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Abstract  

The unavailability of server during complete vacation (CV) and the reduced service pace during working vacation 

(WV) may pose a critical challenge to the service and manufacturing organizations. This study focuses on analyzing 

the performance of a queueing system operating under a hybrid vacation policy while considering customer 

impatience. The server has the option to choose either CV or WV, immediately after finishing all the jobs. During 

the WV period, the server renders service in slow pace as such some impatient customers may abandon the system 

before served. Moreover, the joining rate of the customers is state dependent i.e. the arriving customers joins the 

system with different rates for the different status of the server. The transient analytical expressions for the queue 

size distribution using continued fraction (CF) and probability generating function (PGF) methods are established 

which are further used to formulate various performance metrics. The practical applicability of the system is 

demonstrated through numerical simulation Moreover, cost optimization is performed to obtain minimum cost and 

corresponding optimal service rate. 

Keywords- Transient queue; Hybrid vacation policy; Reneging; Probability Generating function, Continued 

fraction; Cost optimization. 
 

INTRODUCTION 

Efficient utilization of idle periods is important for the improving resource optimization. This can enhance the performance 

and reliability of service systems. The server's idle period can be efficiently managed by optimizing service facility resources 

using vacation queueing models. Queueing theorists have developed these models, allowing the server to take a vacation or 

break once all current jobs in the system have been serviced. The vacation is defined as the server’s unavailability at the service 

station (Doshi 1986). Sikdar and Gupta (2005) examined a batch service queueing system with a finite buffer and multiple 

vacations, deriving performance metrics including queue length distributions, loss probability, and mean system size. Isijola-

Adakeja and Ibe (2014) formulated the queue size distribution for a Markovian model that incorporated a differentiated vacation 

policy. Utilizing the recursive approach, they obtained the probability distribution for the queue size. Suranga Sampath and Liu 

(2020) examined the impact of customer reneging behavior in a Markovian single-server queue with vacation. Azhagappan and 

Deepa (2022) examined the vacation interruption policy for a transient M/M/1 queueing model with differentiated vacation 

types. They employed analytical methods involving PGF and CF to derive transient outcomes for the system size and related 

performance measures. Kumar (2023) dealt with transient Markov queue with discouragements and multiple vacation policies. 
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 They used the confluent hypergeometric function (CHF) approach to formulate the various transient analytical formulae. As 

industries continue to evolve, the demand for more efficient service systems has never been greater. The need for enhanced 

server utilization during idle periods drives the search for innovative solutions that balance both service efficiency and resource 

management. The concept of working vacations (WV) introduces a promising avenue to maximize server productivity while 

maintaining service standards. In service systems where even short periods of inactivity can lead to substantial losses, such 

strategies can offer a competitive advantage. An effective working vacation (WV) strategy enables the server to offer services 

at reduced rates during the vacation period. Servi and Finn (2002) generalized the concept of server vacation by extending the 

classical vacation model to allow the server to operate at varying rates during vacation periods, instead of completely halting. 

The motivation for this research stems from the server’s utilization and cost effectiveness approach of the service providers, 

especially in the service systems where complete server unavailability could lead to significant delays and revenue losses. In 

the context of conventional WV queueing systems, it is observed that the server immediately begins a WV period upon 

completing the task for the last available customer in the system. Li and Tian (2007) examined the M/M/1 queue with working 

vacation (WV) by employing quasi-birth-and-death processes and matrix-geometric methods. They derived key performance 

metrics, including customer distribution and waiting time, alongside their stochastic decomposition structures. 

        To study M/M/1 queue having multiple WV, Sudhesh and Raj (2012) have made use of the methods of probability 

generating function (PGF) and continued fraction (CF) to derive the transient formula for the queue size distribution. Ma et al. 

(2018) examined M/M/1/WV queueing model operating under N-policy. They derived the analytical formulae to analyze the 

queue size distribution, mean queue length, and social welfare function. Jain et al. (2019) examined the effect of customers’ 

feedback and discouragement on a Markov queue with working vacation. They used the technique of CF and PGF to formulate 

the various queueing performance metrics including expected queueing length, throughput, operational cost of the system, etc. 

