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Abstract 

This work presents a quantitative approach on the basis of Dynamic Bayesian Network to model and evaluate the 

maintenance of multi-state degraded systems and their functional dependencies. The reliability and the availability 

of system are evaluated taking into account the impact of maintenance repair strategies (perfect repair, imperfect 

repair and under condition-based maintenance (CBM)). According to transition relationships between the states 

modeled by the Markov process, a DBN model is established. Using the proposed approach, a DBN model for a 

separator Z1s system of Sour El-Ghozlane cement plant in Algeria is built and their performances are evaluated. 

Through the result of diagnostic, for improving the performances of separator, the components E, R and F should 

give more attention and the results of prediction evaluation show that in comparing with perfect repair strategy, the 

imperfect repair strategy cannot degrade the performances of separator, whereas the CBM strategy can improve the 

performances considerably. These results show the utility of this approach and its use in the context of a predictive 

evaluation process, which allows to offer the opportunity to evaluate the impact of the decisions made on the future 

performances measurement. In addition, the maintenance managers can optimize and improve maintenance 

decisions continuously. 
 

Keywords - Availability; Reliability; Dynamic Bayesian Network; Performance evaluation; Maintenance 

optimization. 

1. INTRODUCTION 

In advanced process industries, availability and reliability 

analysis plays a crucial role in ensuring process safety, 

optimizing the maintenance and increasing production 

capacity. Cement manufacturing is a complex process that 

requires rigorous and continuous maintenance strategies 

adapted to the evolution of the state of systems. In Sour El-

Ghozlane cement plant in Algeria, the grinding mill and the 

separator are essential systems. Placed after the  grinding mill, 

the separator (Z1s) is responsible for the quality of the ground 

product. This system requires precise conditions to provide a 

quality product. An increase in faults significantly affects the 

performance of the system. However, the reliability and the 

availability evaluation of these systems are more complex 

due to their multi-state functionality and failure scenarios of 

their components. The reliability evaluation of the system in 

operating mode consists of analyzing failures component in 

order to estimate their impact on system [1]. 

Traditional analysis methods, such as Failure Modes and 

Effects Analysis (FMEA), Failure Tree Analysis (FTA) are 

used to assess systems reliability, when using these methods, 

it is assumed that the system operates in two states namely; 

perfect operating state and total failure state. However, in 

addition to perfect operation state and complete failure, the 

system can have several intermediate states [2],[3]. Degraded 

systems are functioning systems whose condition degrades 

over time, and this degradation can lead to a decrease in their 

performance and efficiency [4].  Maintenance strategies has 
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a major impact on the evolution of system performance 

measures including reliability and availability.  
In the literature, several models for multi-state systems are 

used to assess these parameters and see how they evolve over 

time. Soro et al. [5] Proposed a model for assessing reliability 

indices and production rate of a degradable multi-state 

system subject to minimal and imperfect repairs. Meanwhile 

[6] proposed an optimal replacement policy based on the 

combination between the Markov model and the Universal 

Generating Function (UGF), to assess the probability of 

system states, a quasi-renewal process is used to describe the 

behavior of the system after imperfect maintenance. 

Lisnianski et al. [7] presented a multi-state Markov model to 

predict the reliability of a power-generating unit for a short-

time period.  Reliability modelling and analysis of a power 

station under fatal and nonfatal shocks is proposed by [8]. 

Moreover, in a research proposed by [9],  a simulation 

approach for reliability assessment of complex system 

subject to stochastic degradation and random shock is 

applied. Attar et al. [10] proposed a simulation-based 

optimisation method to solve a multi-objective joint 

availability-redundancy allocation problem of multi-state 

system. Gol-Ahmadi and Raissi [11] used another analytic 

method to estimate reliability of multistate system and predict 

residual of systems’ lifetime under the effect of an out of 

control noise condition. 

Recently, the importance of predictive maintenance and 

diagnostic techniques has been increased rapidly, Nematkhah 

et al. [12] presented a multi-attribute decision-making model 

to choose the most suitable predictive diagnostic method in 

the conditional monitoring system for the critical machines 

and measure the total predictive performance score, they 

applied an integrated DEMATEL-fuzzy ANP approach. 

