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Abstract 

Great attention should be paid to planning and scheduling surgeries which is the most sensitive ward in 

the health context in terms of cost and specific sensitivity due to its association with the life and death 

of individuals. In this case, reusable sterile equipment and devices are crucial issues because the hospital 

or nosocomial infections result from insufficient sterilization of these instruments. Therefore, 

sterilization of reusable medical devices is a necessity in the operating room to prevent possible 

infections. This study solves the integrated operating rooms and sterile section planning problem to 

minimize the total costs of sterilization, surgery delay, and performance. This study also minimizes the 

completion time of surgery considering nondeterministic operating times and emergency-elective 

patients. In the real world, surgery time may be nondeterministic based on the conditions of the patient, 

surgeon, equipment, and instruments; hence, it is valuable to find a robust solution for planning under 

such circumstances. After using a bi-objective model for this problem, an improved ε-constraint method 

was implied to solve problems with small dimensions, and two metaheuristics NRGA and NSGA-II 

were developed for large dimensions regarding NP-hard problems. These two algorithms were analysed 

based on five indicators. The obtained results showed the superiority of the NSGA-II algorithm over 

NRGA to solve such problems.  

Keywords- Operating and Sterile Rooms; Scheduling and Planning; Emergency and Elective Patients;  

Robust Optimization; Metaheuristic algorithms. 
 

INTRODUCTION  

Scheduling and planning surgeries in operating rooms are critical fields in the health system that should receive 

great attention since the life of people would be in danger if there is any improper planning and a minor 

postponement or delay. On the other hand, insufficient sterilization of reusable medical devices in the surgery 

ward is a reason for hospital infections. Hence, the surgery room must be cleaned and reusable devices and 

equipment must be sterilized at the end of surgery and before starting a new surgery. However, 70% of hospital 

clients need surgery and more than 15% of time waste in hospitals occurs in operating rooms [1]. Hence, many 

researchers have examined hospital planning, particularly surgery room scheduling and planning, by consideration 
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of elective or nonelective (emergency) patients. It is worth noting that elective patients are those patients whose 

surgeries are planned, and nonelective or emergency patients should be operated on as soon as possible. Many 

studies have been conducted on elective patients. Belkhamsa et al. [2] used two metaheuristic iterative local search 

and hybrid genetic algorithm approaches to solve operating room scheduling problems. Maghzi et al. [3] used 

GAMS software and a random data set to solve operating room and hospital ward planning and scheduling to 

minimize patients' attendance time in the hospital. Kayvanfar et al. [4] used the Lagrange liberalization approach 

to solve the MIP model for operating room scheduling and recovery ward considering elective patients.  

       Another category of papers has examined emergency patients that need emergency and prompt services. For 

instance, Ali et al. [5] used MILP to solve surgery room scheduling for elective and emergency patients during 

the war. Kamran et al. [6] proposed two heuristic approaches for scheduling and planning patients sequence 

problems in operating rooms. Bovim et al. [7] used a simulation optimization model for scheduling elective and 

emergency surgeries. According to studies conducted by Spagnolo et al. [8], 38% of nosocomial infections are 

seen in surgical patients. Infection factors include insufficient sterilization of surgical wards or devices used in 

surgery that is required for preventing or reducing potential infections, and sterilization of reusable medical 

devices (RMD), such as a clamp, forceps, and endoscope. Hence, some studies have paid attention to sterilization 

wards in their studies. For example, Beroule et al. [9] solved operating room scheduling problems and medical 

device sterilization, by using a GA, PSO and TS. Ozturk et al. [10] used the MIP model and heuristic approach to 

minimize sterilization operation time in services for the sterilization of reusable medical devices. Moreover, 

Ozturk et al. [11] proposed a batch scheduling optimization model to reduce utilization and sterilization time using 

a MILP and dynamic programming, and an approximate algorithm.  

      The nature of operating room scheduling and programming faces uncertainty in the real world. Hence, some 

researchers have considered uncertainty in their studies. For example, Bruni et al. [12] solved the surgery room 

problem considering the uncertainty of surgery duration and emergency patients by using random programming 

modelling to maximize weekly revenue and minimize the expected overtime cost. Eun et al. [13] used sample 

mean approximation, local search, and tabu search approach to solve scheduling problems with random surgery 

duration of elective patients considering different disease severity and pointed to increased waiting time and 

worsen patient status. Kroer et al. [14] used two approaches to solve robust operating room scheduling and 

planning for elective and emergency surgeries to minimize overtime and release the idle capacity. M'Hallah and 

Visintin [15] considered a stochastic model with care unit times, uncertain surgery times, and the length of staying 

time  after surgeries using a sample mean approximation method. Kamran et al. [16] used a heuristic method based 

on the column generation and Bender’s decomposition for scheduling comparative allocation of patients in 

operating rooms. They proposed a MILP model to minimize patients' cancellation, tardiness, operating room 

overtime, surgeons' idle, and surgery starting time for the emergency patient. Rachuba and Werners [17] 

minimized waiting for time, staff overtime, and tardiness by using a robust multiple optimization approach. Liu 

et al. [18] examined surgery scheduling problems by consideration of medical devices and operating room 

preparation time. Aissaoui et al. [19] used MILP and simulation approaches to solve the integrated allocation 

scheduling and resource sequence problem in private healthcare centres. They conducted this study by using a 

robust optimization technique. Coban [20] designed a single-purpose model by using a heuristic approach and 

rule-of-thumb to minimize costs for elective patients when all parameters are deterministic.  

      Mazloumian et al. [21] used a robust optimization approach for multi-objective integrated surgery scheduling 

and allocation model. Harris and Claudio [22] had a literature review for scheduling operating rooms between 

2015 to 2020. Wang et al. [23] used a hybrid algorithm for fuzzy surgical scheduling. Yu et al. [24] verified the 

schedulinf of surgeries for saving time and money. Ghasemi et al. [25] used constraint programming and TOPSIS 

for solving surgery room scheduling. Bargetto et al. [26] used an exact algorithm for surgery room scheduling. 