Jain et al. (2021) developed a transient Markov queueing model that incorporates the disaster failure and multiple working 

vacation policy. To derive the transient queue size and various system indices, they employed the technique of CF and PGF, in 

conjunction with Laplace transform. Sridhar et al. (2022) studied Markovian queueing system with WV, server breakdowns, 

and customer impatience behaviors such as balking and reneging. By solving the transient state probabilities through differential 

equations, various performance indices were computed, and a sensitivity analysis was conducted to evaluate parameter impacts. 

Ramesh and Udayabaskaran (2023) dealt with a queueing with multi-level environment, random switch and working vacation 

policy, where the system transitions between 𝑁 levels based on probabilistic assignments. Transient and steady-state 

probabilities, key performance metrics, and numerical validations are presented to explore the system's operational dynamics 

and efficiency. 

        In todays’ technologically advanced world, there can be the situations in the queueing systems where the server can avail 

both kinds of vacations viz. CV and WV. There is a scarcity of research articles that deals with the performance modelling of 

queueing systems that specifically addresses the combined concepts of CV and WV together. Furthermore, the existing such 

research primarily focusses on the steady state analysis. Kumar and Jain (2023a) dealt with M/M/1 queueing model with hybrid 

vacation policy and established the formulae for the queue size distribution via matrix geometric approach. Kumar and Jain 

(2023b) presented a study on the M/M/1 queueing system having provision of bi-level vacation policy consisting of CV and 

WV. Divya and Indhira (2024) incorporated CV and WV in a queueing model with feedback customers and unreliable server. 

They provided various analytical formulae for the performance measures and evaluated them numerically to predict the 

operating behavior of the system. 

TABLE 1 
IMPORTANT RELEVANT CONTRIBUTIONS RELATED TO PRESENT INVESTIGATION 

Authors Specific features 

Transient 

analysis 

Complete vacation 

(CV) 

Working 

vacation (WV) 

Impatient 

customers 

Cost 

Optimization 

Kumar and Jain (2023a)      

Kumar and Jain (2023b)      

Deepa and Azhagappan (2021)      

Suranga Sampath and Liu (2020)      

 Ammar (2017)      

Sudhesh et al. (2017)      

Yu et al. (2013)      

Ye and Liu (2017)      

Proposed Model      

 

The effect of customer impatience on performance metrics in queueing models can be observed in many congestion situations. 

Customers leaving before receiving service leads to both economic losses and a decline in the organization's reputation. 

Therefore, understanding customer impatience is crucial for improving the revenue and fostering customer trust.  Ammar (2015) 

analyzed a Markovian queue using modified Bessel’s function, incorporating vacation and impatient customers, and provided 
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 expressions for transient probabilities, expectations, and variances of jobs in the system. Vijaya Laxmi and Kassahun (2020) 

explored an M/M/c queueing system with variant working vacations, focusing on customer reneging during working vacation 

periods, and derived steady-state probabilities, performance metrics, and cost optimization using the quadratic fit search 

method. Jain and Singh (2020) conducted transient analysis of a Markovian feedback queue with disaster failure and customer 

impatience, utilizing PGF and CF. Jain et al. (2022) examined the impact of balking behavior in a Markovian queue with 

imperfect service and retrial attempts, employing PGF to derive analytical expressions. Kumar and Jain (2023a) proposed an 

M/M/1 queueing model incorporating a bi-level vacation policy and a balking process. The study derived matrix-form 

expressions for the queue size distributions and formulated an optimization framework for decision variables. Numerical 

simulations and sensitivity analyses were conducted to validate the theoretical results. The findings highlight the model's 

practical relevance, with conclusions outlining its novel features and potential avenues for future research. 

       The transient analytical results of the queueing system provide deeper insights compared to the corresponding steady-state 

outcomes. Analyzing transient queueing models enables more precise predictions of system behavior over time, although 

deriving transient solutions proves to be more complex than steady-state solutions. The scarcity of research in the transient 

analysis of queueing systems stems from the inherent challenges of obtaining closed-form analytical solutions. A thorough 

literature review uncovers a gap in studies addressing the transient behavior of queueing models that incorporate state-

dependent arrival rates, CV, WV, and customer impatience. This study aims to bridge that gap by focusing on the transient 

analysis of a single-server Markovian queueing model, accounting for customer reneging and the option for the server to choose 

between a complete vacation (CV) and a working vacation (WV) when the system is empty. The proposed model has significant 

applications in performance modeling and cost optimization across diverse sectors such as banking, service industries, 

manufacturing, hospital management, cloud computing, etc. For instance, in the smartphone assembly industry, a robotic arm 

responsible for battery assembly may require either complete or partial maintenance after a busy period. During complete 

maintenance, the robotic arm remains idle, while it operates at a reduced speed during partial maintenance. Additionally, 

managers may become impatient due to the slower service rate, leading to jobs reneging from the system. 