Leigh and Dunnett [13] used petri nets to dynamically model 

maintenance applied to wind turbines.  

Bayesian Network (BN) represents another area of research 

that is widely used in many applications; for maintenance [1], 

system performance evaluation [14], risk analysis [15][16], 

diagnosis and prediction analysis [17]. Reasoning from 

probabilistic graphical models facilitates dealing with both 

diagnosis and prediction problems [18]. In research [19], a 

hybrid BN framework is presented to model the availability 

of renewable systems. 

The Dynamic Bayesian Network (DBN) is an extension of 

BN that models stochastic processes that alter over time. 

Moreover, in the DBN, a new type of node called temporal 

nodes which allows to model the random variables over time, 

all cause-and-effect relationships can be designated by 

probability distributions [20] [21]. In several studies, DBN 

represents an appropriate solution for predictive and even 

diagnostic analysis, as well as for expressing uncertain causal 

relationships [22]. By translating, the Failure Tree (FT) into 

DBN, Cai et al. [14] proposed a model based on DBN to 

analyze and evaluate reliability and availability for a subsea 

BOP system. Wang et al. [23] Established a stochastic 

deterioration model for multi-element systems under a 

conditional based-maintenance strategy. A quantitative risk 

assessment approach based on DBN that dynamically predict 

the risk of riser recoil control failure during production test 

of marine natural gas hydrate is presented by [24]. In another 

study, a quantitative reliability modelling and analysis of a 

multi-state system based on a combination of the Markov 

process and a DBN, taking into account different types of 

maintenance was proposed by [25]. Adjerid et al. [26] 

presented an approach to evaluate the performance of an 

industrial system and studied the effect of different 

maintenance strategies on system performances. An 

ArdeBayes methodological approach is proposed by [27] to 

model a mechanical system based on the method of fault 

trees. The objective of the present paper is to model a multi-

state industrial system with their functional dependencies 

based on the Markov process and DBN in order to evaluate 

their performances and optimize maintenance decisions by 

taking into consideration the perfect repair, the imperfect 

repair and CBM.  

The rest of this paper is organized as follows: Section 2 

presents a Bayesian approach for modeling multi-state 

systems. Section 3 presents the proposed methodology, 

section 4 analyzes a separator system as a case study, results 

and discussions are presented in Section 4, and Section 5 

summarizes this paper. 

2. DYNAMIC BAYESIAN METHODOLOGY FOR 

MODELING A MULTI-STATE SYSTEM  

I. Dynamic Bayesian Network 

A BN is a probabilistic causal network that allows to 

graphically represent variables and their probabilistic 

dependencies. The BN is composed of nodes that are 

connected by direct arcs; the arcs indicate a causal 

relationship or dependency between the linked nodes and 

conditional probability tables (CPTs) that determine how the 

linked nodes depend on each other. It can describe a multi-

state element with a single node, cause-and-effect 

relationships can be designated by conditional probability 

distributions, using static or dynamic logical gates the (CPTs) 

can be obtained [25]. A DBN is an extension parallel to the 

ordinary BN that allows to explicitly model the temporal 

evolution of variables over time [28]; each step of time is 

called a time slice. The probability of transition between two 

successive slices 𝑃 (𝑋𝑡 | 𝑋𝑡 − 1) is expressed by: 

𝑃 (𝑋𝑡  | 𝑋𝑡 − 1) = ∏ 𝑃(𝑋𝑡
𝑖𝑁

𝑖=1 |𝑝𝑎(𝑋𝑡
𝑖)))                             (1) 
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Where 𝑋𝑡
𝑖 represents the 𝑖𝑡ℎ node at time t, and 𝑝𝑎 (𝑋𝑡

𝑖) 

represents its parent nodes. 