Recently, Arjmandi and Samouei [27] considered robust scheduling and planning of sterile unit and surgery rooms 

for reusable surgical items. But they only used epsilon-constraint method, and they did not present any heuristic 

or metaheuristic for their problem. Since, decision-making in hospital, especially for surgeries and operating 

rooms which saving time is necessary and valuable, we present two metaheuristic algorithms for the problem. 

This study examines the total costs of emergency and elective operations, tardiness cost in surgery for elective 

patients, and maximum waiting time for emergency patients.  

        In addition, this paper minimizes the completion time of surgeries regarding the limited available resources, 

such as operating rooms, number of available devices, etc.  An augmented ε-constraint method is used to solve 

the proposed model, and two metaheuristic algorithms of NRGA NSGA-II and are investigated regarding the NP-

hard problem to evaluate it in terms of different indicators. Furthermore, several statistical analyses are used to 

verify which algorithm is better. Table 1 reports the studies that have examined our research scope indicating 

initiative aspects of the extant study compared to other studies. 
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TABLE 1  

THE RELATED PAPERS OF THIS STUDY 

Authors Year 
Type of 

Patient 

Scheduling and planning Uncertainty 
Type of 

uncertainty 

Number of 

objective 

functions 
Solving 

method 
Operating 

room 

Sterilization 

unit 

Yes No Single Multi 

Kayvanfar 

et al. [4] 

2021 Elective  *   *   * Lagrange 

relaxation 

Ali et al. [5] 2019 Emergency 
and 

Elective  

*   *   * MILP 

Bovim et al. 
[7] 

2020 Emergency 
and 

Elective  

*  *  Stochastic  * Simulation 
and stochastic 

programming 

Ozturk et al. 

[10] 

2010 Elective   *  *  *  Heuristic 

method  

Xu & Wang 

[28] 

2018 Elective   *  *  *  GA 

Kroer et al. 

[14] 

2019 Emergency 

and 
Elective  

*  *  Stochastic *  MIP 

Rachuba & 

Werners 
[17] 

2015 Emergency 

and 
Elective  

*  *  Robust  * robust 

optimization 

Liu et al. 

[18] 

2017 Elective  *  *  Robust *  Simulation 

and robust 
optimization 

Coban [20] 2020 Elective  * *  *  *  Heuristic 

method  

Mazloumian 
et al. [21] 

2022 Elective  *  *  Robust  * robust 
optimization 

Wang et al. 

[23] 

2022 Elective  *  *  Fuzzy *  a hybrid 

algorithm 

Yu et al. 
[24] 

2022 Elective  *   *   * ICA and VNS  

Ghasemi et 

al. [25] 

2023 Elective *   *   * TOPSIS and 

constraint 

programming 

Bargetto et 

al. [26] 

2023 Emergency 

and 

Elective  

*   *  *  A branch & 

price& cut 

algorithm 

This paper 2023 Emergency 
and 

Elective  

* * *  Robust  * Robust 
optimization, 

NSGA-II and 

NRGA 

 

LITERATURE REVIREW 

Each operating rooms is the vital resource in hospital that provides services while incurring high costs. Hence, 

scheduling and planning are required to costs reduction and improve the services quality. Furthermore, medical 

devices are vital resources used in surgery, and any shortage in this field may result in surgery tardiness, which 

may put the life of emergency patients at risk of death. Medical devices are sterilized which classified as single-

use and reusable medical devices (RMD). Single-use items, such as needles, are disposed of after being used for 

one patient's surgery. Reusable medical devices, such as clamps, forceps, and endoscopes are sterilized and 

disinfected fully then reused. Therefore, RMD planning is highly crucial.   

       The present paper considers elective and emergency operations in which emergency patients should undergo 

surgery as soon as possible. The number and time of considered emergency patients have been planned based on 

the model proposed by Kroer et al. [14]. A cost has been considered for elective and emergency operations; in 

this case, the cost of surgery for emergency patients is less than it is for elective surgeries to prioritize emergency 

patients. Furthermore, a maximum waiting time is considered for each emergency patient. Operation is not started 

before the arrival of emergency patients, and they should not wait more than the maximum waiting time. Those 

surgeries are impossible to do during working hours are postponed or traded. The minimum number of reusable 

medical devices is kept sterilized in each period. The number of RMDs differs for each patient based on their 

physical condition. The sterilization length of RMD is predetermined. On the other hand, the number of sterilizing 

devices must not exceed the number of sterile devices. A certain capacity of each sterile device must be 

considered. Surgery length has uncertainty regarding the conditions of patients, surgeons, and devices. Hence, a 

robust approach was proposed to overcome this uncertainty. Moreover, two objectives were considered in this 
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problem: minimizing the total cost of using sterilization devices, the penalty paid for tardiness in elective patients' 

surgery and operation cost, and minimizing the last surgery completion time in operating rooms to release rooms 

for the next operations.  
 

MODELLING AND PRESENTING SOLUTION METHODS  

The extant study used a model to minimize total costs and completion time of the last surgery for scheduling and 

planning the operating rooms considering the elective and emergency patients in two deterministic and robust 

modes. These models are presents in Arjmandi and Samouei [27]. For this purpose, assumptions, indexes, 

parameters, sets, and decision variables of these two models are introduced herein: 
 

I Model’s Assumptions  

 Elective and emergency patients are considered.  

 Emergency patients cannot wait for more than the reasonable waiting time due to their conditions.  

 Several operating rooms exist that are suitable for all surgeries.  

 The required manpower is not a constraint during the planning period 

 Planning horizon length is periodic considering 15-min duration.  

