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Abstract 

Logistics in the upstream oil industry is a critical task as rigs need consistent support for ongoing 

production. In this paper, a multi-period, multi-product and multi-hub routing and scheduling model is 

presented for offshore logistics problems. As rigs can be served in specific time intervals, time window 

constraints are considered in the proposed model. Despite classic VRP models, vessels are not forced to 

return hubs at the end of duty days. Also, a vessel may leave and return to hubs several times during the 

planning horizon. Moreover, the model determines which vessels are applied on each day. In other words, 

a vessel may be applied on some days and be inactive on other days of the planning horizon. To develop a 

compromise model, the fueling issue is considered in the model. As a rig can be supplied by different 

vessels in real-world cases, the proposed model is split delivery.  Based on these challenges and 

contributions, this research deploys an integrated optimization of routing and scheduling of vessels for 

offshore logistics. This paper deals with a combinatorial optimization model which is NP-hard. Hence, the 

Genetic Algorithm is applied as the solution approach. The average gap between objective functions of 

GAMS and the GA is only 1.18 percent while saving CPU time in GA is much more than GAMS (about 

78.16 percent on average). The results confirm the applicability and efficiency of the GA.  

Keywords- Routing; Scheduling; Mathematical model; Offshore logistics; Genetic Algorithm 

 

INTRODUCTION  

Nowadays, one of the most challenging issues in designing an efficient offshore logistics network is continuous growth 

in demand. Regarding the demand and other important factors, different strategies have been adopted by shipment 

companies. One of the common strategies is the used of large vessels [1]. Large vessels assist hubs with economies 

of scale, savings in fuel consumption, emission reduction, and lower transportation cost per unit [2]. Logistics in the 

upstream oil industry is a critical task as rigs need consistent support for ongoing production. The main part of the 

total cost in gas and oil industries is related to upstream operations. Moreover, logistics cost is among the main parts 
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of the upstream oil industries' cost. Offshore facilities, i.e. rigs, need continuous and on-time support from the hubs. 

This is done by different types of vessels as well as other vehicles like helicopters. It is clear that a disruption in 

supporting rigs can impose a large amount of cost on rigs. So, exact planning is crucial for offshore logistics. As oil 

rigs need a lot of equipment and manpower that must be provided at the required time, offshore logistics is an important 

and complex problem. Delay in timely delivery of equipment to rigs can impose very high costs [2]. The cost of late 

delivery to the rigs is more than the transportation cost and renting a ship [3]. Therefore, it is necessary to carry out 

offshore logistics planning using optimization models in such a way that the equipment delivery to the rigs is not 

delayed and the costs are minimized. 

      In this paper, a new mathematical model is developed for multi-period, multi-product and multi-hub offshore 

logistics problems. A large number of issues that are common in real-world cases have been considered in this model. 

The offshore logistics network considered in this paper includes some hubs that supply the requested demands of rigs 

using several vessels. Rigs request different goods in different periods. As a rig may be served by more than a vessel 

and in specific time intervals, the model is split delivery type including time window constraints. However, the 

proposed model is significantly distinguished from classic VRP models. In the proposed model, vessels are not forced 

to return hubs at the end of duty days. Also, a vessel may leave a hub and return several days later. Moreover, as the 

problem is formulated in a multi-period horizon, routing constraints are much more complicated than classic routing 

problems. In this paper, a new Mixed Integer Programming model is presented to formulate a real-world offshore 

logistics problem. The proposed model includes routing, scheduling, supply and fuel constraints. As the problem is 

considered in a multi-period horizon and a vessel is not necessarily return hub at the end of the operation day, routing 

constraints are completely different from what is common in classic VRP models. This is the main contribution of the 

model. To solve such a complicated and NP-hard model, the Genetic Algorithm is applied. The conceptual model of 

the research is shown in Figure 1. 
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FIGURE 1 

THE CONCEPTUAL MODEL 
 

The rest of the paper is organized as follows: In the next section, recent literature is briefly reviewed. Then, the 

framework of the proposed problem and mathematical model is explained in detail. Then, the solution approach and 

computational results are discussed. Finally, concluding remarks are presented.  