        The primary objective of this study is to examine the queueing model under transient conditions, providing an in-depth 

analysis of its behavior and dynamics. To achieve this, we employ the methods of continued fraction (CF) and probability 

generating function (PGF) to derive transient analytical results. These methods complement each other, offering computational 

efficiency and mathematical tractability for solving the complex queueing models. The CF approach is particularly useful for 

representing transient probabilities, especially when three-term recurrence relations arise in the governing equation, enabling 

rapid and accurate convergence. The PGF method is utilized to succinctly represent the probability distribution of the number 

of customers in the system over time by transforming the problem into a more manageable algebraic form, which enhances the 

understanding of transient behavior in the queue size distribution. Table 1 summarizes the contributions of the present study 

and compares them to other relevant articles. The article is structured as follows: Section 2 presents the foundational 

assumptions and notations used to develop the mathematical model, along with practical justifications for the model choice. 

Section 3 derives expressions for the transient probabilities and performance measures under specific scenarios. Section 4 

formulates the system metrics. Section 5 provides numerical simulations and cost optimization analyses to validate the 

theoretical findings. Finally, Section 6 discusses key insights and explores future research directions. 

MODEL DESCRIPTION AND ASSUMPTIONS 

This section presents the development of a Markovian queueing model incorporating impatient customers, where the server 

has the option to select either CV or WV when the system becomes empty. The objective of the study is to investigate the 

transient behavior of the system. Figure 1 provides the transition diagram, depicting the inflow and outflow rates for each state 

of the system. The assumptions underlying the formulation of the model in the transient state are as follows: 

 Customers arrive at the system following a Poisson process, with varying arrival rates during different states:  during 

normal busy (NB) states, v during complete vacation (CV) states, and w during working vacation (WV) states. 

 The service process is exponentially distributed, with service rates and w  during NB and WV periods, respectively. 

The service rate during the WV period is assumed to be slower than during NB (i.e. w  ). 

 Upon completing the last pending customer, the server may opt for either a CV or WV. The probability of entering a 

CV is denoted by  , while the probability of entering a WV is 1   . The duration of each vacation type follows 

an exponential distribution, with respective means 
1

v


and 
1

w


 for CV and WV. 
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  Customers may abandon the system during the WV period due to the slower service rate. This abandonment, or 

reneging, occurs if the customers’ patience expires, with the impatience rate represented by  , following an 

exponential distribution. 

 The queueing discipline is first-come-first-served (FCFS), meaning customers are served in the order of their arrival 

without prioritization or preemption. 

 Transitions between states are governed by rates influenced by both the number of customers in the system and the 

current state of the server. These rates are illustrated in the transition diagram (Figure 1), which outlines the in-flow 

and out-flow rates for each system state. 

Let ( )t  represent the number of customers in the system and ( )t  denotes the server’s state at the time t. To define the 

system's behavior, the bivariate stochastic process { ( ), ( ), 0}t t t    is utilized to specify the system’s states. Now, denote the 

various modes of the server at time t as,  

0; WV mode,

( ) 1; NB mode,

2; CV mode

t




 



. 

0 1 n

11 nn


v

v v v v



2

22
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v v
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 

0 1 n

w w w w
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1r

(1 ) 
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w w w

0

2r 3r nr 1nr 
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v



( ) 2t 

( ) 1t 

( ) 0t 

 

FIGURE 1 

 TRANSITION DIAGRAM FOR M/M/1 HYBRID VACATION MODEL WITH RENEGING 

TRANSIENT PROBABILITIES 

For the state space {( , ) / 0,1,2; 0,1,2,...}k n k n   of Markov chain { ( ), ( ), 0},t t t   we denote the various state 

probabilities for 0,n  as follows: 

( ) { ( ) 0, ( ) },nP t P t t n    ( ) { ( ) 1, ( ) },nQ t P t t n    ( ) { ( ) 2, ( ) }nR t P t t n   
 

We denote Laplace transform (LT) of ( ), ( )n nP t Q t and R ( )n t by ˆˆ ( ), ( )n nP s Q s and R̂ ( )n s , respectively. 

