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  INTRODUCTION 
Knowing growth curve parameters and the ability to control 
the growth curve in the investigated population may be an 
interesting aspect for breeders in the first step of breeding 
programs. Understanding the genetic architecture of the 
growth curve and its longitudinal data is an interesting bio-
logical scenario to simplify different stages of growth. 

Also, related reports about growth curve parct selection 
that could improve curve parameters during the economic 
life of animals (Ghavi Hossein-Zadeh, 2015a). To deter-
mine the genetic flexibility of the shape of growth curves, 
QTL studies must be done for the underlying curve vari-
ables. Mapping QTL controlling growth model parameters 
highlight the rate of heritability and contribution of additive 
genetics, which reflect direth curve parameters has been 

 

Understanding the genomics aspect of curve variable allows for the combination of genomic regions of 
such model-based variables from multiple measurements into a few biologically meaningful variables. With 
this motivation, the aim of the current study was a model-based quantitative trait loci (QTL) detection for 
growth curve variables in Ghezel fat-tailed sheep. We tested the following items during research: 1) Deter-
mining the best nonlinear growth models using six nonlinear equations (Von Bertalanffy, Gompertz, Logis-
tic, Richards, Weibull and Brody) according to 24905 obtained data sets collected from the Ghezel Sheep 
Breeding Center, Iran, during the 1994-2013 period; 2) Conducted partial genome scan to identify signifi-
cant QTl controlling best growth model parameters in Ghezel sheep using three half-sib families (Family 
size=25-50) and 8 microsatellite markers distributed on ovine chromosome 1. In addition, QTL effects for 
two paternal half-sibs using two models, individual families and across families were calculated. Molecular 
data were analyzed using SAS and GridQTL programs. Observed results demonstrated the Brody model 
was the best growth model for growth data according to the lower values of RMSE, AIC and BIC and gen-
erally greater values of R2adj than other models. Thus, Brody model parameters (A, B, and C) were sub-
jected to further QTL analysis. Also, our observation identified one significant QTL between the markers 
INRA11-CSSM004 associated with Brody model A variable (maturity) located in 123 CM in chromosome 
1 (P<0.01). Analyses using more families and advance massive genotyping tools will be useful to confirm 
or to reject these findings.  
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reported in different species: mice, pigs, sheep and dairy 
cattle in the overall growth pattern (Gebreselassie et al. 
2020), and mapping of age-dependent QTL for growth 
curve parameters enables the animal to complete its life 
cycle under many different circumstances. Whereas, there 
are many reports of QTL for body weight and several for 
rate of growth at specific age, there is relatively limited 
information on QTL for growth curve parameters in sheep 
(Raadsma et al. 2009). 

Recently, (Duan et al. 2021) highlighted the applicability 
of growth curve parameters for genome-wide association 
study (GWAS) in beef cattle and addressed that longitudi-
nal data versus single data records can better describe the 
growth and production of livestock. Some studies have 
been performed for the identification of QTLs and markers 
related to growth traits. For example, GWAS analysis iden-
tified statistically significant SNPs on chromosome 1. That 
is associated with Hu sheep’s body height and chest cir-
cumference (Jiang et al. 2021). Also, for body weight were 
identified QTLs on chromosome 1 for Suffolk (Walling et 
al. 2004), and Charollais (McRae et al. 2005) breeds. For 
birth body weight were identified 5 QTLs and the peak lo-
cations of that QTLs are 322.66 (cM), 299.22 (cM), 299.15 
(cM), 48 (cM), and 9.37 (cM) on chromosome 1 (Haldar et 
al. 2014; Ghasemi et al. 2019). Also were identified 4 
QTLs in related average dairy gain on chromosome1 in 
Awassi and Merino breeds (Raadsma et al. 2009). How-
ever, there is still a deficiency of scientific evidence related 
to QTL and the genome region responsible for growth 
curve variables and the different stages of growth, so fur-
ther study is needed to solve this puzzle. With this motiva-
tion, the aim of the current study was a model-based QTL 
detection for growth curve variables in Ghezel fat-tailed 
sheep. We tested the following items during research: 1) 
determining the best nonlinear growth models using six 
nonlinear equations (Von Bertalanffy, Gompertz, Logistic, 
Richards, Weibull, and Brody), and 2) partial-genome scan 
was conducted to identify significant QTL-controlling best 
growth model parameters in Ghezel sheep using 8 microsa-
tellite markers distributed on ovine chromosome 1. 
  