 

 
FIGURE 1 

A DYNAMIC BAYESIAN NETWORK EXPANDED FROM TIME 

SLICE 0 TO 1 

Figure 1 represents a DBN where intra-slice arcs represent 

the relationships between nodes (variables A and B) and the 

relationships between nodes at successive time intervals t0-

t1 are represented by arcs between slices. By unrolling the 

time slices, the probability of joint distribution is obtained by 

the following expression: 

 

𝑃 (𝑋1:𝑇) = ∏ ∏ 𝑃(𝑋𝑡
𝑖𝑁

𝑖=1 |𝑝𝑎(𝑋𝑡
𝑖))𝑇

𝑡=1                                 (2) 

 

II. Imperfect repair modeling 

In DBN modeling, it is assumed that each parent node is a 

degraded multi-state system; four assumptions are made [5]: 

1. The component may have many levels of performances, 

corresponding to degradation rates, which vary from 

perfect function to complete failure. 

2. The system might fail randomly from any operational 

state. 

3. All transition rates are constant and exponentially 

distributed. 

4. The current degradation state is observable through 

some system parameters, and the time needed for 

inspection is negligible. 

In the DBN each parent node has four states: perfect state 

(P1), degraded state1 (DS1), degraded state2 (DS2), fault 

state (Fault). The perfect state refers to perfect operation; the 

fault state represents a total failure. The DS1 and DS2 

represents the first and second degraded states respectively. 

At first, each parent node of DBN is in perfect condition, as 

time passes, the DBN either passes to the DS1 or DS2 states, 

or proceed to the fault state. When a failure occurs, a repair 

is needed, the DBN can either return to perfect condition, 

which is considered a perfect repair, or return to the first or 

second degraded state, which is considered an imperfect 

repair. The state transition diagram for four-state component 

is shown in Figure 2. 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

FIGURE 2 

TRANSITION STATE DIAGRAM FOR FOUR-STATE COMPONENT 

By referring the feedback experience of Sour El-Ghozlane 

cement plant engineers, the failure rates and repair rates 

between states for each parent node can be classified: two 

classes for failure rates, minor failure class 

(𝜆3, 𝜆4 𝑎𝑛𝑑 𝜆6) and major failures class (𝜆1, 𝜆2 𝑎𝑛𝑑 𝜆5). 

Three classes are distinguished for repair rates between 

states: minor repair (𝜇1, 𝜇4 𝑎𝑛𝑑 𝜇6), imperfect repair 

(𝜇2, 𝜇5) and perfect repair(𝜇3). The following equations 

show how the failure and repair rates are calculated: 

    

𝜆1 +  𝜆4 +  𝜆5 = 𝜆𝑠                                                           (3) 

𝜆4 = 𝜆6 = 𝜆3                                                                     (4) 

𝜆2 = 𝜆5                                                                                     (5) 

𝜆1: 𝜆4: 𝜆5 = 1: 5: 4                                                             (6) 

𝜇1 + 𝜇2 + 𝜇3 = 𝜇𝑠                                                             (7) 

𝜇1 = 𝜇4 = 𝜇6                                                                      (8) 

𝜇2 = 𝜇5                                                                               (9) 
 

Suppose that at any time 𝒕 the interval between two 

consecutive time slices is ∆𝒕. Then, the transition 

relationships between nodes of the DBN without repair, with 

perfect repair, imperfect repair and under CBM are present in 

Tables 1 to 4 respectively. 

I. Conditional Probability Tables 

Conditional dependencies between variables will be assigned 

to conditional probability tables (CPTs), in a DB having 𝑛 

parents and 𝑚 states, in order to determine the CPT for each 

parent node, it is necessary to define parameters independent. 

When 𝑛 is large, traditional models of OR-gate and AND-

gate are used to specify as many parameters to quantify 

relationships in series and parallel systems.   
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TABLE I 

A TRANSITION RELATIONS BETWEEN STATES WITHOUT REPAIR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE II 

 A TRANSITION RELATIONS BETWEEN STATES WITH PERFECT REPAIR

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE III 

A TRANSITION RELATIONS BETWEEN STATES WITH IMPERFECT REPAIR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝒕 + ∆𝒕 

𝒕 Perfect DS1 DS2 Fault 

Perfect 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡 

𝜆4

𝜆1 + 𝜆4 + 𝜆5
× 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

𝜆5

𝜆1 + 𝜆4 + 𝜆5
× 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

𝜆1

𝜆1 + 𝜆4 + 𝜆5
 × 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

DS1 0 𝑒−(𝜆2+𝜆6)Δ𝑡 

𝜆6

𝜆2 + 𝜆6
× 

 

