint (13) determines the elective surgeries start time. Constraints (14) and (15) show
the sequence and scheduling for two operations in one surgery room considering the length of surgeries and their
sterilization times. Constraint (16) determined the completion time of surgeries. Constraint (17) determines the
last surgery time. Constraints (18)-(20) indicate the variables' status.

1V. Robust Approach

This study considers surgery time an indeterministic parameter due to its inherent volatilities due to the specific
conditions of each patient, the type of surgery, and the different experiences and skills of surgeons. This study
used the Mulvey et al. [29] robust model to solve the problem under the considered conditions. Mulvey et al. [29]
presented a framework for robust optimization, which include two concepts of “robust solution” and “robust
model”. Accordingly, a solution is robust when all scenarios remain near to optimum point. Moreover, a model is
robust when all scenarios are almost reasonable or justifiable. Penalty and weight are assigned to the lack of a
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model and solution robust in an objective model of [29]. An exchange occurs between model robustness and
solution regarding the decision-maker's preferences in this model. Consider following the linear programming

model with stochastic parameters for a better explanation:

min c¢Tx + dTy 21
sto: Ax=Db (22)
Bx + Cy=e (23)
x>0, y=0 (24)

Variable x denotes a vector of design variables and variable y represents the control variable. Matrixes A, B, and
C include parameters of variables' coefficients at the left side of constraints; e and b denote the vector of right-
hand parameters. Moreover, A and b are deterministic and B, C, and e are indeterministic. The actualization of
each value for the indeterministic parameter is called a scenario, which is indicated by s and probability ps. The
set of scenarios is shown by Q={1,2,..., S}. indeterministic coefficients B, C, and e are indicated as Cs, Bs, and es
for each scenario. Moreover, the set {y1, Y2, ..., ys} includes a set of control variables for each scenario. The model
is formulated as follows:

min Y(X' Y1, Y2, ) y's) + (Dp(ﬂp MN2s s ns) (25)
st0: Ax=Db (26)
Bsx + Cgys + M = €5 Vs € Q 27
x=20, y¢=20, ng =0 Vs e (28)
The model might be unjustifiable for some scenarios due to indeterministic parameters. The set {ni, ...., ns}

includes error vectors measuring the unjustifiableness rate of each scenario. The nsequals 0 id model is reasonable
for scenario s, it will be a positive number otherwise. In this model, the robustness part of the solution in the
objective function has y weight, and model robustness takes the weight o. In the first part, solution robustness is
considered, and & indicated the cost function or f(x, ys). Mulvey et al. [29] used the following equation for this
part:

6(0) = Zseﬂ psEs + YZSEQ Ps |Es - ZS’EQ ps’Es’l (29)
The problem can be converted to the following linear form:
Min ZSEQ pszs + YZSEQ Ps [(Es - ZS'EQ ps'zs') + Zes] (30)
s.to: & — YscaPsls +0s=0 Vs € O (31)
6,0 Vs € Q (32)
The stochastic robust programming model can be formulated after inserting a penalty for model unjustifiability:
min Yseq Pss + ¥ Lsea Ps [(§s — Lsea PsEs) + 265] + 0 Xseq Ps s (33)
sto: Ax=b (34)
Bsx + Cgys + ns = e Vs € Q (35)
Es - ZSEQ ps’Es’ + es =0 Vs € (36)
0, >0, x>0, y=20, ns =0 Vs EQ 37

V. Robust Mathematical Model with Indeterministic Times

This part of the study uses the robust model of a problem for operating room and sterilization planning with
indeterministic times which it is presented in [27]. It is worth noting that the following elements are used in
addition to the variables, indexes, and sets introduced above:

Indexes

s,s': scenarios s,s’ €

Sets

Q: the set of scenarios

Parameters

p;: Length of surgery i under the scenario s
t5: Scenario s probability

A: weight of solution robust variability

o: unjustifiability weight of model robustness
Decision Variables

&8$: unjustifiableness rate of a model comprising unmet demand for surgery i in scenario s
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cs,: completion time of surgery i under scenario s
Cmax™> The last surgery completion time under scenario s

min ZteT cost;mg + ZbeB ZteT ZreR tcostyp Xptr + ZaEA ZtET ZrER costz, Xatr + (3 8)
YbeB LteT ZreR COStyp Xp,tr

min )\ZSEQ T[SCmaXS + (1 - )\) ZSEQ e [(Cmaxs - ZS’EQ T[S,CmaxS,) + 265] + ('OZSEQ ZiEIT[S 615 (39)
S.to:

ht—l - ZrER ZaEA ny Xa,t,r - ZrER ZbEB ny Xb,t,r + Ot—ster — ht Vte T,t =1+ ster (40)
ht—l - ZrER ZaEA ny Xa,t,r - ZrER ZbEB ny Xb,t,r = l’1t Vte T: t < ster (41)
dt—l — 0y + ZrER ZaEA:t—pgzl NaXatr + ZreR ZbEB:t—plsjzl Np Xptr = dt VteT,sell (42)
0 < cap m; VteT (43)
m; < mach VteT,t=>1+ster (44)
ZaeA Xatr + ZbeB Xp,tr <1 vVteTreR (45)
ZteT:tsTr—pg ZrerXper = 1 Vb eB,se) (46)
ZE:XZﬂa ZreR Xatr — 1 Va€eA (47)
h; > buffer VteT (48)
tar = tXaer VaeAreRteT,t=2v,t<v,+e, (49)
thr = tXper VvbeBreRteT (50)

Cr —Cr +M(1 = Zeerxjer) + M(1 = Berxier) + M(1—fi5,) = pi +ster  Vj€elie (51)
LreRi#j,ss €Q

s —Cr +M(1 = Beerier) + M(1 = Beerxjer) + M(fij) = pf + ster vieLie (52)
LreRi#j,ss €q

Clr = Yeer(t + pis)(xi,t,r) + & Viel, reR,se (53)
CmaxSZ Cis,r Viel, reR, sel) (54)
(Cmax® = Lsrea T Cmax™) + 6% =0 Vs € Q (55)
Xier € {0,1} Viel, teT, reR (56)
fijr € {0,1} viel, j€l, TreR (57)
hi, d¢, 0, m; = 0 and integer VteT (58)

In this model, Equation (38) minimizes the total costs of sterilization, tardiness in elective surgeries, and cost of
operations. Equation (39) minimizes the last surgery completion time. Equations (40) and (41) balance the number
of sterilization devices regarding their sterilization time. The term (42) indicates the number of unsterilized
devices in each period. The constraint (43) points to the capacity of sterilization devices. The constraint (44)
denotes the maximum number of sterilization devices. The constraint (45) indicates one surgery is done in each
operating room per time. Constraints (46) and (47) point to the requirement of elective and emergency surgeries
for patients. The constraint (48) indicates the minimum number of sterilization devices in each period. The
constraints (49) and (50) indicate start times of emergency and elective surgeries, respectively. The constraints
(51) and (52) indicate simultaneous scheduling for two surgeries in one operating room regarding the surgeries’
lengths and sterilization time. The constraint (53) indicates the surgeries completion time in each operating room
under each scenario. The constraint (54) denotes the last surgery completion time under each scenario. The
constraint (55) is the control constraint under each scenario. The other constraints indicate the variables’ status.

VI.Augmented Epsilon Constraint

Different technics are used to solve multi-objective problems, including Epsilon Constraint Technic. In this
technic an objective function is the main and the other objective functions are as the constraints. Augmented
Epsilon Constraint is one of the developments of Epsilon Constraint. This method generates feasible solutions,
and the solution algorithm is terminated and not solved for subsequent iterations if the problem is not feasible.
Hence, Augmented Epsilon Constraint offers higher solution speed compared to conventional Epsilon Constraint.
Moreover, unlike conventional epsilon constraint, the augmented version uses Lexicographic optimization to form
a balance table and generate Pareto solutions, the extant study also uses this method to solve small and medium-
scale problems through GAMS software. Because large-scale scheduling problems are NP-Hard, the large-scale
problem designed in this study could not be solved within a reasonable time through GAMS software. Hence, this
study uses two metaheuristic algorithms for solution and analysed the obtained results.