 
 

II. Indexes, Parameters, Sets, ad Decision Variables  
 

Indexes  

i, j: surgeries i, j∈I 

a: emergency surgeries a∈A 

b: elective surgeries b∈B 

t: period t∈T 

r: operating rooms r∈R 
 

Sets  

A: Emergency surgeries  

B: Elective surgeries  

I: Operations I=A∪B 

T: Times  

R: Operating rooms  
 

Parameters  

h0= number of clean RMDs in time 0 

d0= number of dirty RMDs in time 0 

M: a very large positive number 

T´: planning horizon length  

ni= number of RMDs required for surgery i 

pi= length of surgery i 

ster: Sterilization required time  

cap: capacity of each sterile device 

mach: number of sterile devices  

cost1: cost of using sterile devices  

cost2b: cost of tardiness in elective surgery  

cost3a: cost of emergency surgeries that is lower than the surgery for elective patients to prioritize surgery for 

emergency patients  

cost4b: cost of elective surgeries  

ea: maximum waiting time for emergency patients a 

va: arrival time of emergency patient a 

buffer: minimum clean RMD required for each period  
 

Decision Variables  

Xi,t,r: 1 if surgery i is done in time t in surgery room r, 0 otherwise 

fi,j,r: 1 if the surgery i id done sooner than operation j in operating room r, 0 otherwise 

ht: number of clean RMDs at the beginning of period t 

dt: number of dirty RMDs at the beginning of period t 

ot: number of sterilized RMDs at the beginning of period t 

mt: number of sterile devices start sterilization at the beginning of period t 
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t´
i,r: start time of surgery i in operating room r 

ci,r: end time of surgery i in operating room r 

Cmax: completion time of last surgery 
 

III. Mathematical Model with Deterministic Times  

A mathematical model of the problem under certain or deterministic conditions is designed as follows:  

(1) min ∑ cost1mt

t∈T

+ ∑ ∑ ∑ t cost2b

r∈Rt∈Tb∈B

xb,t,r + ∑ ∑ ∑ cost3a

r∈Rt∈T

xa,t,r

a∈A

+ ∑ ∑ ∑  cost4b

r∈Rt∈Tb∈B

xb,t,r 

(2) min Cmax      
 S.to: 

(3) ht−1 − ∑ ∑ naa∈A xa,t,r − ∑ ∑ nbb∈B xb,t,r +  ot−sterr∈Rr∈R = ht                           ∀ t ∈ T, t ≥ 1 +
ster            

(4) ht−1 − ∑ ∑ naa∈A xa,t,r − ∑ ∑ nbb∈B xb,t,r r∈Rr∈R = ht                                             ∀ t ∈ T, t ≤
ster              

(5) dt−1 − ot + ∑ ∑ naa∈A:t−pa≥1 xa,t,r + ∑ ∑ nbb∈B:t−pb≥1 xb,t,rr∈Rr∈R = dt              ∀ t ∈ T  

(6) ot ≤ cap mt                                                                    ∀ t ∈ T                                            

(7) mt ≤ mach                                                                     ∀ t ∈ T, t ≥ 1 + ster 

(8) ∑ xa,t,raϵA + ∑ xb,t,rbϵB ≤ 1                                        ∀ t ∈ T, r ∈ R  

(9) ∑ ∑ xb,t,rr∈Rt∈T:t≤T′−pb
= 1                                        ∀b ∈ B  

(10) ∑ ∑ xa,t,rrϵR
t=va+ea
t=va

= 1                                               ∀a ∈ A  

(11) ht ≥ buffer                                                                     ∀ t ∈ T     
(12) t′a,r ≥ t xa,t,r                                                                  ∀a ∈ A, r ∈ R, t ∈ T, t ≥ va, t ≤ va + ea 

(13) t′b,r ≥ t xb,t,r                                                                  ∀b ∈ B, r ∈ R, t ∈ T 

(14) Cj,r − Ci,r + M(1 − ∑ xj,t,rtϵT ) + M(1 − ∑ xi,t,rtϵT ) + M(1 − fi,j,r) ≥ pj + ster       ∀ j ∈ I, i ∈

I, r ∈ R, i ≠ j   
(15) Ci,r − Cj,r + M(1 − ∑ xi,t,rtϵT ) + M(1 − ∑ xj,t,rtϵT ) + M(fi,j,r) ≥ pi + ster               ∀ j ∈ I, i ∈

I, r ∈ R, i ≠ j   

(16) Ci,r = ∑ (t + pi)(xi,t,r )                                             ∀ i ∈ I, r ∈ R t∈T    

(17) Cmax ≥ Ci,r                                                                      ∀ i ∈ I, r ∈ R                

(18) xi,t,r ∈ {0,1}                                                                       ∀ i ∈ I, t ∈ T, r ∈ R 

(19) fi,j,r ∈ {0,1}                                                                              ∀ i ∈ I, j ∈ I, r ∈ R  

(20) ht, dt, ot, mt ≥ 0   and   integer                                          ∀ t ∈ T   

In the model, objective function (1) minimizes the total cost of sterilization, tardiness cost in elective operations, 

and the  timely operation cost. Objective function (2) minimizes the last surgery completion time. Equations (3) 

and (4) point to the balanced inventory of sterilization devices regarding their sterilization times. The term (5) 

indicates the number of dirty (unsterilized) devices in each period. Constraint (6) points to the capacity of 

sterilization devices. Constraint (7) indicates the maximum number of sterilization devices. Constraint (8) explains 

that at most one surgery is done at each time and operating room. Constraints (9) and (10) denote the requirement 

for emergency and elective surgeries. Constraint (11) indicates the minimum number of sterilization devices in 

each period. Constraint (12) determines the start time of emergency surgery. Surgery does not begin before an 

emergency patient arrival, and the surgery must not be delayed more than the maximum reasonable time regarding 

the patient's condition. Constraint (13) determines the elective surgeries start time. Constraints (14) and (15) show 

the sequence and scheduling for two operations in one surgery room considering the length of surgeries and their 

sterilization times. Constraint (16) determined the completion time of surgeries. Constraint (17) determines the 

last surgery time. Constraints (18)-(20) indicate the variables' status.  
 