(1 − 𝑒−(𝜆2+𝜆6)Δ𝑡) 

𝜆2

𝜆2 + 𝜆6
× 

 

(1 − 𝑒−(𝜆2+𝜆6)Δ𝑡) 

DS2 0 0 𝑒−𝜆3Δ𝑡 1 − 𝑒−𝜆3Δ𝑡 

Fault 0 0 0 1 

 𝒕 + ∆𝒕 

𝒕 Perfect DS1 DS2 Fault 

Perfect 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡 

𝜆4

𝜆1 + 𝜆4 + 𝜆5
× 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

𝜆5

𝜆1 + 𝜆4 + 𝜆5
× 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

𝜆1

𝜆1 + 𝜆4 + 𝜆5
 × 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

DS1 0 𝑒−(𝜆2+𝜆6)Δ𝑡 

𝜆6

𝜆2 + 𝜆6
× 

 

(1 − 𝑒−(𝜆2+𝜆6)Δ𝑡) 

𝜆2

𝜆2 + 𝜆6
× 

 

(1 − 𝑒−(𝜆2+𝜆6)Δ𝑡) 

DS2 0 0 𝑒−𝜆3Δ𝑡 1 − 𝑒−𝜆3Δ𝑡 

Fault (1 − 𝑒−(𝜇1+𝜇2+𝜇3)Δ𝑡) 0 0 𝑒−(𝜇1+𝜇2+𝜇3)Δ𝑡 

 𝒕 + ∆𝒕 

𝒕 Perfect DS1 DS2 Fault 

Perfect 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡 

𝜆4

𝜆1 + 𝜆4 + 𝜆5
× 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

𝜆5

𝜆1 + 𝜆4 + 𝜆5
× 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

𝜆1

𝜆1 + 𝜆4 + 𝜆5
 × 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

DS1 0 𝑒−(𝜆2+𝜆6)Δ𝑡 

𝜆6

𝜆2 + 𝜆6
× 

 

(1 − 𝑒−(𝜆2+𝜆6)Δ𝑡) 

𝜆2

𝜆2 + 𝜆6
× 

 

(1 − 𝑒−(𝜆2+𝜆6)Δ𝑡) 

DS2 0 0 𝑒−𝜆3Δ𝑡 1 − 𝑒−𝜆3Δ𝑡 

Fault 

𝜇3

𝜇1 + 𝜇2 + 𝜇3
× 

 

(1 − 𝑒−(𝜇1+𝜇2+𝜇3)Δ𝑡) 

𝜇2

𝜇1 + 𝜇2 + 𝜇3
× 

 

(1 − 𝑒−(𝜇1+𝜇2+𝜇3)Δ𝑡) 

𝜇1

𝜇1 + 𝜇2 + 𝜇3
× 

 

(1 − 𝑒−(𝜇1+𝜇2+𝜇3)Δ𝑡) 

𝑒−(𝜇1+𝜇2+𝜇3)Δ𝑡 
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TABLE IV 

A TRANSITION RELATIONS BETWEEN STATES WITH CBM

 

 𝒕 + ∆𝒕 

𝒕 Perfect DS1 DS2 Fault 

Perfect 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡 

𝜆4

𝜆1 + 𝜆4 + 𝜆5
× 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

𝜆5

𝜆1 + 𝜆4 + 𝜆5
× 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

𝜆1

𝜆1 + 𝜆4 + 𝜆5
 × 

 

(1 − 𝑒−(𝜆1+𝜆4+𝜆5)Δ𝑡) 

DS1 

𝜇6

𝜆2 + 𝜆6 + 𝜇6
× 

 

(1 − 𝑒−(𝜆2+𝜆6+𝜇6)Δ𝑡) 