VIIL.NSGA-II

Deb et al. [30] introduced NSGA-II algorithm based on the elitism and crowding criterion for a fast and
uncomplicated sorting phase. This algorithm is done as follows:
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Initial population Creation

Calculating fit criteria

Population sorting based on the domination conditions

Measuring crowding distance

Selection

Creating mutation and crossover to generate new offspring

The initial population integration into the population created by mutation and crossover
The parent population replacing with the best members

Repeating the abovementioned steps until reaching the termination condition

NSGA-II algorithm is implemented for the introduced model as follows:

W RN h W=

VII1.Solution Display

A structure must be used for solution display in all metaheuristic algorithms. This study uses a matrix to indicate
surgery orders in each operating room per day. The number of cells of the proposed chromosome solution matrix
equals a stochastic vector consisting of numbers 0 and 1 with an I+R-1 scale where | indicates the number of
surgeries and R represents the number of surgery rooms. For instance, if it is required to schedule five surgeries
in 2 operating rooms then we can have one stochastic chromosome with a length of 6, as shown in Figure 1.

[ 0619 ] 0332 ] 0982 [ 0248 | 0.081 [ 0.43 |

FIGURE 1
CREATING IN STOCHASTIC CHROMOSOME WITH STOCHASTIC BINARY NUMBERS (BETWEEN 0 AND 1)

The matrix shown in Figure 1 is sorted ascending, and each element of the main vector is determined in the next
step then the largest numbers are determined based on the number of operating rooms to use as a separator. Figure
2 is shaped in this step and then we begin from the left side of the vector to find the order and allocation of
surgeries performed in each operating room. This Figure indicates that surgery 5 is done in the operating room
then surgery 3 is performed. Moreover, surgeries 2, 1, and 4 are performed in the second operating room,
respectively.

10619 10332 0982 [ 0248 [ 0.081 [ 043 | s[3]6]2]1]4]

FIGURE 2
SORTING NUMBERS AND DETERMINING THE POSITION OF SEPARATORS IN THE SOLUTION DISPLAY

IX.Creating Initial Solution

The usual method for initial solutions creation in metaheuristic algorithms is generating a stochastic solution. In
this study, we create stochastic numbers in size of chromosome length (1+R-1) for surgery assignment and
scheduling.

X.Crossover Operator

This operator is the most important feature of the algorithm in which, two selected parents are combined to
generate one or more offspring as a new solution. In this research, a two-point crossover operator is used. Figure
3 indicates a sample of a two-point crossover function.

044 [ 029 1056 [ 089 [ 032 [ 084
Lo.19 OB o.56 [ 0.9 | 0.09 [ 003 [ 057 [ 008 [ 077 [ 063

Parents Children

FIGURE 3
CROSSOVER FUNCTION

Xl.Mutation Operator

This study randomly uses one of the swap, insertion, and reversion operators for mutation and creating a
neighbourhood. The mentioned operators work as follows:

e Swap Operator

This operator selects two stochastic points of chromosomes and swaps their place. Figure 4 indicates how this
operator works.

0.982 [ 0.248 | 0.081 | 0.43 |
[ 0.619 | 0.081 | 0.982 [ 0.248

FIGURE 4
SWAP OPERATOR EXAMPLE
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e Insertion Operator

This operator selects two stochastic points of chromosomes and then inserts the first point towards the right side
of the second point. Figure 5 depicts an example of this operator.

0.982 ] 0.248 | 0.081 [ 043 |
[ 0.619 ] 0.982 [ 0.248 | 0.081

FIGURE 5
INSERTION OPERATOR EXAMPLE

e Reversion Operator

This operator selects two stochastic points of chromosomes and swaps two points the reverses values between
these two points. Figure 6 indicates how this operator works.

0.982 | 0.248 [ 0.081 [ 0.43 |
[ 0.619 ] 0.081 | 0.248 [ 0.982

FIGURE 6
REVERSION OPERATOR EXAMPLE

XI11.Strategy for dealing with infeasible solutions

Each algorithm considers common strategies for infeasible solutions. This study uses the penalty function when
there are infeasible solutions. For instance, a high penalty is added to objective functions in case of failure to
perform surgery, long waiting time for the emergency patient, ignoring the maximum number of devices, or
inaccessibility to required sterilization devices.