IV. Robust Approach  

This study considers surgery time an indeterministic parameter due to its inherent volatilities due to the specific 

conditions of each patient, the type of surgery, and the different experiences and skills of surgeons. This study 

used the Mulvey et al. [29] robust model to solve the problem under the considered conditions. Mulvey et al. [29] 

presented a framework for robust optimization, which include two concepts of “robust solution” and “robust 

model”. Accordingly, a solution is robust when all scenarios remain near to optimum point. Moreover, a model is 

robust when all scenarios are almost reasonable or justifiable. Penalty and weight are assigned to the lack of a 
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model and solution robust in an objective model of [29]. An exchange occurs between model robustness and  

solution regarding the decision-maker's preferences in this model. Consider following the linear programming 

model with stochastic parameters for a better explanation:  

min cTx + dTy (21) 

s.to: Ax = b (22) 

Bx +  Cy = e (23) 

x ≥ 0 ,    y ≥ 0 (24) 

Variable x denotes a vector of design variables and variable y represents the control variable. Matrixes A, B, and 

C include parameters of variables' coefficients at the left side of constraints; e and b denote the vector of right-

hand parameters. Moreover, A and b are deterministic and B, C, and e are indeterministic. The actualization of 

each value for the indeterministic parameter is called a scenario, which is indicated by s and probability ps. The 

set of scenarios is shown by Ω={1,2,…, S}. indeterministic coefficients B, C, and e are indicated as Cs, Bs, and es 

for each scenario. Moreover, the set {y1, y2, …, ys} includes a set of control variables for each scenario. The model 

is formulated as follows:  
 

min γ(x, y1, y2, … , ys)  +  ωp(η1, η2, … , ηs) (25) 

s.to: Ax = b (26) 

Bsx +  Csys + ηs = es                      ∀s ∈ Ω (27) 

x ≥ 0 ,    ys ≥ 0,     ηs  ≥ 0                 ∀s ∈ Ω (28) 
 

The model might be unjustifiable for some scenarios due to indeterministic parameters. The set {η1, …., ηs} 

includes error vectors measuring the unjustifiableness rate of each scenario. The ηs equals 0 id model is reasonable 

for scenario s, it will be a positive number otherwise. In this model, the robustness part of the solution in the 

objective function has γ weight, and model robustness takes the weight ω. In the first part, solution robustness is 

considered, and ξs indicated the cost function or f(x, ys). Mulvey et al. [29] used the following equation for this 

part:  

(29) σ(0) = ∑ psξss∈Ω + γ ∑ pss∈Ω |ξs − ∑ psˊξsˊsˊ∈Ω |  

The problem can be converted to the following linear form:  

)30( Min ∑ psξss∈Ω + γ ∑ pss∈Ω [(ξs − ∑ psˊξsˊsˊ∈Ω ) + 2θs]  
)31( s. to:    ξs − ∑ psˊξsˊs∈Ω + θs ≥ 0                 ∀s ∈ Ω  
)32( θs ≥ 0                                                                ∀s ∈ Ω  

The stochastic robust programming model can be formulated after inserting a penalty for model unjustifiability:  

(33) min ∑ psξss∈Ω + γ ∑ pss∈Ω [(ξs − ∑ psˊξsˊs∈Ω ) + 2θs] + ω ∑ pss∈Ω ηs  
(34) s.to:     Ax = b 

(35) Bsx + Csys +  ηs = es                            ∀s ∈ Ω  

(36) ξs −  ∑ psˊξsˊs∈Ω + θs ≥ 0                      ∀s ∈ Ω  

(37) θs ≥ 0,    x ≥ 0 ,    ys ≥ 0,   ηs  ≥ 0             ∀s ∈ Ω  
 

V. Robust Mathematical Model with Indeterministic Times  

This part of the study uses the robust model of a problem for operating room and sterilization planning with 

indeterministic times which it is presented in [27]. It is worth noting that the following elements are used in 

addition to the variables, indexes, and sets introduced above: 

Indexes 

 s, s′: scenarios s, s′ ∈ Ω 
 

Sets  

Ω: the set of scenarios  
 

Parameters  

pi
s: Length of surgery i under the scenario s 

πs: Scenario s probability 

λ: weight of solution robust variability  

ω: unjustifiability weight of model robustness  
 

Decision Variables 

δi
s: unjustifiableness rate of a model comprising unmet demand for surgery i in scenario s 



 
 
 

Journal of Industrial Engineering International, 19(2), June 2023 

 

 
  

64 

ci,r
s : completion time of surgery i under scenario s 

Cmax
s
: The last surgery completion time under scenario s 

(38) min ∑ cost1mtt∈T +  ∑ ∑ ∑ t cost2br∈Rt∈Tb∈B xb,t,r + ∑ ∑ ∑ cost3ar∈Rt∈T xa,t,ra∈A +
∑ ∑ ∑  cost4br∈Rt∈Tb∈B xb,t,r  

(39) min  λ ∑ πscmax
s

s∈Ω + (1 − λ) ∑ πs
s∈Ω [(cmax

s − ∑ πs′cmax
s′

s′∈Ω ) + 2θs] + ω ∑ ∑ πs
i∈Is∈Ω δi

s  

 S.to: 

(40) ht−1 − ∑ ∑ naa∈A xa,t,r − ∑ ∑ nbb∈B xb,t,r +  ot−sterr∈Rr∈R = ht                   ∀ t ∈ T, t ≥ 1 + ster  

(41) ht−1 − ∑ ∑ naa∈A xa,t,r − ∑ ∑ nbb∈B xb,t,r r∈Rr∈R = ht                                      ∀ t ∈ T, t ≤ ster  