𝑒−(𝜆2+𝜆6+𝜇6)Δ𝑡 

𝜆6

𝜆2 + 𝜆6 + 𝜇6
× 

 

(1 − 𝑒−(𝜆2+𝜆6+𝜇6)Δ𝑡) 

𝜆2

𝜆2 + 𝜆6 + 𝜇6
× 

 

(1 − 𝑒−(𝜆2+𝜆6+𝜇6)Δ𝑡) 

DS2 

𝜇5

𝜆3 + 𝜇4 + 𝜇5
× 

 

(1 − 𝑒−(𝜆3+𝜇4+𝜇5)Δ𝑡) 

𝜇4

𝜆3 + 𝜇4 + 𝜇5
× 

 

(1 − 𝑒−(𝜆3+𝜇4+𝜇5)Δ𝑡) 

𝑒−(𝜆3+𝜇4+𝜇5)Δ𝑡 

𝜆3

𝜆3 + 𝜇4 + 𝜇5
× 

 

(1 − 𝑒−(𝜆3+𝜇4+𝜇5)Δ𝑡) 

Fault 

𝜇3

𝜇1 + 𝜇2 + 𝜇3
× 

 

(1 − 𝑒−(𝜇1+𝜇2+𝜇3)Δ𝑡) 

𝜇2

𝜇1 + 𝜇2 + 𝜇3
× 

 

(1 − 𝑒−(𝜇1+𝜇2+𝜇3)Δ𝑡) 

𝜇1

𝜇1 + 𝜇2 + 𝜇3
× 

 

(1 − 𝑒−(𝜇1+𝜇2+𝜇3)Δ𝑡) 

𝑒−(𝜇1+𝜇2+𝜇3)Δ𝑡 

Suppose that for node𝐴, there are 𝑛 parent 

node 𝑋1, 𝑋2, . . . , 𝑋𝑛, and the degradation probability of the 

node 𝑖 is 𝑃𝑖 .The unreliability of an AND-gate can therefore 

be calculated by the expression as follows [14]: 

 

𝑃(𝐴|𝑋1, 𝑋1, … , 𝑋1) = ∏ 𝑃𝑖1<𝑖<𝑛                                            (10) 

In the case where the parent nodes are in parallel, the 

unreliability of an AND gate can be calculated by the 

expression as follows [14]: 

𝑃(𝐴|𝑋1, 𝑋1, … , 𝑋1) = 1 − ∏ (1 − 𝑃𝑖)1<𝑖<𝑛                         (11) 

 

3. METHODOLOGY FOR MAINTENANCE EVALUATION 

AND OPTIMIZATION OF SYSTEM  

The proposed methodology for dynamic evaluation of system 

performances and maintenance optimization flowchart is 

illustrate in Figure 3, the main steps can be summarized as 

following: 

 

1. Defining the system and identify the potential 

failure causes (the construction of fault tree of 

system): in this step functional decomposition and 

analysis of system should be studied, collecting the 

historical necessary data of components, however, 

domain experts can contribute their opinions.  

2. Construction DBN:  based on the fault tree which 

provides an effective prior knowledge, the 

construction of the DBN model is established. 

3. Quantitative analysis: from the collected failure 

data and domain of Feedback experience (R.E.X) the 

prior probabilities, failure and repair rates, 

conditional probabilities tables and the transition 

probability tables can be estimated. 

4. Evaluation and exploitation of results: After 

assigning the probabilities in the network, the 

reliability and availability can be evaluated and by 

diagnostic inference, the critical components leading 

to system failure could be identify.  

5. Optimization maintenance decisions: in this step, 

by using the results of proposed methodology 

(prediction/diagnosis analysis and sensitivity 

analysis) as an effective tool to acquire experience, 

optimize and improve maintenance decisions 

continuously. 