 

LITERATURE REVIREW 

In this section, recent studies on liner ships and offshore logistics are reviewed. Some of the related researches include 

the aforementioned decisions have been conducted to date [3]. Giovannini and Psaraftis [4] discussed 1service 

frequency to maximize the total profit. Huang et al. [5] presented a mechanism to reposition empty containers. Ozcan 

et al. [6] designed ship schedules while addressing the cargo allocation problem and considering transshipment 

operations and transit times. Zhang et al. [7] studied shipment scheduling for a two-way tidal channel, whose depth 
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was impacted by tides. Alehashemi et al., [8] proposed a novel three-phase algorithm to find the optimal fleet of 

vessels and a schedule of the routes. Amiri et al., [9] considered a hub location and ship routing problem for a real-

world case. They formulated the model with VRP with time window constraints. In another research, Amiri et al., [10] 

generated a Lagrangian decomposition solution for a two-echelon node-based location-routing of an offshore logistics 

network design problem. Most notably, Borthen et al., [11] minimized the total cost of sailing costs and the changes 

from the baseline solution. A traditional genetic metaheuristic was used to find a tradeoff between two solutions. 

Abbasi-Pooya and Husseinzadeh Kashan [12] proposed models for offshore crew transportation by helicopters. 

Leggate et al. [13] developed crew scheduling (as well as rescheduling) problems in offshore logistics. Astoures et al. 

[14] discussed providing fuel requested by rigs. They formulated the model as a ship routing problem with time 

window constraints. Cuesta et al. [15] formulated a single hub ship routing problem considering regular and express 

voyages. If the demand for a rig exceeds ship capacity, an express voyage is scheduled. 

      Silva et al. [16] formulated an MILP model for an offshore logistics to balance fleet utilization and fuel cost. They 

used a number of data sets as benchmarks to justify the proposed model and solution approach. Bittencourt et al. [17] 

proposed an integrated simulation and optimization approach for offshore logistics and applied it in a Brazilian case. 

Based on benchmarks, they showed that their approach outperformed previous models in decreasing the number of 

applied vessels. Kondratenko et al. [18] formulated a model for an offshore logistics to supply drilling equipment to 

the rigs considering accidental events. They used the Artificial Bee Colony algorithm as the solution approach and 

justified it using some real case studies. Kisialiou et al. [19] formulated vessel scheduling under weather uncertainty 

for a Norwegian offshore oil and gas case. The model found the optimum composition of fleet among different types 

of vessels. Nafstad et al. [20] formulated personnel transportation from rigs to shore by helicopters. They considered 

the problem as a VRP with pickup and delivery with heterogeneous fleet. The main contribution of this paper is that 

vessels are not necessarily return hubs at the end of the operation day. This causes routing constraints to be more 

complex and different from what is common in classic VRP models. Moreover, the proposed model integrates routing, 

scheduling, supply and fuel constraints.  

      
PROBLEM STATEMENT AND MATHEMATICAL MODEL   

In this section, the problem and mathematical model are described in detail. To formulate the model in such a way 

that covers real-world conditions, four sets of constraints have been formulated: routing, scheduling, supplying and 

fueling constraints. Here, the specifications of each section are described:  

To formulate the routing section, set N is defined to show all nodes of the network, including hubs (H) and rigs (D). 

So, 𝑁 = 𝐻 ∪ 𝐷. We also use i, i' and j as indices of nodes. Clearly, i-j is considered as an arc in this graph. A fleet of 

vessels, which are indexed by v (𝑣 ∈ 𝑉), are applied to serve rigs by supplying different types of products (𝑝 ∈ 𝑃). 

The hub from which vessel v starts its trip is called 𝐻𝑣 . As this is a multi-period problem, index t is introduced to show 

individual days of planning horizon (𝑡 ∈ 𝑇). Regarding the problem being formulated in a multi-period horizon, 

routing constraints are much more complicated than classic routing problems. For instance, if a vessel ends its trip on 

day t at rig i, it should resume the trip on day t+1 from i. To formulate routing constraints, index r is defined to indicate 

the trip number. To illustrate, suppose that a vessel starts its duty from hub i to rig i' and continues it by covering arcs 

i'-j and j-j' (i,i',j and j' are nodes of the network). In this case, r equals one for arc i-i', equals two for arc i'-j and equals 

three for j-j'.                  

      Three binary variables are defined for the routing section of the model. 𝑋𝑖𝑗𝑣𝑟𝑡 equals one if vessel v covers arc i-j 

at the rth trip on day t. Also, 𝑍𝑣𝑟𝑡 equals one if vessel v ends its duty on day t in the rth trip. In other words, if the last 

trip of vessel v on day t is related to its rth movement, 𝑍𝑣𝑟𝑡 equals one. As a vessel is not necessarily applied on all 

days of the planning horizon, 𝛼𝑣𝑡 is defined to show whether vessel v is applied on day t.      

In the scheduling section of the model, some new parameters and variables should be defined. Parameter 𝑇𝑟𝑎𝑖𝑗  shows 

the required time for covering arc i-j (traveling time from node i to j). To formulate time window constraints, 

(un)loading time is shown by 𝑈𝐿𝑖  and (𝑎𝑖 , 𝑏𝑖) is time window to serve node i. Positive variable 𝑌𝑖𝑣𝑟𝑡  shows arriving 

time of vessel v (after rth trip) to node i on day t.  