XI1.Sorting Population Members

Consider solutions x and y are the feasible or justifiable solutions in multi-objective functions; x dominates y if y
is not better than x and X is strictly better than y in at least in one respect. Non-dominated solutions are called
Pareto optimum solutions. After the initial population was sorted based on the dominance conditions in this
algorithm, the crowding distance is measured and selection is done based on the two metrics of population rank
and distance measurement. In population rank, populations with lower ranks are selected. In the distance
measurement case, p and q are assumed as two members from the same rank, and the member with the longer
crowding distance is chosen. Finally, population members are pairwise compared, and the population is sorted
based on domination and crowding distance.

XIV.Algorithm Termination Condition

Various conditions can be chosen as termination criteria. This research uses the number of iterations for algorithm
termination.

XV.NRGA

Al Jadaan et al. [31] developed an NRGA algorithm for discrete optimization, nonlinear, non-convex problems.
The NRGA and NSGA-II are different in terms of selection and population sorting. In NRGA, ranked-based
roulette wheel selection is used instead of a swarm race operator [32] so that better members are selected with a
higher probability for reproduction and formation of the next generation. Each member has two features: the rank
of the non-dominated border it is placed and the rank in the border based on the crowding distance.

XVI. Computational Analysis

The proposed model of this study was solved in small dimensions using the AEC method, while NRGA and
NSGA-II algorithms were used for large dimensions. Moreover, the quality of metaheuristic algorithms’
performance is highly affected by the values of their input parameters. Taguchi method was used to set parameters
and for better application of the two mentioned algorithms. Moreover, various indicators and statistical assumption
tests were used to evaluate the efficiency of the abovementioned algorithms.

XVII.Taguchi Method for Setting the Parameters

Taguchi introduced this method in 1986, and use signal-to-noise ratio which smaller values are better in
minimization problems, and larger values are better in maximization problems [34].This study used four Maxlt,
NPop, PC, and PM parameters for two NRGA and NSGA-I1I algorithms at three levels introduced in Table 2.
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TABLE 2
THE LEVELS OF EACH PARAMETER OF THE BOTH ALGORITHMS
levels NSGA-II NRGA
1 2 3 1 2 3
Parameters
Population (NPop) 20 60 100 20 60 100
Crossover Percentage (PC) 0.6 0.7 0.8 0.6 0.7 0.8
Percentage(PM) Mutation 0.1 0.2 0.3 0.1 0.2 0.3
Maximum iteration (MaxIt) 100 300 500 100 300 500

Nine tests were suggested by Minitab16 software using Taguchi method to determine the most efficient level of
each parameter. To achieve higher performance precision, each test was implemented 25 times through MATLAB
R2020b software. Finally, the mean value of four NPS, MID, SM, and DM indicators was used for multi-objective
problems. After normalizing and considering positive and negative indicators, this study integrated them as [34].
The outcome was used as equation (59) to determine the response variable.

Response = 1/(MID)? + (SM)2 + (DM)! + (NPS)? (59)
The four indicators have been introduced herein:

Number of Pareto Solutions(NPS): This indicator shows the number of solutions existing in Pareto pertained.
The greater value of this index is the best [35].

Mean Ideal Distance(MID): This index is used to find the distance between Pareto solutions and the ideal point
of solutions [36]. In this case, n represents the number of Pareto points. Moreover, fmin, and f£me, represent
minimum and maximum values of objective functions, respectively, and fPestand fPet indicate the ideal point's
coordinates.

2 2
n fli_fllzest N fzi_flzyest
=1 max _ gmin fmax _fmin (60)
1,total™/ 1,total 2,total™/ 2,total
MID=
n

Spacing Metric(SM): It measures the uniformity of a set of non-dominated points in solution space based on
Equation (61) where n indicated many Pareto solutions, is the Euclidean distance between two Pareto solutions is
shown with d; , and the average distances between d; values is d [30].