 

4. INDUSTRIAL APPLICATION  OF THE PROPOSED 

METHODOLOGY   

I. System description 

The separator (Z1s) is a complicated mechanical system, 

which mainly composed of six components (Engine (E), Fan 

(F), Reducer (R), Ferrule (L), inflow valve (I), outlet valve 

(O)) with functional dependencies. It has different kinds of 

failure modes and a failure of one of its components will 

result in an unavailability of the system and therefore huge 

losses for the company. For there, a quantitative method to 

model and evaluate performances of system, identify the 
subsystems most contributing to separator’s failure and to 

measure the impact of different maintenance strategies 

during future missions. Each component has four states: a 

perfect operating state, two degraded operating states (DS1, 

DS2) and failure state. 
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FIGURE 3 

FLOWCHART OF PROPOSED METHODOLOGY 

Referring to subsystems data and consulting the Sour El-

Ghozlane cement plant ‘experts in the domain, the failure 

rates, repair rates and the degradation probabilities (%) of 

separator’s components are presented in Table 5.  

The architecture of Figure 4 represents the system topology 

describing the degradation evolution, the black arc represents 

the temporal evolution, whereas the functional dependence 

represented by an orange arc. The evolution of the 

degradation model of the power system is conditioned by the 

degradation function of their functional dependencies, which 

are the Engine (E), Reducer (R) and the Fan (F). The 

architecture of the equivalent DBN model was developed 

using the GeNIe graphical interface software, taking into 

account the different states of each node and their functional 

dependence as illustrated in Figure 5. 
 

TABLE V 
PARAMETERS OF THE SEPARATOR (Z1S) SUBSYSTEMS 

 

Subsystems 

Failure 

rate 

𝜆(week) 

Repair 

rate 

𝜇(week) 

Degraded 
state 1 

(%) 

Degraded 
state 2 

(%) 

Engine (E) 0.0591 0.39 4 8 

Fan (F) 0.0096 0.16 2.5 7.5 

Reducer (R) 0.1063 0.41 5 7.7 

Ferrule (L) 0.0625 0.20 2.8 3.2 

inflow valve (I) 0.0197 0.25 5 9 

outlet valve (O) 0.0197 0.22 5 9 

Maintenance Optimization  

 

Define system  

Functional decomposition 

and analysis   

Fault tree 

Determination of Parameters 

Conditional and Transition 

probability tables 

Prior probability 

Failure rate and repair rate 

 

R.E.X 

Feedback 

experience 

Collect failure data 

Evaluation of the reliability 

and the availability of 

system 

Prediction analysis 

and simulation 

Diagnosis inference 

(Identify most critical 

failure causes) 

Expertise 

Construct DBN  

Sensitivity analysis 
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II. Reliability and Availability Evaluation  

Over time, failures can occur at any time either minor or 

major. Take the example of the valve subsystem (Figure 6), 

failure rates and repair rates between the states of each node 

can be calculated using equations (3)-(9). Subsequently, the 

transition relationships between consecutive nodes in all 

three cases can be calculated using tables [1-4]. The 

reliability and availability of the valve subsystem node is 

determined, as shown in Figure 8.  

From Table 4 the degradation probability of the inflow valve 

and the outlet valve are: 
𝑃(𝑉𝑎𝑙𝑣𝑒 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑓𝑎𝑢𝑙𝑡|𝐼𝑛𝑓𝑙𝑜𝑤 𝑣𝑎𝑙𝑣𝑒 = 𝐷𝑆1) =  5%  
𝑃(𝑉𝑎𝑙𝑣𝑒 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑓𝑎𝑢𝑙𝑡|𝐼𝑛𝑓𝑙𝑜𝑤 𝑣𝑎𝑙𝑣𝑒 = 𝐷𝑆2) = 9%  
𝑃(𝑉𝑎𝑙𝑣𝑒 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑓𝑎𝑢𝑙𝑡|𝑂𝑢𝑡𝑙𝑒𝑡 𝑣𝑎𝑙𝑣𝑒 = 𝐷𝑆1) = 5%  
𝑃(𝑉𝑎𝑙𝑣𝑒 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑓𝑎𝑢𝑙𝑡|𝑂𝑢𝑡𝑙𝑒𝑡 𝑣𝑎𝑙𝑣𝑒 = 𝐷𝑆2) = 9%    

Using equation 10, the CPT of valve as subsystem is 

calculated as follows the table 6.  