  MATERIALS AND METHODS 
Animals and sampling 
For the present study the data on 24905 Ghezel Sheep col-
lected from Breeding Center, Iran, during the period 1994-
2013. Controlled natural mating was applied to the herd, 
and ewes are routinely bred to rams following heat detec-
tion. Ear tags were used to identify newborn lambs as the 
offspring of its ram within 1-3 hours of birth. Pedigree in-
formation and fixed effects (birth year, sex, type of birth 
and parity) were also recorded at lambing (Table 1, Figure 
1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Measurements  

Table 1 Summary of pedigree circumstance in the Ghezel 
Items values 
Number of observations (N) 27537 
Total and inbreeds in evaluated 93 
Total sires 395
Progeny 5733 

Total dams  10129 

Progeny 17706 
Individuals with progeny 10524 

Individuals with no progeny 17013 

Founders 9811 
Progeny 13001 

Sires 321 

Progeny 4774 

Dams 7427 

Progeny 12222 
With no progeny 2063 

Non-founders 17726 
Sires 74 
Progeny 959 

Dams 2702 

Progeny 5484 
Only with known sire 20 

Only with known dam 11993 

With known sire and dam 5713 

Full-sib groups 574 
Average family size 2.06794 
Maximum 6 
Minimum 2 

For present study the following traits were recorded: birth 
weight, adjusted weaning weight, and adjusted 6-month, 9-
month, and yearling live body weight. These raw records 
plus fixed effect were subjected for statistical calculation to 
detect the best nonlinear growth models among six nonlin-
ear mathematical equations (Von Bertalanffy, Gompertz, 
Logistic, Richards, Weibull, and Brody) according to the 
obtained data set. As a detail, a pedigree (number of animal 
per measurement class) summary of descriptive statistics 
was obtained: Male (13541), Female (10418), Single birth 
(20309), Twin birth (3577), Triple birth (73), a total of 
34122 records, including BW (13282), WW (11080), 6W 
(7824), 9W (1936) and 12W (1114) were entered to the 
growth modeling process. The mathematic equations of the 
mentioned six non-linear growth curves are presented in 
Table 2. 

PROC NLMIXED was run for weight records for all 
lambs, males, females, single and twin lambs; fitting of 
each model equation was done according to previous simi-
lar works for combinations of random effects; and the 
Gauss-Newton iterative method was applied using SAS 
version 9.6 software. The iterative process (Gauss-Newton 
iterative method in the present study) commences from 
starting values and applies derivatives or approximations to 
derivatives of the residual sum of squares with respect to 
the parameters to guide the search for the parameters pro-
ducing the smallest residual sum of squares.  
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The Gauss-Newton algorithm was chosen for iterations 

of nonlinear fit.  
The maximum number of iterations used was 50 and the 

convergence criterion was: (Eq. (1)): 
 

{(SSEj-1-SSEj|SSEj + 10-6} < 10-8 
 

Where:  
SSE: residual sum of squares after fitting the function to the 
data.  
j: round of iteration, as defaults for SAS.  
 

To compare the suitability of the models, lower values of 
root mean square error (RMSE), Bayesian information cri-
terion (BIC) and Akaike’s information criterion (AIC) crite-
ria and generally greater values of adjusted coefficient of 
determination (R2

adj) were assumed as best model and 
goodness of fit for growth than other models, and parameter 
values for each model and their standard errors were de-
rived from the iterative process. 

 
Molecular analysis 
Overall, 105 individuals from three half Sib families 
(size=25-50) were selected from the whole population and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 The image of Ghezel sheep 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Mathematical equations of six nonlinear mathematical models for growth curve modeling in sheep 

Growth models Equations Parameters* 

Gompertz A B C  
 

A B C  Brody 
 

A B C  Logistic 
 

A B C M Richards 
 

A B C  Von Bertalanffy 
 

Weibull A B C M 
 

W: body weight at age t (day); A: asymptotic weight, which is interpreted as mature weight; B: integration constant related to initial animal weight; C: parameter make the 
starting point be have as a relative value and M: parameter that gives shape to the curve by indicating where the inflection point occurs. 
* The value of B is defined by the initial values for y and t. 

then the microsatellites located in chromosome one were 
used to determine the genotyping process. The marker spac-
ing on the chromosomal map was between 5 to 40 cM. Fig-
ure 3 displays Pedigree diagram of three established half 
Sib families for QTL study. 
 