For brevity of notations, we denote , ,n w w w w v v vr n             . 

The forward Kolmogorov equations for the system are formulated as, 

0 0 1 1 1( ) ( ) ( ) ( ),wP t P t r P t Q t      (1) 

1 1 1( ) ( ) ( ) ( ) ( ), 1,n w n n w n n nP t r P t P t r P t n            (2) 

0 0 0 0' ( ) ( ) ( ) ( ),w vQ t Q t P t tR       (3) 

1 1' ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1,n n n n w n v nQ t Q t Q t Q t P t t nR               (4) 

0 0 1' ( ) ( ) ( ),vR t R t Q t    (5) 

1' ( ) ( ) ( ), 1,nvn v nR t R t R t n      (6) 

The initial condition is 0 (0) 1.P   
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 I. Evaluation of 0 ( )R t and ( )nR t  

 After taking LT of equation (5) and then simplifying, we get 

0 1
ˆˆ ( ) ( ).

v

R s Q s
s





 (7) 

Laplace inversion of (7) yields 

0 1( ) ( ).vtR t e Q t 
   (8) 

Taking LT of the equation (6), and some algebraic manipulation, yields 

0
ˆ ˆ( ) ( ), 1.

n

v
n

v

R s R s n
s

 
  

  
 (9) 

 

Laplace inversion of the above equation (9) provides 
1

1( ) ( ), 1.
( 1)!

vv

n
t tn

n v

t
R t e e Q t n

n
 


 

   


 (10) 

II. Evaluation of 0 ( )Q t  

Taking LT on both sides of equation (3), we get 

0 0 0
ˆ ˆ ˆ( ) ( ) ( ).w vQ s P s R s

s s

 

 
 

 
 (11) 

Laplace inversion of equation (11) yields 

0 0 0( ) ( ) ( ).t t
w vQ t e P t e R t        (12) 

III. Evaluation of ( )nQ t  

Denote the PGF of ( )nQ t by 

   

1

.G( , ) ( ) n
n

n

t z Q t z





  (13) 

By employing equation (13), equation (4) can be expressed as 

0

1 1

( , ) 1
( ) ( , ) ( ) ( ) 1 ( ).n n

w n v n

n n

G t z
z G t z P t z R t z Q t

t z
  

 

 

  
      

  
   (14) 

where 
2 ( )

( ) .
z z

z
z

     
   

From equation (14), we get 

 
10

( , ) ( ) ( ) exp ( ) ( )

t

n
w n v n

n

G t z P R z d       




      1

0

)exp ,( ) ( )
1

1 (

t

Q d
z

      
 
 

 
 (15) 

where  1( ) ( )( ) and ( ) ( ).t z z t              

Denoting 2q  , r



  and the modified Bessel’s function of the first kind of order n by ( )nI  , we have  

 1

( ) ( ).
z z t n

n

n

e rz I qt
      



   (16) 

For 0n  , the coefficients of 
nz of equation (15) with the help of equation (16), yields. 
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( ) ( )

0 1

10 0

( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ( )) .

t t

n m n
n w m v m n m n n

m

Q t P R r I q t e d Q r I q t rI q t e d             


  
 



               (17) 

Using the identity ( ) ( )n nI I    , for negative values of n, we obtain 

( ) ( )
0 1

10 0

0 ( ) ( ) ( ( )) ( ) ( ( )) ( ( )) . 

t t

n m n
w m v m n m n n

m

P R r I q t e d Q r I q t rI q t e d             


    
 



               (18) 

Using equations (17) and (18), we obtain 

( )

10

1 ( )
0 1 1

0

( ) ( ) ( ) ( ( )) (q( ))

( ) ( ( )) ( ( )) , 1.

t

n m
n w m v m n m n m

m

t

n
n n

Q t P R r I q t I t e d

Q r I q t I q t e d n

 

 

      

    


 

 



 
 

          

      





 (19) 

Equation (19) provides an expression for ( )nQ t  in terms of ( )nP t , ( )nR t  and 0 ( )Q t , for .1,2,3 .,  .n  .  