 

 
FIGURE 6 

DBN OF THE VALVE SUBSYSTEM 

 

As Figure 7 indicates, it is obvious that as time progresses, 

the dynamic reliability decreases to almost 45% in about 40th 

week. With repair, the availability of valve decreases, in the 

case of a perfect repair, it reaches a value of about 86% in the 

40th week. When imperfect repairs are considered, it reaches 

a value of 83.5% in about 40th week. The CBM maintains a 

high availability level of 91.81% at approximately the 40th 

week. It can be seen that perfect and imperfect repairs can 

improve the performances of the valve subsystem and that 

imperfect repair does not significantly affect availability 

compared to perfect repair, and the CBM can maintain the 

valve subsystem at a stable higher level of availability in 

comparison with imperfect repair. 
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TABLE VI 

CPT OF VALVE SUBSYSTEMS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4 

PROPOSED MODEL OF THE GLOBAL SYSTEM WITH FUNCTIONAL DEPENDENCIES FROM T TO 𝑡 + Δ𝑡 

Outlet valve I Outlet valve O Valve subsystem 

Perfect DS1 
DS

2 
Fault Perfect DS1 DS2 Fault Normal Fault 

1 0 0 0 1 0 0 0 1 0 

1 0 0 0 0 1 0 0 0.9500 0.0500 

1 0 0 0 0 0 1 0 0.9100 0.0900 

1 0 0 0 0 0 0 1 0 1 

0 1 0 0 1 0 0 0 0.9500 0.0500 

0 1 0 0 0 1 0 0 0.9025 0.0975 

0 1 0 0 0 0 1 0 0.8645 0.1355 

0 1 0 0 0 0 0 1 0 1 

0 0 1 0 1 0 0 0 0.9100 0.0900 

0 0 1 0 0 1 0 0 0.8645 0.1355 

0 0 1 0 0 0 1 0 0.8281 0.1719 

0 0 1 0 0 0 0 1 0 1 

0 0 0 1 1 0 0 0 0 1 

0 0 0 1 0 1 0 0 0 1 

0 0 0 1 0 0 1 0 0 1 

0 0 0 1 0 0 0 1 0 1 

Valve 

subsystem 

𝑡 𝑅𝑡 
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FIGURE 5 

DBN OF THE GLOBAL SYSTEM 

 

 
 

FIGURE 7 

THE RELIABILITY AND AVAILABILITY OF THE VALVE SUBSYSTEM 

5. RESULTS AND DISCUSSION 

I. DBN for the global system 

In the same way, now we can build the overall system 

network and study the influence of subsystems on the 

separator’s state and measure the impact of maintenance 

strategies on overall performances. Figure 9 shows the 

global DBN extended over time without repair. Each node 

initially is in perfect functioning state (perfect =100%), over 

time, the degradation begins. According to the failures rate, 

repairs rate and the functional dependence, the probabilities 
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of each subsystem evolve differently from the other. For the 

separator, two modality are chosen namely (Normal) and 

failure (fault). 

The performance evaluation of the system is examined using 

DBN, the evolution of reliability and availability with respect to 

a perfect, imperfect repair and under CBM are represented in the 

Figure 8. As mentioned, over time, reliability and 

availability decrease. Reliability drops to about 0 in the 

41th week and the availability reaches the values of 56% 

and 48% in the 40th week for the system with perfect repair 

and imperfect repair, respectively. When CBM is 

considered, the availability improves significantly and 

reaches a high level 65% in about the 40th week. Clearly, 

the availability with perfect and imperfect repairs is 

evolving almost identically. Based on these results, it has 

been noted that these strategies can improve the separator 

(Z1s) performances, while imperfect repair compared to 

perfect repair cannot degrade the system performance 

significantly and in comparison, the CBM with other 

strategies. This later can maintain the system at a stable 

higher level of availability. 