DNA extraction, PCR reactions, and samples genotyp-
ing  
DNA was extracted according to Shams et al. (2011) in-
struction. Assessment of purity and quality measurements 
for obtained DNA was done using a NanoDrop machine 
(Model: NanoDrop™ 2000/c, Thermo Fisher Scientific).  

Overall, eight polymorphic microsatellites’ loci located 
on chromosome 1 were used for preliminary screening of 
heterozygosity on candidate rams. Table 3 present summary 
of investigated microsatellite loci for QTL analysis. 

The amplification process of each microsatellite loci fol-
lowing PCR reactions and thermal cycle program was op-
timized and fixed: The final volume of PCR reactions was 
adjusted to 25 μL with: 50-100 ng of genomic DNA, 1X 
master mix kit (Ampliqon Company) and 0.5-1 μ forward 
and reverse primers and calculated residual ddH2O. T- gra-
dient Thermo cycler (Germany) and touchdown program 
with initial 10 cycles (descending slope 68 to 58 per each 
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cycle) and followed initial denaturation 95 ˚C, 5 min and 25 
cycles for 95 ˚C, 45s, 57 ˚C, 45s, 72 ˚C, 45s, and a final 
extension of 5 min at 72 ˚C. Finally, the PCR products were 
run through 6% MetaPhor gels at 65 V for 2 or 3 h, depend-
ing on the expected allele sizes, but the 25 bp ladder and 
those observed genotypes did not meet our expectation 
(polymorphism, Mendelian heredity and sharpness) were 
eliminated for further assessment within half Sib families.  

Model-based QTL detection was estimated using indi-
vidual families and across-families models (Knott et al. 
1996). When the half-sib family is sufficiently large, it may 
be assumed that the offspring receives a random sample of 
the possible alleles at the marker locus from the dams. As 
there is no information about the genotype of the QTL, sig-
nificant differences between the two phenotypes’ mean of 
the two groups of offspring will be indicative of the pres-
ence of a QTL near the markers. The statistical analysis is 
based on a linear model developed by Soller and Genizi, 
(1978) displayed here in Eq. (2): 
 

Yijk= μ + Si + Mij + eijk 
 

Where:  
Yijk: phenotypic value for the kth offspring of the ith sire 
which receives the jth marker allele.  
 

μ: population mean of the trait.  
Si: effect of the ith sire (1, 2).  
Mij: effect of the jth marker allele of the ith sire. 
eijkl: residual effect. 
 

Knott and Haley, (1992) suggested a regression model to 
find the QTL position in the chromosome, as shown in Eq. 
(3): 
 

Y= μ + aX1 + βX2 + e 
 

Where:  
y: observed phenotype. 
 

X1= P(QQ/Mi) – p(qq/Mi) X2= P(Qq/Mi)          (4) 
 

In Eq. (4), X1 and X2 are probabilities for QTL geno-
types conditional to the flanking marker genotypes. All 
suggestive and significant thresholds were calculated fol-
lowing the guidelines of (Lander and Kruglyak, 1995) using 
a permutation test (Churchill and Doerge, 1994) and all 
collected QTL data were analyzed using GridQTL soft-
ware. 
 

  RESULTS AND DISCUSSION 
Observed results demonstrated that the Brody model was 
the best growth model for growth data (and therefore high-

lighted in Table 4), according to the lower values of RMSE, 
AIC and BIC and generally greater values of R2

adj than 
other models. Thus, Brody model parameters ((A, B and C) 
were subjected to further QTL analysis. Statistically, the 
effect of factors such as year and season of birth, sex, litter 
size, parity, and family number (fixed effect) on Brody 
growth model question parameters (A, B and C) was sig-
nificant (P<0.05). Also, can be seen from the data in Table 
1 that some graphical growth model fitness for Ghezel 
population. 

Table 3 shows polymorphism and allelic size at the 8 mi-
crosatellite loci for the three half Sib families within the 
MetaPhor agarose gel. All microsatellite loci were ampli-
fied and produced a minimum of 2 and a maximum of 10 
alleles ranging from 120 to 220 bp in size. Loci INRA11 
and CSSM11 produced the highest and the lowest observed 
number of alleles, respectively. Figure 2 illustrated a 
graphical description of investigated growth data fitted with 
four different models. The pedigree diagram of three estab-
lished half Sib families for the QTL study is displayed in 
Figure 3. Figure 4 compares the quality of genotyping 
process per investigated locus using horizontal electropho-
resis and metaphor agarose visualization. Also, as shown in 
Table 5 summary of molecular diversity criteria for six mi-
crosatellites across families. Figure 5 shows an overview of 
molecular genetic descriptive statistics for investigated mi-
crosatellite loci across all families. It illustrated that infor-
mation of content (CI) and F-statistic curves resulted from 
the joint analysis of half-sib families on chr. 1 of sheep. 