     In the supplying section of the model, some issues such as demand and capacity are considered. As each rig requires 

a certain type of goods (items), 𝑃𝑖  means the set of required goods for rig i. Also, 𝐷𝑒𝑚𝑝𝑖𝑡  is the demand of rig i for 

good p on day t. Capacity of vessels and weight of goods are shown by 𝐶𝑎𝑝𝑣 and 𝑊𝑝, respectively.  Moreover, 𝐼𝐶𝑝𝑖 
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and 𝑆𝐶𝑝𝑖 are inventory and shortage cost of good p for rig i, respectively. Four decision variables are defined for this 

section. 𝑄𝑝𝑖𝑣𝑟𝑡is the amount of good p delivered to rig i by vessel v after its rth trip on day t. 𝐿𝑝𝑖𝑣𝑟𝑡 is the remaining 

amount of good p on vessel v when it reaches i after its rth trip on day t. Finally, the shortage of good p for rig i on day 

t is shown by 𝑆ℎ𝑝𝑖𝑡.  

      At the end, the parameters and variables of the fueling section of the model are described. Required fuel for 

covering arc i-j, fuel capacity of vessel v and required time for fueling is shown by 𝐹𝑢𝑒𝑙𝑖𝑗 , 𝐹𝐶𝑣 and 𝐹𝑇𝑣, respectively. 

Also, 𝑇𝐶𝑖𝑗  is the cost of covering arc i-j (fuel cost). 𝑈𝑖𝑣𝑟𝑡 is a binary variable indicating whether vessel v is going to 

fuel at node i before starting rth trip on day t. Also, 𝐺𝑖𝑣𝑟𝑡 is the remaining fuel of vessel v when it leaves node i after 

its rth trip on day t. Below, the mathematical formulation is presented. To simplify the description, model constraints 

are divided into four sections: routing, scheduling, supplying and fueling constraints. The proposed model is based on 

the following assumptions: 

- The model is considered for a multi-period and multi-product problem.  

- The problem is a pickup and delivery VRP with time window. 

- A vessel is not necessarily return hubs at the end of duty day and can end its duty to a rig. 

- If a vessel is not going to be used on day t, it should return a hub at the end of t-1.  

- Shortage is allowed and can be compensated in the following time periods. 

- Fueling is done in hubs, not rigs. 

- Vessels are heterogeneous. 

At first, sets and indices, parameters and variables are presented as follows: 

Sets and indices: 

𝐻 Set of all hubs 

𝐷 Set of all rigs 

𝑁 Set of all nodes, including hubs and rigs (𝑁 = 𝐻 ∪ 𝐷) 

𝑖, 𝑖′, 𝑗 Index of node  

𝑉 Set of all vessels 

𝑣 Index of vessel 

𝐻𝑣  The hub of vessel v at the beginning of the planning horizon 

𝑃 Set of all products (goods)  

𝑝 Index of product  

𝑃𝑖  Set of all products required by rig i 

𝑇 Set of all time periods (days) 

𝑡, 𝑡′, , 𝑡′′ Index of time periods (day) 

𝑅 Set of all trip rounds 

𝑟, 𝑟′ Index of trip round 

 

Parameters 

𝑇𝐶𝑖𝑗  Travelling cost from i to j 

𝑇𝑟𝑎𝑖𝑗  Travelling time from i to j 

𝐹𝑢𝑒𝑙𝑖𝑗  Required fuel to travel from i to j 

𝑆𝐶𝑝𝑖 Shortage cost of product p for rig i 

𝐼𝐶𝑝𝑖 Cost of holding one unit of product p in rig i in a time period 

𝐷𝑒𝑚𝑝𝑖𝑡  Demand of rig i from product p on day t 

𝑊𝑝 Weight of one unit of product p  

𝑈𝐿𝑖  Unloading time of the demand of rig i  

𝐹𝑇𝑣 Required time for fueling vessel v 

𝐹𝐶𝑣 Fuel capacity of vessel v 

𝐶𝑎𝑝𝑣 Capacity of vessel v 

(𝑎𝑖 , 𝑏𝑖) Time window for rig i  
𝑀 Big number 
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Variables 

𝑋𝑖𝑗𝑣𝑟𝑡 Binary variable indicating whether vessel v covers arch i-j in its rth travel on day t  

𝑆ℎ𝑝𝑖𝑡 Unfulfilled demand of rig i from product p on day t 

𝐼𝑛𝑣𝑝𝑖𝑡  Inventory of rig i from product p at the end of day t 

𝛼𝑣𝑡 Binary variable indicating whether vessel v is applied on day t  

𝑍𝑣𝑟𝑡 Binary variable indicating whether vessel v ends its mission on day t at its rth travel 