2y (@-0)° (61)
SM=Y————

d

Diversification Metric(DM): It shows the Pareto solution diversity based on Equation (62) where f,{l and £},
indicate the objective function m" values for two Pareto solutions i and j.

M
d; = maxj {Z (5 - fn’;)z}

DM=yXiL, d;

(62)

Table 3 reports the normalized values and response variables. It is worth noting that all results are obtained from
a system with Intel(R) Core (TM) i5- 4200U, 8GB memory, and Windows 10.

TABLE 3

THE NORMALIZED AND MEASURING RESULTS FOR SETTING PARAMETERS OF THE BOTH ALGORITHMS

Tes Parameter NSGA-II NRGA
t Indexes Respons Indexes Respons
NPo P P Maxl| NPS DM SM MID e NPS DM SM MID e
p c m t

L1 1 1 1 1 0.667 1 0.635  0.934 1.715 0.25 0.266 0.811  0.653 1.265
L2 1 2 2 2 0 0.311 1 0.722 1.354 1 0.707 0.022  0.889 1.58
L3 1 3 3 3 0.833 0.795 0.049  0.899 1.561 0 0.151 0.661  0.592 0.969
L4 2 1 2 3 0.75 0.395 0.077 0.627 1.243 0.5 0.320 0 0.766 1.186
LS 2 2 3 1 0.833  0.692 0.266  0.896 1.549 0.75 0.0501 0.544 0.617 1.388
L6 2 3 1 2 0 0 0.36 0.470 0.593 1 0.393 0.638  0.733 1.527
L7 3 1 3 2 0.333  0.667 0971 0.669 1.546 0.5 0 0.829  0.260 1.120
L8 3 2 1 3 0.75 0.295 0 0 1.022 0.5 0.151 1 0 1.286
L9 3 3 2 1 1 0.841  0.029 1 1.686 0.75 1 0.569 1 1.753

Now, the S/N ratio is measured based on response values. The level of each parameter is determined based on
Figures 7 and 8.
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Hence, the final result of setting parameters is reported in the Figures shown in Table 4. As it is seen, two
considered algorithms have different values despite identical parameters being considered to set parameters for
these two algorithms.

TABLE 4
THE FINAL RESULT OF THE SETTING PARAMETER
Parameter NPop PC PM Maxlt
NSGA-II 20 0.6 03 100
NRGA 100 0.7 0.2 100

Several problems were created randomly to compare algorithms and results of model solutions based on the AEC
method. Table 5 reports the comparative results. As can be seen, solution time is highly increased from a certain
dimension threshold. Metaheuristic algorithms are required regarding the nature of the problem and instant
response to patients.

TABLE 5
COMPARING THE RESULTS OF NSGA-II, NRGA, AND AEC ALGORITHMS FOR SEVERAL EXAMPLES
Dimension AEC [27] NSGA-II NRGA

i*r*t The first The Solution  The first The Solution  The first The Solution

objective second time objective second time objective second time

function objective (sec) function objective (sec) function objective (sec)

function function function

4*3*20 1250 6.60 12.29 1550 14 5.25 1550 14 72.83

5*4*30 6770 9.10 24.20 7380 16.4 6.54 7120 15.65 76.04

7*6*50 21790 11.80 79.39 23110 28 8.93 22046 23.6 84.18

8*7*60 26036 13.30 996.00 32276 35.8 11.86 30226 30.4 89.88
9*8*70 55390 15.30 2072.4 68020 43 14.50 67980 40.6 106.99

It is essential to use metaheuristic algorithms; hence, 12 stochastic examples were used. Table 6 reports the
specifications of these examples. This study also used different MID, NPS, DM, SM, and solution times for better
comparison. Figures 9-13 depict the output of mentioned indicators. Ten times of implementation and mean are
reported as the final solution.