(42) dt−1 − ot + ∑ ∑ naxa,t,ra∈A:t−pa
s ≥1 + ∑ ∑ nbb∈B:t−pb

s ≥1r∈Rr∈R xb,t,r = dt        ∀ t ∈ T , s ∈ Ω  

(43) ot ≤ cap mt                                                                                             ∀ t ∈ T  
(44) mt ≤ mach                                                                                              ∀ t ∈ T, t ≥ 1 + ster  

(45) ∑ xa,t,raϵA + ∑ xb,t,rbϵB ≤ 1                                                                 ∀ t ∈ T, r ∈ R  

(46) ∑ ∑ xb,t,rr∈Rt∈T:t≤T′−pb
s = 1                                                                  ∀b ∈ B, s ∈ Ω  

(47) ∑ ∑ xa,t,rrϵR
t=va+ea
t=va

= 1                                                                         ∀a ∈ A  

(48) ht ≥ buffer                                                                                               ∀ t ∈ T 
(49) t′a,r ≥ t xa,t,r                                                                             ∀a ∈ A, r ∈ R, t ∈ T, t ≥ va, t ≤ va + ea 

(50) t′b,r ≥ t xb,t,r                                                                                     ∀b ∈ B, r ∈ R, t ∈ T 

(51) Cj,r
s′

  − Ci,r
s   + M(1 − ∑ xj,t,rtϵT ) + M(1 − ∑ xi,t,rtϵT ) + M(1 − fi,j,r) ≥ pj

s′
+ ster       ∀ j ∈ I, i ∈

I, r ∈ R, i ≠ j , s, s′ ∈ Ω  
(52) Ci,r

s   − Cj,r
s′

  + M(1 − ∑ xi,t,rtϵT ) + M(1 − ∑ xj,t,rtϵT ) + M(fi,j,r) ≥ pi
s + ster                ∀ j ∈ I, i ∈

I, r ∈ R, i ≠ j , s, s′ ∈ Ω  
(53) Ci,r

s = ∑ (t + pi
s)( xi,t,r ) + δi

s                                                         ∀ i ∈ I,   r ∈ R t∈T , s ∈ Ω  

(54) cmax
s ≥  Ci,r

s                                                                                              ∀ i ∈ I,   r ∈ R , s ∈ Ω 

(55) (cmax
s − ∑ πs′cmax

s′
s′∈Ω ) +   θs  ≥ 0                                               ∀s ∈ Ω  

(56) xi,t,r ∈ {0,1}                                                                                              ∀ i ∈ I, t ∈ T, r ∈ R 

(57) fi,j,r ∈ {0,1}                                                                                               ∀ i ∈ I, j ∈ I, r ∈ R 

(58) ht, dt, ot, mt ≥ 0   and   integer                                                           ∀ t ∈ T 
 

In this model, Equation (38) minimizes the total costs of sterilization, tardiness in elective surgeries, and cost of 

operations. Equation (39) minimizes the last surgery completion time. Equations (40) and (41) balance the number 

of sterilization devices regarding their sterilization time. The term (42) indicates the number of unsterilized 

devices in each period. The constraint (43) points to the capacity of sterilization devices. The constraint (44) 

denotes the maximum number of sterilization devices. The constraint (45) indicates one surgery is done in each 

operating room per time. Constraints (46) and (47) point to the requirement of elective and emergency surgeries 

for patients. The constraint (48) indicates the minimum number of sterilization devices in each period. The 

constraints (49) and (50) indicate start times of emergency and elective surgeries, respectively. The constraints 

(51) and (52) indicate simultaneous scheduling for two surgeries in one operating room regarding the surgeries’ 

lengths and sterilization time. The constraint (53) indicates the surgeries completion time in each operating room 

under each scenario. The constraint (54) denotes the  last surgery completion time under each scenario. The 

constraint (55) is the control constraint under each scenario. The other constraints indicate the variables’ status.  

 

VI.Augmented Epsilon Constraint  

Different technics are used to solve multi-objective problems, including Epsilon Constraint Technic. In this 

technic an objective function is the main and the other objective functions are as the constraints. Augmented 

Epsilon Constraint is one of the developments of Epsilon Constraint. This method generates feasible solutions, 

and the solution algorithm is terminated and not solved for subsequent iterations if the problem is not feasible. 

Hence, Augmented Epsilon Constraint offers higher solution speed compared to conventional Epsilon Constraint. 

Moreover, unlike conventional epsilon constraint, the augmented version uses Lexicographic optimization to form 

a balance table and generate Pareto solutions, the extant study also uses this method to solve small and medium-

scale problems through GAMS software. Because large-scale scheduling problems are NP-Hard, the large-scale 

problem designed in this study could not be solved within a reasonable time through GAMS software. Hence, this 

study uses two metaheuristic algorithms for solution and analysed the obtained results.  
 

VII.NSGA-II  

Deb et al. [30] introduced NSGA-II algorithm based on the elitism and crowding criterion for a fast and 

uncomplicated sorting phase. This algorithm is done as follows:  
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1. Initial population Creation 

2. Calculating fit criteria  

3.  Population sorting based on the domination conditions  

4. Measuring crowding distance  

5. Selection  

6. Creating mutation and crossover to generate new offspring  

7. The initial population integration into the population created by mutation and crossover 

8. The parent population replacing with the best members 

9. Repeating the abovementioned steps until reaching the termination condition  

NSGA-II algorithm is implemented for the introduced model as follows:  
 

VIII.Solution Display 

A structure must be used for solution display in all metaheuristic algorithms. This study uses a matrix to indicate 

surgery orders in each operating room per day. The number of cells of the proposed chromosome solution matrix 

equals a stochastic vector consisting of numbers 0 and 1 with an I+R-1 scale where I indicates the number of 

surgeries and R represents the number of surgery rooms. For instance, if it is required to schedule five surgeries 

in 2 operating rooms then we can have one stochastic chromosome with a length of 6, as shown in Figure 1.  