𝑌𝑖𝑣𝑟𝑡  Arriving time of vessel v to node i on day t (after rth trip) 

𝑈𝑖𝑣𝑟𝑡 Binary variable indicating whether vessel v is going to fuel at node i before starting its  rth trip on 

day t  

𝑄𝑝𝑖𝑣𝑟𝑡 The amount of product p delivered to rig i by vessel v after its rth trip on day t  

𝐿𝑝𝑖𝑣𝑟𝑡 The remaining amount of product p on vessel v when it reaches i after its rth trip on day t 

𝐺𝑖𝑣𝑟𝑡 The remaining fuel of vessel v when it leaves node i after its rth trip on day t 

 
I. Objective function 

The objective function of the model is cost minimization and is written as follows: 

 

𝑀𝑖𝑛 ∑ ∑ ∑ ∑ ∑ 𝑇𝐶𝑖𝑗𝑋𝑖𝑗𝑣𝑟𝑡

𝑡∈𝑇𝑟∈𝑅𝑣∈𝑉𝑗∈𝑁:
𝑗≠𝑖

𝑖∈𝑁

+ ∑ ∑ ∑ 𝑆𝐶𝑝𝑖𝑆ℎ𝑝𝑖𝑡

𝑡∈𝑇𝑝∈𝑃𝑖𝑖∈𝐷

+ ∑ ∑ ∑ 𝐼𝐶𝑝𝑖𝐼𝑛𝑣𝑝𝑖𝑡

𝑡∈𝑇𝑝∈𝑃𝑖𝑖∈𝐷

                                                   (1) 

 

The first term of the objective function (1) is to minimize transportation (fuel) costs. The second and the third terms 

show shortage and inventory costs, respectively. 

 

II. Routing constraints 

The routing section of the model significantly differs from classic VRP models. As the problem is multi-period type, 

vessels are not forced to return hubs at the end of each duty day. A vessel may end its duty on day t to a rig and resume 

its duty on the next day from that rig. Moreover, a vessel may be inactive on day t. If so, it should return a hub at the 

end of t-1. In other words, a vessel cannot spend its off day in a rig. Below, a set of routing constraints is presented:    

 

𝛼𝑣𝑡 = ∑ ∑ 𝑋𝑖𝑗𝑣𝑟𝑡

𝑗∈𝑁:
𝑗≠𝑖

𝑖∈𝑁

    ∀𝑣 ∈ 𝑉, 𝑟 = 1, 𝑡 ∈ 𝑇                                                                                                                              (2) 

𝛼𝑣𝑡 − ∑ 𝛼𝑣𝑡 ′

𝑡−1

𝑡 ′=1

≤ ∑ 𝑋𝑖𝑗𝑣𝑟𝑡

𝑗∈𝑁:
𝑗≠𝑖

     ∀𝑣 ∈ 𝑉, 𝑖 = 𝐻𝑣 , 𝑟 = 1, 𝑡 ∈ 𝑇                                                                                                 (3) 

∑ 𝑋𝑖𝑗𝑣𝑟𝑡

𝑖∈𝑁:
𝑖≠𝑗

− 𝑍𝑣𝑟𝑡 ≤ ∑ 𝑋𝑗𝑖𝑣(𝑟+1)𝑡

𝑖∈𝑁:
𝑖≠𝑗

      ∀𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                        (4) 

∑ ∑ 𝑋𝑖𝑗𝑣𝑟𝑡

𝑗∈𝑁:
𝑗≠𝑖

𝑖∈𝑁

= ∑ ∑ 𝑋𝑖𝑗𝑣(𝑟+1)𝑡

𝑗∈𝑁:
𝑗≠𝑖

𝑖∈𝑁

+ 𝑍𝑣𝑟𝑡       ∀𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                      (5) 

∑ ∑ 𝑋𝑖𝑗𝑣𝑟𝑡

𝑗∈𝑁:
𝑗≠𝑖

𝑖∈𝑁

≤ 1       ∀𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                                                                (6) 

𝛼𝑣𝑡 − 𝛼𝑣(𝑡+1) ≤ ∑ ∑ 𝑋𝑖𝑗𝑣𝑟𝑡

𝑗∈𝐻:
𝑗≠𝑖

𝑖∈𝑁

+ 𝑀(1 − 𝑍𝑣𝑟𝑡)      ∀𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                              (7) 



Journal of Industrial Engineering International, 19(2), June 2023 

 

 J     I     E     I  

 