Our observation identified one significant QTL between 
the markers INRA11-CSSM004 associated with Brody 
model A variable (maturity), located in 123 CM in chr. 1 
(P<0.01). In this study, we investigated the growth curve 
pattern and variability of model-based parameters for the 
identification of QTL controlling growth in sheep. 

In this report, the best non-linear growth models using 
six non-linear equations (Van Breittalenfy, Gompertz, Lo-
gistic, Richards, Weibull, and Brody) were done. The study 
results provided some interesting findings regarding the 
Brody model as the best nonlinear growth model for growth 
data according to the lower values of RMSE, AIC, and BIC 
and generally greater values of R2adj than other models. 
Thus, Brody model parameters (A, B, and C) were sub-
jected for further QTL analysis, like our study. Most prior 
research has applied Van Breittalenfy, Gompertz, Logistic, 
Richards, Weibull, and Brody models for fitting initial 
growth records to produce the shape of the curve in small 
ruminants. A similar conclusion was reached byaboutKordi 
sheep; Sonadi sheep (Gautam et al. 2018); Mehraban sheep 
(Hojjati and Hossein-Zadeh, 2018); Deccani sheep (Nimase 
et al. 2017) and Guilan sheep (Ghavi Hossein-Zadeh, 
2015a).  
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Overall these findings are in accordance with findings 
reported in the present study. Several other research studies 
with highlighted Logistic (Verhulst, 1845, 1847) growth 
model showed that it was the best and most suitable fitted 
model for Spanish Merino, Fleischschaf, and crossbred 
(Fleischschaf×Merino) lambs (López et al. 2018), as was 
the Richard model for Shall sheep (Ghavi Hossein-Zadeh, 
2015b) and Van Breittalenfy mathematical equations for 
Kermani sheep (Mokhtari et al. 2019). Their findings were 
inconsistent with this work. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Some fitted graphical based growth model for ghezel population 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 3 Pedigree diagram of three established half sib families for QTL study (family size: 25-50) with pre assumption of heterozygous ram 
per each investigated SSR locus. Red lines representative of Rams with their candidate half-sib progenies for QTL mapping 

 
There are several possible explanations for inconsistent 

results, including different environmental conditions influ-
encing animals during measurement and recording, for in-
stance, differing feeding regime of different sheep breed; 
and the variation in the determination of the most appropri-
ate model, which can be due to genetic background and also 
the method of weighing animals (traditional scale and mod-
ern digital scale) and adjustment methods for the body 
weight of animals in age after birth weight. 
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We hypothesized this research platform may create sev-

eral advantages, such as a significantly reduced dependency 
of QTL analysis to volume of phenotypic data, reducing 
computation time, particularly during permutation to meet 
the significance thresholds level; and increased accuracy of 
outputs with unbalanced phenotype data and finally open-
ing new avenues to understand clear biological meanings of 
growth curve variables. Many good alternative methods for 
targeting breeding traits need repeated measurement over 
the animal’s lifetime.  

QTL mapping in half-sib families in growth model –
based variables have been used to search for the possibility 
of transmission from heterozygote genome segment origi-
nated from rams to their offspring through a pedigree 
(Seyedsharifi et al. 2020). 

Our results demonstrated that one significant QTL be-
tween the markers INRA11-CSSM004 is associated with 
Brody model A variable (maturity) when located in 123 
CM in chr 1 (P<0.01).  

When comparing our results to the Animal QTL database 
and older studies, it must be recognized that from more than 
3,562 QTL extracted from 186 scientific had already been 
reported, related to 270 different traits for sheep species 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 Microsatellites’ loci characteristics, motifs, and expected allele sizes in this study

Allelic size NCBI 
probe ID

Locus Primer sequence Motif sequence Annealing 2  (bp) 

F:AATAGACCATTCAGAGAAACGTTGAC 
MAF64 (GT)13 63 109-141 9715826 

R:CTCATGGAATCAGACAAAAGGTAGG 

F:CTTAAAATCTGTCTTTCTTCC 

 
 
 
 
 
 
 
 
 
 
 

and in details. Only chr. 1 carries 256 QTLs for different 
health traits, wool traits, meat and carcass traits, production 
traits, reproduction traits, milk traits, and exterior traits. 