TABLE 6
SPECIFICATIONS OF 12 STUDIED STOCHASTIC PROBLEMS
Problem Dimension Problem Dimension Problem Dimension
i*r<t i*r t i*r t

1 5%4*30) 5 10*8*45 9 14*9*55
2 7*6*50 6 11*8*45 10 15*10*55
3 8*7*60 7 12*8*50 11 18*10*60
4 9*8*70 8 13*9*50 12 20*15*70

As seen in these figures, the solution time of the NRGA algorithm is longer than the NSGA-II algorithm; hence,
the NSGA-II algorithm is more appropriate. In terms of the rest of the indicators, NRGA outperforms in some
cases, while NSGA-II outperforms in other cases. Hence, more accurate statistical analyses are required.
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XVIII. Kruskal-Wallis Test

It is a nonparametric test for comparing mean values of more than two independent societies. This test does not
assume that the response variable is distributed normally. Like many nonparametric tests, Kruskal-Wallis Test is
done on data with rank or time scale when the sample size is small [37]. Therefore, this study conducted this test
through Minitab 16 software. For this purpose, all data obtained from different societies are considered as a sample
and then ranked. If repetitive observations exist in the mean values of their ranks, the researcher decides on the
null hypothesis (Ho) regarding this he obtained statistical value. If a = p —value then Hy (lack of significant
difference between algorithm’s mean values) is rejected. However, Hy is not rejected when a < p — value. This

test was conducted at a level of 0=0.05 for five criteria of NPS, DM, MID, SM, and Time.

TABLE 7
RESULTS OF THE KRUSKAL-WALLIS TEST

Algorithm N NPS DM MID SM Time
Median  P-value Median P-value Median P-value Median P-value Median P-value
NSGA-II 12 3.15 0.817 0.1795 0.436 10.888 0.436 0.5739 0214 16.86 0.00
NRGA 12 3.15 0.1947 9.485 0.7795 140.48
J 1 E 1
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According to results reported in Table 7 and obtained P-values, NRGA and NSGA-I1I algorithms had no significant
difference at the level of ¢=0.05 in terms of DM, NPS, MID, and SM metrics. However, these algorithms
performed differently in terms of Time, and NSGA-II outperformed NRGA.

CONCLUSION

This paper investigate scheduling and planning surgery rooms and sterilization of RMDs for surgeries considering
elective and emergency patients based on Mulvey's robust approach. This study minimize the total costs and
completion time of the last surgery. The parameter of surgery length was taken indeterministic variable due to the
high velocity of surgery length, different physical conditions of patients, and experiences or skills of surgeons. In
addition to the AEC method, this study developed two metaheuristics algorithms for the mentioned purpose.
Moreover, these two metaheuristic algorithms were compared based on five indicators, including the NPS, MID,
SM, DM, and Solution Time. No significant difference was seen in the two algorithms regarding the mentioned
metrics at a level of a=0.05 except for the solution time index in which, NSGA-I1 outperformed NRGA and solved
the problem sooner. Because this problem is considered emergency patients and solution time is a critical factor
in this case, it is suggested to use the NSGA-II algorithm.

MANAGERIAL INSIGHTS

Since the hospital managers seek to minimize the costs of the entire hospital in addition to providing proper service
to the patients, they should identify the important and effective parameters, and manage various departments in
an integrated manner instead of managing one department separately. In addition to saving time and money, this
attitude makes it possible to use the available resources better and finally achieve the intended objectives. In this
research, it is tried to consider the sterilization and surgery sections at the same time to minimize the costs and the
last surgery completion time. By scheduling and planning the surgery rooms and the sterile unit, the completion
time and the total cost of the surgeries will be reduced, which is less than the case where the scheduling and
planning of the surgery room and the sterile unit are completely separate. Also, since in a hospital, as well as
elective patients, there are emergency patients who need quick surgeries, it is necessary to use fast methods that
can provide scheduling and planning for managers. Therefore, in this article, two meta-heuristic algorithms were
presented that managers can use in their software or application systems. Among these two algorithms, the NSGA-
I has worked better in terms of different indices. One of the most important limitations of this article was that
unfortunately, despite various efforts, we could not get data from a hospital as a case study. The followings are
recommendations for further studies: Considering other wards associated with operating rooms, such as the
recovery unit, recovery bed, etc., cleaning operating rooms, scheduling surgeons, and presenting other algorithms
compared to algorithms presented in the extant study.
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