51 

∑ 𝑋𝑖𝑗𝑣𝑟𝑡

𝑖∈𝑁:
𝑖≠𝑗

+ 𝑍𝑣𝑟𝑡 ≤ ∑ 𝑋𝑗𝑖𝑣𝑟 ′𝑡 ′ + 1 + 𝑀(1 − 𝛼𝑣𝑡 ′)
𝑖∈𝑁:
𝑖≠𝑗

+ 𝑀 ∑ 𝛼𝑣𝑡 ′′

𝑡 ′−1

𝑡 ′′=𝑡+1

  

∀𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑟′ = 1, 𝑡, 𝑡 ′ ∈ 𝑇: 𝑡 < 𝑡 ′                                                                                                                            (8) 

 

Equation (2) indicates that if a vessel is going to be applied on day t, it should perform its first trip on that day. In 

other words, a vessel cannot be applied without initiating its trip. Constraint (3) ensures that a vessel starts its first trip 

of the planning period from the related hub. Constraint (4) shows that if a vessel covers an arc while it is not on its 

last trip on that day, it should perform at least one other trip. Constraint (5) shows that if a vessel covers an arc and 

does not cover any arc afterward, it is assumed as its last trip on that day. Constraint (6) ensures that a vessel cannot 

cover more than one arc during a single trip. Relation (7) shows that if a vessel is not going to be applied on day t, it 

should return a hub at the end of t-1. Note that M is a big number. Constraint (8) ensures the trip continuity of a vessel 

on consecutive days. If a vessel ends its duty on day t at rig i, it should resume its duty on t+1 form i.  

    

III. Scheduling constraints 

Set of scheduling constraints are as follows: 

 

𝑌𝑗𝑣𝑟𝑡 ≥ 𝑌𝑖𝑣(𝑟−1)𝑡 + 𝑈𝐿𝑖 + 𝑇𝑟𝑎𝑖𝑗 + 𝐹𝑇𝑣𝑈𝑖𝑣𝑟𝑡 − 𝑀(1 − 𝑋𝑖𝑗𝑣𝑟𝑡)      

∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                                                                             (9) 

𝑌𝑖𝑣𝑟𝑡 ≤ 1440            𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                                                        (10) 

𝑌𝑗𝑣𝑟𝑡 ≥ 𝑎𝑗 − 𝑀(1 − ∑ 𝑋𝑖𝑗𝑣𝑟𝑡

𝑖∈𝑁:
𝑖≠𝑗

)   ∀𝑗 ∈ 𝐷, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                             (11) 

𝑌𝑗𝑣𝑟𝑡 ≤ 𝑏𝑗 + 𝑀(1 − ∑ 𝑋𝑖𝑗𝑣𝑟𝑡

𝑖∈𝑁:
𝑖≠𝑗

)   ∀𝑗 ∈ 𝐷, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                              (12) 

𝑌𝑖𝑣𝑟𝑡 ≤ 𝑀 ∗ ∑ 𝑋𝑗𝑖𝑣𝑟𝑡

𝑗∈𝑁:
𝑗≠𝑖

      ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                                          (13) 

        

Constraint (9) shows that a vessel arrives at j after arriving i, unloading its demand, fueling (if needed) and spending 

travelling time from i to j. Also, Constraint (9) can be treated as a sub-tour elimination constraint. Relation (10) ensures 

that arriving time of a vessel to a node cannot exceed 24 hours. Relations (11) and (12) dictate time windows 

obligation. Constraint (13) shows the rational relation between decision variables. If 𝑌𝑖𝑣𝑟𝑡  takes a value, ∑ 𝑋𝑗𝑖𝑣𝑟𝑡𝑗∈𝑁:
𝑗≠𝑖

 

will be equal to one. 

 

IV. Supplying constraints 

The main supply constraints include rigs' demand, capacity of vessels and balance of goods in two consecutive nodes 

visited by a vessel. 

 

∑ ∑ 𝑄𝑝𝑖𝑣𝑟𝑡

𝑟∈𝑅𝑣∈𝑉

+ 𝐼𝑛𝑣𝑝𝑖(𝑡−1) + 𝑆ℎ𝑝𝑖𝑡 = 𝐷𝑒𝑚𝑝𝑖𝑡 + 𝑆ℎ𝑝𝑖(𝑡−1) + 𝐼𝑛𝑣𝑝𝑖𝑡       ∀𝑖 ∈ 𝐷, 𝑝 ∈ 𝑃𝑖 , 𝑡 ∈ 𝑇                                    (14) 

∑ 𝑊𝑝𝐿𝑝𝑖𝑣𝑟𝑡

𝑝∈𝑃

≤ 𝐶𝑎𝑝𝑣      ∀𝑖 ∈ 𝐷, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                                             (15) 