0.43 0.081 0.248 0.982 0.332 0.619 

FIGURE 1 

 CREATING IN STOCHASTIC CHROMOSOME WITH STOCHASTIC BINARY NUMBERS (BETWEEN 0 AND 1) 
 

The matrix shown in Figure 1 is sorted ascending, and each element of the main vector is determined in the next 

step then the largest numbers are determined based on the number of operating rooms to use as a separator. Figure 

2 is shaped in this step and then we begin from the left side of the vector to find the order and allocation of 

surgeries performed in each operating room. This Figure indicates that surgery 5 is done in the operating room 

then surgery 3 is performed. Moreover, surgeries 2, 1, and 4 are performed in the second operating room, 

respectively.  

 
FIGURE 2 

 SORTING NUMBERS AND DETERMINING THE POSITION OF SEPARATORS IN THE SOLUTION DISPLAY  
 

IX.Creating Initial Solution  

The usual method for initial solutions creation in metaheuristic algorithms is generating a stochastic solution. In 

this study, we create stochastic numbers in size of chromosome length (I+R-1) for surgery assignment and 

scheduling.  
 

X.Crossover Operator  

This operator is the most important feature of the algorithm in which, two selected parents are combined to 

generate one or more offspring as a new solution. In this research, a two-point crossover operator is used. Figure 

3 indicates a sample of a two-point crossover function.  

 
FIGURE 3 

 CROSSOVER FUNCTION 

XI.Mutation Operator  

This study randomly uses one of the swap, insertion, and reversion operators for mutation and creating a 

neighbourhood. The mentioned operators work as follows:  

 Swap Operator  

This operator selects two stochastic points of chromosomes and swaps their place. Figure 4 indicates how this 

operator works.  
 

0.43 0.081 0.248 0.982 0.332 0.619 
 

0.43 0.332 0.248 0.982 0.081 0.619 

FIGURE 4 

 SWAP OPERATOR EXAMPLE  
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 Insertion Operator  

This operator selects two stochastic points of chromosomes and then inserts the first point towards the right side 

of the second point. Figure 5 depicts an example of this operator.  

 

0.43 0.081 0.248 0.982 0.332 0.619 
 

0.43 0.332 0.081 0.248 0.982 0.619 

FIGURE 5 
 INSERTION OPERATOR EXAMPLE  

 

 Reversion Operator 

This operator selects two stochastic points of chromosomes and swaps two points the reverses values between 

these two points. Figure 6 indicates how this operator works.  

0.43 0.081 0.248 0.982 0.332 0.619 
 

0.43 0.332 0.982 0.248 0.081 0.619 

FIGURE 6 

 REVERSION OPERATOR EXAMPLE  
 

XII.Strategy for dealing with infeasible solutions 

Each algorithm considers common strategies for infeasible solutions. This study uses the penalty function when 

there are infeasible solutions. For instance, a high penalty is added to objective functions in case of failure to 

perform surgery, long waiting time for the emergency patient, ignoring the maximum number of devices, or 

inaccessibility to required sterilization devices. 
 

XIII.Sorting Population Members  

Consider solutions x and y are the feasible or justifiable solutions in multi-objective functions; x dominates y if y 

is not better than x and x is strictly better than y in at least in one respect. Non-dominated solutions are called 

Pareto optimum solutions. After the initial population was sorted based on the dominance conditions in this 

algorithm, the crowding distance is measured and selection is done based on the two metrics of population rank 

and distance measurement. In population rank, populations with lower ranks are selected. In the distance 

measurement case, p and q are assumed as two members from the same rank, and the member with the longer 

crowding distance is chosen. Finally, population members are pairwise compared, and the population is sorted 

based on domination and crowding distance. 
 

XIV.Algorithm Termination Condition  

Various conditions can be chosen as termination criteria. This research uses the number of iterations for algorithm 

termination. 
 

XV.NRGA  

Al Jadaan et al. [31] developed an NRGA algorithm for discrete optimization, nonlinear, non-convex problems. 

The NRGA and NSGA-II are different in terms of selection and population sorting. In NRGA, ranked-based 

roulette wheel selection is used instead of a swarm race operator [32] so that better members are selected with a 

higher probability for reproduction and formation of the next generation. Each member has two features: the rank 

of the non-dominated border it is placed and the rank in the border based on the crowding distance. 
 

XVI. Computational Analysis  

The proposed model of this study was solved in small dimensions using the AEC method, while NRGA and 

NSGA-II algorithms were used for large dimensions. Moreover, the quality of metaheuristic algorithms’ 

performance is highly affected by the values of their input parameters. Taguchi method was used to set parameters 

and for better application of the two mentioned algorithms. Moreover, various indicators and statistical assumption 

tests were used to evaluate the efficiency of the abovementioned algorithms.  
 

XVII.Taguchi Method for Setting the Parameters  

Taguchi introduced this method in 1986, and use signal-to-noise ratio which smaller values are better in 

minimization problems, and larger values are better in maximization problems [34].This study used four MaxIt, 

NPop, PC, and PM parameters for two NRGA and NSGA-II algorithms at three levels introduced in Table 2.  
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TABLE 2 

 THE LEVELS OF EACH PARAMETER OF THE BOTH ALGORITHMS 

levels 

Parameters 

NSGA-II NRGA 

 1  2  3  1 2  3 

Population (NPop) 20 60 100 20 60 100 

Crossover Percentage (PC) 0.6 0.7 0.8 0.6 0.7 0.8 

 Mutation Percentage(PM) 0.1 0.2 0.3 0.1 0.2 0.3 

Maximum iteration (MaxIt) 100 300 500 100 300 500 
 

Nine tests were suggested by Minitab16 software using Taguchi method to determine the most efficient level of 

each parameter. To achieve higher performance precision, each test was implemented 25 times through MATLAB 

R2020b software. Finally, the mean value of four NPS, MID, SM, and DM indicators was used for multi-objective 

problems. After normalizing and considering positive and negative indicators, this study integrated them as [34]. 

The outcome was used as equation (59) to determine the response variable.  