IV. Evaluation of ( )nP t  

Laplace transforms of equations (1) and (2) yield 

0

1 1
1

0 0

1ˆ ( ) .
ˆˆ ( ) ( )

( )
ˆ ˆ( ) ( )

w

P s
P s Q s

s r
P s P s





  

 (20) 

and 
1 1

1

ˆ ( )
, 1.

ˆ ˆ( ) ( )
( )

ˆ ( )

n w

n n
w n n

n

P s
n

P s P s
s r r

P s



 


 

  

 (21) 

Solving equation (21), we get (see, Lorentzen and Waadeland 1992)     

 
 

 
 

1 1
1 11

n 01 1
1 1 1

1

1; 1;1ˆ ˆ( ) ( ),
( )

( )
( )

; 1;

n n w

w n

w

i

F r n
P s P s

F

s

r

M

i
M s

M s

  
 

  

 



 



   


 


 (22) 

0
ˆˆ ˆ( ) ( ) ( ),n nP s s P s  (23) 

where  

( ) w ws
M s

 







 

 
 

 
 

1 1
1 11

1 1
1 1 1

1

1; ( ) 1;1ˆ ( )
; ( ) 1;

( )

n n w

n w n

w

i

F r M s n
s

F r M s
M s i

  
  

  

 



 



   


 


. (24) 

Laplace inversion of equation (23) yields 

0(t) (t) (t).n nP P   (25) 

V. Evaluation of 1( )Q t  

For 1n  , Laplace transform of equation (19) yields 

 1 0

1

1ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ),
m

w m v m

m

Q s P s R s A s A s Q s


 
 





   
   (26) 
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where d s      and 

2 2

ˆ( ) .
d d q

A s
qr

  
 
 
 

 (27) 

Simplifying equation (26) and using equations (7), (9), (11) and (23), we get 

 1

1 0 0

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
( )

kk ik
m

w w v
m

vm k i

k
Q s s A s A s

is s s

   
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Laplace inversion of equation (28) yields 

2
( ) ( )

1 1 1 0 21 2
1

1
( ) ( ) ( ) ( ) ( ) ( )t t tw w

m m mm
m

Q t t e I qt I qt e e I qt I qt
r r

      


 


    

 


 
            
  

  

         
1 11

1 ( )
1 1

0 0

( ) ( ) ( )
( 1)! ( 1)!

v

k k i kk i
tk t t

v k i k i

k i

k t t
r e e e I qt I qt

i k i k

    
    

   
   

 

 
       

   
   

         

1
( )

1 1 01
1

( ) ( ) ( )
( 1)!

v

i
m m

t tv
m mm

m

t
e e I qt I qt P t

mr

 


 
  

 


 
      

  
 . (29) 

VI. Evaluation of 0 ( )P t
 

For 1n  , using equations (23) and (28) in equation (20) and performing some algebraic simplifications, we get 
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On taking Laplace inversion of the equation (30), we get 

1 1

0 1 1

0 0

( ) ( ) ( )
( 1)! ( 1)!

w w w

n n j j
t t tn j n j j

n j

n t t
P t e r e t e

j n j j
 

   
   

 

 
    

   
   

     

2
( ) ( )

1 1 0 21 2
1

1
( ) ( ) ( ) ( ) ( )

j

t t tw w
m m mm

m

t e I qt I qt e e I qt I qt
r r

      


 




    
 



 
            
  


 

      
1 11

1 ( )
1 1

0 0

( ) ( ) ( )
( 1)! ( 1)!

v

k k i kk i
tk t t

v k i k i

k i

k t t
r e e e I qt I qt

i k i k

    
    

   
   

 

  
        

    
  

      

1
( )

1 11
1

( ) ( ) .
( 1)!

v

j
i

m m
t tv

m mm
m

t
e e I qt I qt

mr

 




 
  

 


 
         

  (31) 

VII. Evaluation of ( )n t
 

The definition of CHF and equation (24) together yields  
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Equation (32) can be resolved into partial fraction to obtain  
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Further, 
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The partial fractions of equation (34) gives  
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By using the following identity (see Gradshteyn and Ryzhik (2007)), we obtain 

1

1

1 1
1

0

ˆ; ; ( ) ,w w
w

r s
F

r
h s 




 


 

 



   
   

  
  (36) 

where
 1 1F is CHF defined by 
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Also 
0

ˆ ( ) 1h s   and for .1,2,3 .,  .  , we have 
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Substituting equations (28) and (30) in equation (23), we get 
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Performing Laplace inversion yields 
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Here ( )nP t  is expressed in terms of 0 ( )P t , for 1n  and 0 ( )P t  is computed explicitly.  