𝐿𝑝𝑗𝑣𝑟𝑡 ≤ 𝐿𝑝𝑖𝑣(𝑟−1)𝑡 − 𝑄𝑝𝑖𝑣(𝑟−1)𝑡 + 𝑀(1 − 𝑋𝑖𝑗𝑣𝑟𝑡)       ∀𝑖 ∈ 𝐷, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅: 𝑟 > 1, 𝑡 ∈ 𝑇        (16) 
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𝐿𝑝𝑗𝑣𝑟𝑡 ≤ 𝐿𝑝𝑖𝑣𝑟 ′(𝑡−1) − 𝑄𝑝𝑖𝑣𝑟 ′(𝑡−1) + 𝑀(3 − ∑ 𝑋𝑖′𝑖𝑣𝑟 ′(𝑡−1)

𝑖′∈𝑁:
𝑖′≠𝑖

− 𝑍𝑣𝑟 ′(𝑡−1) − 𝑋𝑖𝑗𝑣𝑟𝑡) 

∀𝑖 ∈ 𝐷, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉, 𝑟 = 1, 𝑟′ ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                                        (17) 

𝑄𝑝𝑖𝑣𝑟𝑡 ≤ 𝐿𝑝𝑖𝑣𝑟𝑡        ∀𝑖 ∈ 𝑁, 𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                                          (18) 

∑ 𝑄𝑝𝑖𝑣𝑟𝑡

𝑝∈𝑃

+ ∑ 𝐿𝑝𝑖𝑣𝑟𝑡

𝑝∈𝑃

≤ 𝑀 ∗ ∑ 𝑋𝑗𝑖𝑣𝑟𝑡

𝑗∈𝑁:
𝑗≠𝑖

      ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                          (19) 

 

Equation (14) is demand constraint. According to this constraint, if the required demand of a rig is not met, the shortage 

is considered. Relation (15) is capacity constraint of vessels. Relation (16) indicates the balance of goods in two 

consecutive nodes visited by a single vessel in a day. Similarly, Constraint (17) indicates the balance of goods in two 

consecutive nodes visited by a single vessel in two consecutive days. In other words, it shows the balance of goods 

between the last rig visited on day t and the first rig visited on day t+1. Relation (18) ensures that amount of delivery 

does not exceed the available goods in the vessel. Finally, Relation (19) shows that if a rig is served, it should be 

visited. Similar to (13), if ∑ 𝑄𝑝𝑖𝑣𝑟𝑡𝑝∈𝑃  or ∑ 𝐿𝑝𝑖𝑣𝑟𝑡𝑝∈𝑃 take a value, ∑ 𝑋𝑗𝑖𝑣𝑟𝑡𝑗∈𝑁:
𝑗≠𝑖

 will be equal to one. 

V. Fuel constraint 

To develop a compromise model, fueling issue is considered in the model. A vessel can fuel only in hubs. Fueling 

constraints are as follows: 

  

𝐺𝑖𝑣𝑟𝑡 ≥ 𝐹𝑢𝑒𝑙𝑖𝑗 − 𝑀(1 − 𝑋𝑖𝑗𝑣𝑟𝑡)   ∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                             (20) 

𝐺𝑗𝑣𝑟𝑡 ≤ 𝐺𝑖𝑣(𝑟−1)𝑡 − 𝐹𝑢𝑒𝑙𝑖𝑗 + 𝑀(1 − 𝑋𝑖𝑗𝑣(𝑟−1)𝑡) + 𝑀𝑈𝑗𝑣𝑟𝑡            ∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑣 ∈ 𝑉, 𝑟 > 1, 𝑡 ∈ 𝑇                      (21) 

𝐺𝑗𝑣𝑟𝑡 ≤ 𝐹𝐶𝑣 + 𝑀(1 − 𝑋𝑖𝑗𝑣(𝑟−1)𝑡) + 𝑀(1 − 𝑈𝑗𝑣𝑟𝑡)                         ∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑣 ∈ 𝑉, 𝑟 > 1, 𝑡 ∈ 𝑇                      (22) 

𝐺𝑗𝑣𝑟𝑡 ≤ 𝐺𝑖𝑣𝑟 ′(𝑡 ′−1) − 𝐹𝑢𝑒𝑙𝑖𝑗 + 𝑀(2 − 𝑋𝑖𝑗𝑣𝑟 ′(𝑡 ′−1) − 𝑍𝑣𝑟 ′(𝑡 ′−1)) + 𝑀𝑈𝑗𝑣𝑟𝑡 + 𝑀 ∑ 𝛼𝑣𝑡 ′′

𝑡−1

𝑡 ′′=𝑡 ′

 

∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑣 ∈ 𝑉, 𝑟 = 1, 𝑟′ ∈ 𝑅, 𝑡, 𝑡 ′ ∈ 𝑇: 𝑡 ′ ≤ 𝑡                                                                                                           (23) 

𝐺𝑗𝑣𝑟𝑡 ≤ 𝐹𝐶𝑣 + 𝑀(2 − 𝑋𝑖𝑗𝑣𝑟 ′(𝑡 ′−1) − 𝑍𝑣𝑟 ′(𝑡 ′−1)) + 𝑀(1 − 𝑈𝑗𝑣𝑟𝑡) + 𝑀 ∑ 𝛼𝑣𝑡 ′′

𝑡−1

𝑡 ′′=𝑡 ′

 

∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑣 ∈ 𝑉, 𝑟 = 1, 𝑟′ ∈ 𝑅, 𝑡, 𝑡 ′ ∈ 𝑇: 𝑡 ′ ≤ 𝑡                                                                                                           (24) 

𝐺𝑖𝑣𝑟𝑡 ≤ 𝐹𝐶𝑣       ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                                                            (25) 

∑ ∑ ∑ ∑ 𝑈𝑖𝑣𝑟𝑡

𝑡∈𝑇𝑟∈𝑅𝑣∈𝑉𝑖∈𝐷

= 0                                                                                                                                                               (26) 

𝐺𝑖𝑣𝑟𝑡 ≤ 𝑀 ∑ 𝑋𝑖𝑗𝑣𝑟𝑡

𝑗∈𝑁:
𝑗≠𝑖

          ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                                                                         (27) 

 

Constraint (20) ensures that a vessel has sufficient fuel for covering arc i-j. Relations (21) and (22) show the amount 

of fuel in a vessel in two consecutive nodes (i and j) covered in a single day. Constraint (21) is valid if the vessel does 

not take fuel in i while (22) is valid if the vessel takes fuel in i before traveling to j. Similarly, Relations (23) and (24) 

show the amount of fuel in two consecutive nodes (i and j) covered on two consecutive days (i is the last node visited 

by the vessel on day t and j is the first one visited on t+1). Constraint (25) indicates the fuel capacity of vessels. 

Relation (26) ensures that a vessel cannot take fuel in rigs. Finally, Constraint (27) is interpreted like (13) and (19).  

SOLUTION APPROACH AND COMPUTATIONAL RESULTS  

The literature approved that the routing and scheduling of ship models are classified as NP-hard problems. This issue 

confirms the needs and benefits of the metaheuristics for solving these combinatorial models. The high complexity of 
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the routing and scheduling of liner ships in large-scale instances motivates several researchers to propose novel 

metaheuristics. This study applies GA to provide a comparison with the exact solver based on the solution time and 

quality. GA is a traditional metaheuristic that has been used in many optimization models, especially the optimization 

of offshore logistics. Each solution is called a chromosome. This algorithm includes three important parts including 

selection, crossover and mutation: The selection process aims to evaluate the population to select the parents for the 

crossover and mutation operators.  

      In the crossover process, 𝑃𝑛 is the probability of performing the crossover operator. Arbitrarily, a random number 

r is determined in the interval [0,1]. If r ≥ 𝑃𝑛, the chromosome would be considered as the parent.  The last section of 

GA is the mutation operator. Note that 𝑃𝑚is the probability of mutation. A multi-point jump operation is used 

accordingly. For each chromosome, a random number r is defined in interval [0,1]. If r ≥ 𝑃𝑚, this chromosome would 

have this chance to select as the parents. Finally, the GA is terminated up to a maximum number of K iterations. For 

each iteration, the aforementioned processes are done. In this paper, 25 test problems are generated on different scales. 

Problems dimensions are reported in Table 1, where H, D, V, T and P show the number of hubs, rigs, vessels, planning 

horizon days and products, respectively. Some of these test problems can be solved using GAMS in a reasonable time. 

However, some of the large scale ones remain unsolved due to the NP-hardness of the problem. To validate GA as a 

proper solution approach for this problem, the results of GA are compared with GAMS. The results shown in Table 2 

declare that using GA saves 78.16 percent in CPU time in turn of only 1.18 percent gap in objective function value 

(on average). Figure 2 shows the comparison of final solutions reached by GAMS and GA while Figure 3 shows the 

saving in CPU time. All these results confirm the validation of GA as a proper solution approach for this problem.       