(59) Response = √(MID)2 + (SM)2 + (DM)1 + (NPS)12
 

The four indicators have been introduced herein:  

Number of Pareto Solutions(NPS): This indicator shows the number of solutions existing in Pareto pertained. 

The greater value of this index is the best [35].  

Mean Ideal Distance(MID): This index is used to find the distance between Pareto solutions and the ideal point 

of solutions [36]. In this case, n represents the number of Pareto points. Moreover, 𝑓𝑖,𝑡𝑜𝑡𝑎𝑙
𝑚𝑖𝑛  and  𝑓𝑖,𝑡𝑜𝑡𝑎𝑙

𝑚𝑎𝑥  represent   

minimum and maximum values of objective functions, respectively, and  𝑓1
𝑏𝑒𝑠𝑡and 𝑓2

𝑏𝑒𝑠𝑡 indicate the ideal point's 

coordinates.  

(60) 

MID=

∑ √(
𝑓1𝑖−𝑓1

𝑏𝑒𝑠𝑡

 𝑓1,𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥 −𝑓1,𝑡𝑜𝑡𝑎𝑙

𝑚𝑖𝑛 )

2

+(
𝑓2𝑖−𝑓2

𝑏𝑒𝑠𝑡

 𝑓2,𝑡𝑜𝑡𝑎𝑙
𝑚𝑎𝑥 −𝑓2,𝑡𝑜𝑡𝑎𝑙

𝑚𝑖𝑛 )

2

𝑛
𝑖=1

𝑛
 

Spacing Metric(SM): It measures the uniformity of a set of non-dominated points in solution space based on 

Equation (61) where n indicated many Pareto solutions, is the Euclidean distance between two Pareto solutions is 

shown with 𝑑𝑖 , and the average distances between 𝑑𝑖 values is  �̅� [30]. 

(61) 

SM=

√∑ (𝑑𝑖−�̅�)
2𝑛

𝑖=1
𝑛

�̅�
 

 

Diversification Metric(DM): It shows the Pareto solution diversity based on Equation (62) where 𝑓𝑚 
𝑗

 and 𝑓𝑚 
𝑖  

indicate the objective function mth values for two Pareto solutions i and j.  
 

(62) 

𝑑𝑖 = 𝑚𝑎𝑥𝑗 { ∑ (𝑓𝑚
𝑖 − 𝑓𝑚

𝑗
)

2
𝑀

𝑚=1

} 

DM=√∑ 𝑑𝑖
𝑁
𝑖=1  

Table 3 reports the normalized values and response variables. It is worth noting that all results are obtained from 

a system with Intel(R) Core (TM) i5- 4200U, 8GB memory, and Windows 10. 

TABLE 3 

 THE NORMALIZED AND MEASURING RESULTS FOR SETTING PARAMETERS OF THE BOTH ALGORITHMS  

Tes

t 

Parameter NSGA-II NRGA 

Indexes Respons

e 

Indexes Respons

e NPo

p 

P

c 

P

m 

MaxI

t 

NPS DM SM MID NPS DM SM MID 

L1 1 1 1 1 0.667 1 0.635 0.934 1.715 0.25 0.266 0.811 0.653 1.265 

L2 1 2 2 2 0 0.311 1 0.722 1.354 1 0.707 0.022 0.889 1.58 

L3 1 3 3 3 0.833 0.795 0.049 0.899 1.561 0 0.151 0.661 0.592 0.969 

L4 2 1 2 3 0.75 0.395 0.077 0.627 1.243 0.5 0.320 0 0.766 1.186 

L5 2 2 3 1 0.833 0.692 0.266 0.896 1.549 0.75 0.0501 0.544 0.617 1.388 

L6 2 3 1 2 0 0 0.36 0.470 0.593 1 0.393 0.638 0.733 1.527 

L7 3 1 3 2 0.333 0.667 0.971 0.669 1.546 0.5 0 0.829 0.260 1.120 

L8 3 2 1 3 0.75 0.295 0 0 1.022 0.5 0.151 1 0 1.286 

L9 3 3 2 1 1 0.841 0.029 1 1.686 0.75 1 0.569 1 1.753 

Now, the S/N ratio is measured based on response values. The level of each parameter is determined based on 

Figures 7 and 8.  
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FIGURE 8 

 S/N RATIO FOR NRGA ALGORITHM  

FIGURE 7 

 S/N RATIO FOR NSGA-II ALGORITHM 

Hence, the final result of setting parameters is reported in the Figures shown in Table 4. As it is seen, two 

considered algorithms have different values despite identical parameters being considered to set parameters for 

these two algorithms.  
 

TABLE 4 

 THE FINAL RESULT OF THE SETTING PARAMETER 

Parameter NPop PC PM MaxIt 

NSGA-II 20 0.6 0.3 100 

NRGA 100 0.7 0.2 100 
 

Several problems were created randomly to compare algorithms and results of model solutions based on the AEC 

method. Table 5 reports the comparative results. As can be seen, solution time is highly increased from a certain 

dimension threshold. Metaheuristic algorithms are required regarding the nature of the problem and instant 

response to patients.  
TABLE 5 

 COMPARING THE RESULTS OF NSGA-II, NRGA, AND AEC ALGORITHMS FOR SEVERAL EXAMPLES  

Dimension AEC [27]  NSGA-II  NRGA  

i*r*t The first 

objective 

function 

The 

second 

objective 

function 

Solution 

time 

(sec) 

The first 

objective 

function 

The 

second 

objective 

function 

Solution 

time 

(sec) 

The first 

objective 

function 

The 

second 

objective 

function 

Solution 

time 

(sec) 