VIII. Special case 

When 0v 
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which coincides respectively with the results (3.7), (3.9) and (3.10) given in Sudhesh et al. (2017) when matching notations are 

n n,1 n n,0 1 0( ) ( ), ( ) ( ), , , , ,w w wQ t P t P t P t                 . 
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 SYSTEM PERFORMANCE MEASURES AND COST FUNCTION 

To evaluate the performance of the queueing system, several key metrics must be analyzed to predict its real-time behavior. 

This section derives important performance indicators, including the expected queue length  (t)E  , the variance of the queue 

length  ( )V t , the effective service rate (throughput) ( )TH t , and the probabilities associated with different server states. 

(i) The formula for the expected queue length is obtained as  
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 (ii) The expression for the variance of the queue size is 
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The values of the probabilities ( ), ( )n nR t Q t  and ( )nP t  are given in (10), (18) and (25), respectively. 

 

(iii) The throughput TH(t) of the system is 
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(iv) The probabilities that the sever being in NB, WV and CV modes respectively i.e., PNB(t), PWV(t) and PCV(t) are 

0 0 0
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I. The cost function 

The cost modelling of queueing model plays a pivotal role in determining the minimum operational expenses and optimal 

service rate, which collectively help to alleviate congestion in the queueing system at the lowest possible service cost. In this 

section, a cost function is formulated based on the model under analysis, considering the service rates  and w as decision 

variables for the effective cost optimization. The various expenses incurred per unit time in the various operations of the system 

are categorized as cost elements and are defined as follows:  

  CH    : Holding cost of each customer in the system. 

  CWV : Cost associated with the server being in WV mode.   

  CB     : Cost associated with the server being in NB mode. 

  CV     : Cost associated with the server being in CV mode. 

         CM    : Service cost of each customer in NB mode. 

 CMW : Service cost of each customer in WV mode. 

Now the cost function is framed as,  

 ( ; , ) ( ) ( ) ( ) ( )w H W WV B NB V CV M MW wTC t C E t C P t C P t C P t C C           (49)   
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 As the optimization cannot be conducted with respect to the time variable, it is necessary to establish a fixed value for time. 

We are fixing 2t   units, to proceed with the optimization process. Hence, the cost optimization problem associated with the 

cost function ( ; , )wTC t   is formulated as: 

* *

( , )
( , ) min ( , )

w
w wTC TC

 
     (50) 

where
* and *

w  denote the optimum values of the service rates  and w .  

The optimization problem outlined in equation (50) is complex and non-linear in nature, making it unsolvable by analytical 

methods, thus necessitating the use of the direct search method for its solution. This method involves examining a set of points 

in the neighborhood of the current point to identify one that results in a lower value of the cost function compared to the current 

point. 

NUMERICAL SIMULATION, COST OPTIMAZATION AND DISCUSSION 

This paper aims to assess the real-time effectiveness of the model by conducting an extensive analysis of numerical simulations 

and implementing a cost-optimization framework. The results obtained from these quantitative analyses are then utilized to 

provide a deeper understanding of the managerial implications that arise from the study concluded in this paper. 

I. Numerical simulation 

To obtain the numerical simulation results, the computational tasks were carried out using the MATLAB R2021b software with 

the number of customers fixed at 8n   and for the default parameter as

3, 2.5, 2, 3.2, 3, 1, 1, 0.3, 3.w v w w v                  

The impact of variation in system parameters is examined on the various system indices; the key observations for different 

indices are as follows: 

(i) E{ξ(t)}: From Figures 2(i-vi), it is noticed that  (t)E   increases as time grows up to t=9 and after that it becomes 

asymptotically constant and reveals the steady state behavior. By increasing the values of arrival rates , ,w v   and WV 

termination rate w , the values of  (t)E   increases as shown in the Figures 2(i-iii) and 2(v). On the other hand, we see 

that  (t)E  decreases with the increments in and v   which is clear from the Figures 2(iv) and 2(vi). 