 

 

 
 

FIGURE 8 

THE RELIABILITY AND AVAILABILITY OF THE SEPARATOR (Z1S)

II. Diagnostic Inference 

The application of the diagnostic inference method 

(backward analysis) is used to determine the causes that 

have a significant impact on the failure of the top event 

[29]. By adopting this technique in the inference of our 

DBN model. The new belief over the entire network will 

be reflected, as a result, critical subsystems are quickly 

identified and the posterior probabilities of each event at 

different time slices can be calculated. It can provides 

useful information about the necessary preventive 

measures that could be taken to prevent the separator 

failure. 

The prior and posterior probabilities of the basic events at 

T=24 week with CBM strategy are determined, as shown 

in Figure 9. It is noted that the subsystems :"Engine(E)", 

"Reducer (R)", and "Ferrule (L)" are the most influential 

factors leading to the possible separator failure because, 

they have the highest increasing probabilities and 

significant posterior probabilities. Therefore, based on 

diagnosis results, more attention should to be paid to these 

subsystems to further reduce the risk of failure. 
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FIGURE 9 

COMPARISON BETWEEN POSTERIOR AND PRIOR 
PROBABILITIES FOR BASIC EVENTS AT T = 24 WEEK UNDER 

CBM 

 

III. Sensitivity analysis 

In this study, to test the proposed model, a sensitivity 

analysis must be carried out to prove that this model is a 

reasonable representation and to guarantee that its 

robustness. if the result obtained will be sensitive i.e. it will 

not show abrupt variations in case of  minor change in the 

input parameters, then the model is robust [30]. It is 

assumed that the failure rates of critical subsystems are 

subject to a variation of ±10%. The effects of these 

variations on the probability of system failure are shown in 

Figure 10. 

In this figure, when the failure rate of the Engine subsystem 

is increased to 110%, the probability of separator failure 

increased from 35.51% to 35.71%. When increasing the 

failure rate of both subsystems Engine and Reducer to 

110%, the probability of separator failure increased from 

35.71% to 39.16%. When the failure rates of critical 

subsystems Engine, Reducer and Ferrule were increased to 

110%, the probability of separator failure increased from 

39.16% to 40.05%. In addition, by increasing failure rates 

of subsystems Engine, Reducer, Ferrule, Inflow and Outlet 

valve to 110%, the probability of separator failure 

increased from 40.05% to 40.58%.  

Reducing failure rates of critical subsystems will reduce 

the failure probability of the top event in the same way. As 

expected, in this case, a slight modification in the failure 

rate for critical subsystems induces the probability of 

separator failure in a reasonable way, thus giving a 

validation of this model. 

 

 
 

FIGURE 10 

THE EFFECT OF CHANGES IN FAILURE RATE OF CRITICAL 

COMPONENTS ON FAILURE PROBABILITY OF SEPARATOR 
(Z1S)  

 

6. CONCLUSION 

In this article, a methodology based on DBN was 

developed to evaluate and optimize the performance 

measurements of a multi-state system taking into account 

the different repair strategies. A separator (Z1s) system of 

Sour El-Ghozlane cement plant is analyzed to show how 

this approach can be effectively manipulated to answer 

several problems concerning the identification of 

influencing factors (diagnosis), the analysis of the 

relationship between system components, predictive 

assessment of the dynamic failure probability, and 

measuring the effect of repair and maintenance strategies 

on system performances. The main conclusions of this 

study can be presented as follow: 

 

➢ Dynamic analysis indicates that the repairs 

strategies can improve the performance of the 

separator (Z1s), while an imperfect repair does 

not significantly degrade performance compared 

to the perfect repair. 

➢ In order to improve the availability of system, 

CBM strategy can maintain the system at a stable 
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higher level of availability in comparison to 

imperfect repair strategy.  

➢ Diagnostic inference four critical subsystems, 

including the Engine, Reducer and Ferrule are 

identified as contributors leading to system 

failure, based on diagnosis, we should pay more 

attention to these subsystems to further reduce the 

risk of separator failure. 

➢ The analysis results obtained from this study can 

provide a decision support tool and a very useful 

information base. Moreover, the proposed 

methodology can serve engineers to optimize and 

improve maintenance decisions continuously. 

➢ A sensitivity analysis allows us to validate and 

show that modeling based on DBN is correct and 

rational. 
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