4*3*20 1250 6.60 12.29 1550 14 5.25 1550 14 72.83 

5*4*30 6770 9.10 24.20 7380 16.4 6.54 7120 15.65 76.04 

7*6*50 21790 11.80 79.39 23110 28 8.93 22046 23.6 84.18 

8*7*60 26036 13.30 996.00 32276 35.8 11.86 30226 30.4 89.88 

9*8*70 55390 15.30 2072.4 68020 43 14.50 67980 40.6 106.99 

It is essential to use metaheuristic algorithms; hence, 12 stochastic examples were used. Table 6 reports the 

specifications of these examples. This study also used different MID, NPS, DM, SM, and solution times for better 

comparison. Figures 9-13 depict the output of mentioned indicators. Ten times of implementation and mean are 

reported as the final solution.  
    TABLE 6 

 SPECIFICATIONS OF 12 STUDIED STOCHASTIC PROBLEMS   

Problem Dimension Problem Dimension Problem Dimension 

i*r*t i*r*t i*r*t 

1 5*4*30 5 10*8*45 9 14*9*55 

2 7*6*50 6 11*8*45 10 15*10*55 

3 8*7*60 7 12*8*50 11 18*10*60 

4 9*8*70 8 13*9*50 12 20*15*70 

As seen in these figures, the solution time of the NRGA algorithm is longer than the NSGA-II algorithm; hence, 

the NSGA-II algorithm is more appropriate. In terms of the rest of the indicators, NRGA outperforms in some 

cases, while NSGA-II outperforms in other cases. Hence, more accurate statistical analyses are required. 
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FIGURE 10 

COMPARING ALGORITHMS IN TERMS OF DM 

FIGURE 9 

 COMPARING ALGORITHMS IN TERMS OF NPS  

  
FIGURE 12 

 COMPARING ALGORITHMS IN TERMS OF SM 
FIGURE 11 

 COMPARING ALGORITHMS IN TERMS OF MID 

 
FIGURE 13 

 DIAGRAM OF COMPARING ALGORITHMS IN TERMS OF TIME 

XVIII. Kruskal-Wallis Test  

It is a nonparametric test for comparing mean values of more than two independent societies. This test does not 

assume that the response variable is distributed normally. Like many nonparametric tests, Kruskal-Wallis Test is 

done on data with rank or time scale when the sample size is small [37]. Therefore, this study conducted this test 

through Minitab 16 software. For this purpose, all data obtained from different societies are considered as a sample 

and then ranked. If repetitive observations exist in the mean values of their ranks, the researcher decides on the 

null hypothesis (H0) regarding this he obtained statistical value. If 𝛼 ≥ 𝑝 − 𝑣𝑎𝑙𝑢𝑒 then H0 (lack of significant 

difference between algorithm’s mean values) is rejected. However, H0 is not rejected when 𝛼 ≤ 𝑝 − 𝑣𝑎𝑙𝑢𝑒. This 

test was conducted at a level of α=0.05 for five criteria of NPS, DM, MID, SM, and Time.  
 

    TABLE 7 
 RESULTS OF THE KRUSKAL-WALLIS TEST  

Algorithm N NPS DM MID SM Time 

Median P-value Median P-value Median P-value Median P-value Median P-value 

NSGA-II 12 3.15 0.817 0.1795 0.436 10.888 0.436 0.5739 0.214 16.86 0.00 

NRGA 12 3.15 0.1947 9.485 0.7795 140.48 
 

1 2 3 4 5 6 7 8 9 10 11 12

NRGA 0.24 0.18 0.19 0.1 0.22 0.16 0.23 0.11 0.18 0.18 0.17 0.16

NSGA-II 0.21 0.13 0.16 0.24 0.21 0.19 0.15 0.19 0.18 0.2 0.21 0.2
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According to results reported in Table 7 and obtained P-values, NRGA and NSGA-II algorithms had no significant 

difference at the level of α=0.05 in terms of DM, NPS, MID, and SM metrics. However, these algorithms 

performed differently in terms of Time, and NSGA-II outperformed NRGA.  

CONCLUSION  

This paper investigate scheduling and planning surgery rooms and sterilization of RMDs for surgeries considering 

elective and emergency patients based on Mulvey's robust approach. This study minimize the total costs and 

completion time of the last surgery. The parameter of surgery length was taken indeterministic variable due to the 

high velocity of surgery length, different physical conditions of patients, and experiences or skills of surgeons. In 

addition to the AEC method, this study developed two metaheuristics algorithms for the mentioned purpose. 

Moreover, these two metaheuristic algorithms were compared based on five indicators, including the NPS, MID, 

SM, DM, and Solution Time. No significant difference was seen in the two algorithms regarding the mentioned 

metrics at a level of α=0.05 except for the solution time index in which, NSGA-II outperformed NRGA and solved 

the problem sooner. Because this problem is considered emergency patients and solution time is a critical factor 

in this case, it is suggested to use the NSGA-II algorithm.  

MANAGERIAL INSIGHTS 

Since the hospital managers seek to minimize the costs of the entire hospital in addition to providing proper service 

to the patients, they should identify the important and effective parameters, and manage various departments in 

an integrated manner instead of managing one department separately. In addition to saving time and money, this 

attitude makes it possible to use the available resources better and finally achieve the intended objectives. In this 

research, it is tried to consider the sterilization and surgery sections at the same time to minimize the costs and the 

last surgery completion time. By scheduling and planning the surgery rooms and the sterile unit, the completion 

time and the total cost of the surgeries will be reduced, which is less than the case where the scheduling and 

planning of the surgery room and the sterile unit are completely separate. Also, since in a hospital, as well as 

elective patients, there are emergency patients who need quick surgeries, it is necessary to use fast methods that 

can provide scheduling and planning for managers. Therefore, in this article, two meta-heuristic algorithms were 

presented that managers can use in their software or application systems. Among these two algorithms, the NSGA-

II has worked better in terms of different indices. One of the most important limitations of this article was that 

unfortunately, despite various efforts, we could not get data from a hospital as a case study. The followings are 

recommendations for further studies: Considering other wards associated with operating rooms, such as the 

recovery unit, recovery bed, etc., cleaning operating rooms, scheduling surgeons, and presenting other algorithms 

compared to algorithms presented in the extant study.   
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