 
TABLE 1 

PROBLEM DIMENSIONS 

Problem Number H D V T P 

1 1 3 2 3 2 

2 1 5 2 5 3 

3 2 6 2 5 3 

4 2 8 3 7 3 

5 3 9 3 7 4 

6 3 11 3 7 5 

7 3 12 3 8 5 

8 4 14 4 10 7 

9 4 15 4 11 8 

10 4 16 4 12 8 

11 5 17 4 12 10 

12 5 19 5 12 10 

13 5 20 5 15 12 

14 6 20 5 17 15 

15 6 22 5 17 20 

16 6 24 6 19 25 

17 7 24 6 19 30 

18 7 25 6 20 35 

19 7 25 7 20 40 

20 7 26 7 20 45 

21 8 28 7 22 45 

22 8 28 8 22 50 

23 8 28 8 25 55 

24 8 30 8 25 60 

25 8 30 8 25 65 
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TABLE 2 

COMPUTATIONAL RESULTS  

Comparison GAMS GA 

Improvement 

in CPU time 

(%) 

Gap in the 

objective 

function (%) 

CPU time 

(Seconds) 

Total cost 

(Dollars) 

CPU time 

(Seconds) 

Total cost 

(Dollars) 

Problem 

number 

16.67 0.00 12 225,622 10 225,622 1 

41.67 0.00 48 366,666 28 366,666 2 

79.38 0.02 160 402,002 33 402,094 3 

81.12 0.44 556 453,072 105 455,079 4 

87.18 2.10 1326 477,110 170 487,120 5 

85.47 0.59 2408 510,221 350 513,232 6 

85.45 1.80 3058 556,385 445 566,397 7 

89.79 1.79 4965 559,876 507 569,889 8 

89.88 1.75 7005 571,699 709 581,713 9 

92.63 1.33 12075 600,570 890 608,584 10 

94.17 1.65 15522 605,551 905 615,566 11 

94.59 2.66 17590 619,957 952 636,472 12 

- - - - 970 651,444 13 

- - - - 1075 683,941 14 

- - - - 1200 731,517 15 

- - - - 1234 755,878 16 

- - - - 1537 801,223 17 

- - - - 1790 846,255 18 

- - - - 2087 878,517 19 

- - - - 2560 891,152 20 

- - - - 2745 941,000 21 

- - - - 3046 963,533 22 

- - - - 3468 971,534 23 

- - - - 3944 1,005,220 24 

- - - - 4005 1,120,344 25 

 

 

 

 

 

 

 

 

 

 

FIGURE 2 
               THE COMPARISON OF OBJECTIVE FUNCTION VALUES IN GAMS AND GA 
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FIGURE 3 
COMPARISON OF CPU TIME IN GAMS AND GA  

For more analysis, the last test problem has been considered and sensitivity analysis has been performed on the number 

of vessels. The results indicate that adding two vessels lead to sharp decrease in total cost. It means that by increasing 

the number of vessels from 8 to 10, a 17 percent decrease is caused in the total cost. According to Figure 4, although 

adding vessels to 11 and 12 also leads to cost reduction (from 929,878 dollars to , the amount of decrease may not be 

preferable. In fact, if the vessel cost is more than 10,083 dollars (difference of the objective functions with 10 and 11 

vessels), the best number of vessels will be 10.    

     

 

IGURE 4 
FIGURE 4 

SENSITIVITY ANALYSIS ON THE NUMBER OF VESSELS 
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CONCLUSION 

Providing goods and equipment at the right time is a critical issue in offshore logistics as delay cost is considerable in 

these systems. In this paper, a novel mathematical model has been developed for offshore logistics. The model is a 

multi-period, multi-product and multi-hub routing and scheduling problem. In the presented model, routing, 

scheduling, supplying and fueling constraints have been considered. The presented model includes several real-world 

constraints and is distinguished from classic VRP models in two aspects. Despite classic VRP models, vessels are not 

forced to return hubs at the end of each day. Moreover, it may leave and return to hubs several times during the 

planning horizon. These make routing constraints much more complicated than classic routing ones. Also, these cause 

solution process significantly. Due to the NP-hardness of the problem, the Genetic Algorithm has been applied as a 

solution approach. To validate the solution approach, 25 test problems were developed in different scales and solved 

by GAMS and the GA. The results indicate the average gap between the objective functions of GAMS and GA is only 

1.18 percent. Moreover, saving CPU time in the GA is 78.16 percent more than GAMS. The sensitivity analysis result 

indicates that the optimum number of vessels in 10 if hiring cost of vessels to be less than 10,083 dollars. As future 

research studies, two areas can be suggested: Since fuel is one of the requirements of rigs and there is usually a 

significant amount of fuel in each rig, ships can refuel in the rig in addition to the hub. Moreover, weather condition 

is one of the most important and influential issues in the vessels' schedule, which has not been discussed in this paper. 

Researchers can add weather considerations to the model presented in this paper. 
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