(ii) TH(t): It is clear from the Figures 3 (i) and 3 (iii-v) that TH(t) initially decreases as time grows up to a threshold point 

which is attained near about t=3 for all the four figures. Then after TH(t) increases before attaining the almost constant 

value. From Figures 3 (ii) and 3 (vi) we observe that TH(t) for 0.6and 4,v   initially starts increasing rapidly up to 

a maximum point then it decreases and finally attains the constant value. Also, from the figure 3 (i-vi), it is observed that 

TH(t) increases with the increments in parameters , , , ,andw v     ; on the other hand, TH(t) decreases with .w  

(iii) PNB(t), PWV(t), PCV(t) : From Tables 2 and 3 we notice that the PNB(t) increases with time but decrease by increasing the 

values of and w  ; this may be due to the fact that as and w grow, the number of customers in the queue will decrease 

and so the PNB(t). The value of PWV(t) decreases as time passes which is noticed from the Tables 2 and 3. Also from both 

the tables we conclude that PWV(t) is less sensitive with respect to the parameters and w  as the increment in the value 

of PWV(t) with respect to both of these parameters is negligible. From tables 2 and 3, it is noticed that PCV(t) follows the 

same trend as noticed for PWV(t) i.e., it decreases with time and remains almost constant with the increment in both the 

parameters and .w   
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 TABLE 2 

IMPACT OF  ON VARIOUS SYSTEM STATE PROABILITIES 


 

t
 ( )NBP t

 
( )WVP t

 
( )CVP t

 

1 

3 0.591017
 

0.122695
 

0.286288
 

5 0.688015
 

0.093595
 

0.218389
 

7 0.734211
 

0.079737
 

0.186052
 

9 0.750539
 

0.074838
 

0.174623
 

3 

3 0.590272
 

0.122918
 

0.286810
 

5 0.684770
 

0.094569
 

0.220661
 

7 0.730608
 

0.080818
 

0.188574
 

9 0.747231
 

0.075831
 

0.176938
 

5 

3 0.590571
 

0.122884
 

0.286730
 

5 0.684369
 

0.094793
 

0.221180
 

7 0.730025
 

0.081096
 

0.189220
 

9 0.746684
 

0.076089
 

0.177540
 

 
 

TABLE 3 

IMPACT OF w  ON VARIOUS SYSTEM STATE PROABILITIES 

w  
t

 ( )NBP t
 

( )WVP t
 

( )CVP t
 

1 

3 0.589996
 

0.123001
 

0.287003
 

5 0.685666
 

0.094300
 

0.220034
 

7 0.731775
 

0.080467
 

0.187757
 

9 0.748316
 

0.075505
 

0.176179
 

3 

3 0.590272
 

0.122918
 

0.286810
 

5 0.684770
 

0.094569
 

0.220661
 

7 0.730608
 

0.080818
 

0.188574
 

9 0.747231
 

0.075831
 

0.176938
 

5 

3 0.590571
 

0.122829
 

0.286601
 

5 0.684369
 

0.094689
 

0.220942
 

7 0.730025
 

0.080993
 

0.188983
 

9 0.746684
 

0.075995
 

0.177321
 

 

II. Cost Optimization 

By direct search approach the optimization problem given by equation (50) is solved to obtain the minimum operation cost 
* *( , )wTC   and the optimal service rates

* and *

w . Furthermore, the effect of w and on the optimality of the system is 

highlighted in Table 5. Two different cost sets (see Table 4) are chosen for the cost optimization purpose. 

In Figures 4(i-iii) and 5(i-iii), the surface plot of the cost function is shown for both the cost sets. The data shown in Table 5 

reveals that the cost function exhibits a minimum value $121.08 for cost set I at optimal service rates
* 3.0824  and

* 2.0969w  . For cost set II, the minimum value of the cost function is $=80.87, which is achieved when 
* 2.4  and

* 0.7864w  . 

III. Managerial Insights 

This study offers significant insights to inform and guide managerial decision-making processes and have the potential 

applicability. Including option between complete vacation (CV) and working vacation (WV) in the service system, 

managers/system designers may chalk out the service strategies to meet the demand at an optimal cost. The system designers 

and managers can employ this understanding to balance between CV and WV periods of the server, thus improving the quality 

of service (QoS) and the system's efficiency. The analysis of the customer impatience behavior during the WV period 

underscores the significance of adopting proactive measures to alleviate customer attrition. These measures may include 

providing incentives or enhancing service quality. The sensitivity analysis done may be helpful in optimally designing the 

waiting area for the customers. The numerical findings of various system indices can be employed to make predictions 

regarding the in-flow of the customers based on the server's status within the service system. Therefore, by appropriately 

managing the system parameters, it is possible to reduce the waiting time of the jobs, and overall operational efficiency of the 

service system within the technological and cost restrictions. 
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                               (i)            (ii)                 (iii) 

 

 
                               (iv)            (v)                 (vi) 

FIGURE 2 

 VARIATION IN  (t)E  WITH RESPECT TO TIME FOR VARIOUS VALUES OF (I)   (II) 
w  (III) 

v (IV)  (V) 
w (VI)

v  

 
   (i)            (ii)                 (iii) 

 

 
                               (iv)            (v)                 (vi) 

FIGURE 3 

 VARIATION IN TH(T) WITH RESPECT TO TIME FOR VARIOUS VALUES OF (I)   (II)   (III)  (IV) 
w (V) 

v (VI)
w  
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                            (i)                                                                    (ii)                                                               (iii) 
FIGURE 4 

 TOTAL COST OF THE SYSTEM FOR COST SET I AT 2.5w  AND FOR (I) 0.01   (II) 0.05   (III) 0.15   

 
 

                            (i)                                                                    (ii)                                                               (iii) 
FIGURE 5 

 TOTAL COST OF THE SYSTEM FOR COST SET II AT 2.5w  AND FOR (I) 0.01   (II) 0.05   (III) 0.15   

TABLE 4 

 VARIOUS COST SETS FOR COST MINIMIZATION PROBLEM (IN $) 

Cost Set I 25HC   20WC   22BC   12VC   10MC   8MWC   

Cost Set II 15HC          12WC          16BC   8VC   8MC   6MWC   

TABLE 5 

EFFECT OF w AND  FOR BOTH THE COST SETS ON OPTIMAL VALUES OF SERVICE RATE 
* AND

*

w  AND COST ASSOCIATED 

WITH THE SYSTEM WHEN 3, 2, 0.01, 1, 0.9v w v          

Cost Set ( w , ) (
* ,

*

w ) 
* *( , )wTC    

Cost Set I 

(2.5,0.01) (3.0901,2.4406) 123.52 
(2.5,0.05) (3.0880,2.3419) 122.82 

(2.5,0.15) (3.0824,2.0969) 121.08 

(2.99,0.01) (3.0069,2.9363) 130.43 
(2.99,0.05) (3.0040,2.8286) 129.68 

(2.99,0.15) (2.9964,2.5604) 127.82 

Cost Set II 

(2.5,0.01) (2.4252,1.1866) 82.79 

(2.5,0.05) (2.4185,1.0732) 82.24 
(2.5,0.15) (2.4000,0.7864) 80.87 

(2.99,0.01) (2.1943,1.2345) 87.17 

(2.99,0.05) (2.1752,1.0805) 86.56 
(2.99,0.15) (2.1032,0.6340) 85.06 
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 CONCLUSION 

Customers’ impatience can significantly affect both the quality of service and the accuracy of the performance predictions in 

queueing systems. This impatience can lead to increased abandonment rates, which in turn affects system stability and overall 

service efficiency. As a result, understanding and accounting for customer behavior are crucial for optimizing queueing system 

performance.  In many service and manufacturing/commercial systems, when the server becomes free, he may avail either CV 

or WV. These scenarios may encounter in telecommunication systems, programmable robotics arms, machine-dependent 

production, call centers, packaging systems, etc. The transient study of a Markovian queueing model, which includes the option 

for CV and WV, is conducted by considering the impact of customer impatience and state-dependent arrival and service rates. 

Based on our study, the strategic joining/reneging behavior of the customers can be predicted. Numerical simulations illustrate 

the feasibility of quantitatively assessing transient performance metrics which provides valuable insights into the dynamic 

behavior of various congestion scenarios. However, this research has certain limitations. The feature of unreliable server 

incorporated in the model investigated seems to be more realistic and portrays many real-world machining systems where 

servers are prone to failures. Moreover, the study focuses on a single-server environment, which limits its applicability to 

systems with multiple servers. The transient model developed focuses on a single-server environment, which can be further 

modified for the multiple servers. The possible extension of present work is to include Bernoulli feedback, which would make 

the model more realistic for many real-world systems. Moreover, the model could be extended to include bulk input or bulk 

service, but analysis will become very tedious.  
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