The present study showed QTLs for growth and body 
weight on chromosome 1, agreeing with earlier reports. The 
QTL for birth weight was significant when the family 
analysis was conducted for chromosome 1 in families one 
and two. Individual family analysis showed a significant 
QTL (P<0.051) for BW90 on chromosome 1 segregating in 
family one.  

Most literature describes and highlights the important 
role of genomic regions located in sheep chr 1 for control-
ling growth traits, for example, QTL for birth weight in the 
Brahman breed (Lien et al. 2000), conformation traits in 
Japanese Black cattle (Malau-Aduli et al. 2005). Reviewed 
from literature, approximately 3430 genes and coding ge-
nome regions were identified only in chr 1 on sheep tran-
scriptome and most of the identified QTL related to growth 
and body weight in flanking regions and map position of 
the POU1F1 gene, a strong candidate gene for growth traits 
(Gebreselassie et al. 2020; Woollard et al. 2000) as well as 
on the SLC9A9 gene located in ovine chromosome 1 physi-
cal map.  

ILST004 
R:TAGTGTGTATTAGGTTTCTC 

(CA)16 50 
90-106 

9715827 
100 

F:CGATTTCTTTCCTCGTGGTAGGC 
INRA11 

R:GCTCGGCACATCTTCCTTAGCAAC 
- 55 

183-186 
9715833 

196-220 

F:ATGCGTCCTAGAAACTTGAGATTG 
CSSM04 (GT)10(T)5 61 173-197 9715830 

R:GAAATCATCTGGTCATTATCAGTG 

F: GCCTGGAAAACTCCTTGAACAGAG 
CSSM011 (CA)3.CG.(CA)12 65 157-195 9715830 

R: AACACAGGGAAGTTTGTCATACTC 

F:GGAAGATTAGAACTTTCATATATCTTTAAACTC 137-155 (CT)7,TT,CT)14(A
T)6,GT,(AT)8 

MAF109 58 9715846 
R:AATTGAATTTGAAGTGTATATGCCTAAATGC 143-159 

F:TTATTTTCAGTGTTTCTAGAAAAC 
CSSM32 

R:TATAATATTGCTATCTGGAAATCC 
(CA)19 55 

206-220 
9715845 

226 

F:TGTTTTAAGCCACCCAATTATTTG 
CSSM19 (TG)18 58 203-215 9715850 

R:TTGTCAGCAACTTCTTGTATCTTT 

Table 4 Determining the best nonlinear growth models 
-2 loglLkli-

hood 
2 r R2 Models AIC AICC BIC S e 

Gompertz 158456 158456 158489 2626.29 158448 0.6515 0.8071 

Brody 156435 158435 156427 27.0312 156427 0.8688 0.9321 
Logistic 160899 160899 160931 32.2020 160891 0.8453 0.9194 

Richards 155853 155853 155893 26.4388 155843 0.8214 0.8971 

Von Bertalanffy 157665 157665 15768 28.3673 157657 0.8624 0.9287 

Weibull 177812 177812 177852 62.5072 177802 0.6967 0.8347 
AIC: akaic information index; AICC: AIC corrected; BIC: bayesian information index; S2e: mean square error; -2 loglLklihood: negative logarithm likelihood; R2: recogni-
tion coefficient and r: correlation coefficient.  
Bold font numbers representative of significant suitable model. 
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Figure 4 Quality of genotyping process per investigated locus using horizontal electrophoresis and MetaPhor agarose 
visualization  
A: quality and quantity of extracted genomic DNA; B: Maf64 genotype; C: Maf109; D: ILsts004; E: Css19 and F: 
Css011 and G: Css032 microsatellite genotype  
One band are homozygote and two bands are heterozygote genotype for each microsatellites locu 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5 Molecular diversity criteria for six microsatellites across families 

Locus Na Ne I Ho He 

MAF64 6.000 4.720 1.637 0.787 0.788 

ILST004 8.000 3.889 1.585 0.813 0.743 

INRA11 9.000 4.910 1.806 0.796 0.796 

CSSM04 6.000 4.148 1.562 0.787 0.759 

CSSM011 2.000 2.000 0.693 0.000 0.500 

MAF109 10.000 4.205 1.719 0.840 0.762 

CSSM32 6.000 3.599 1.465 0.755 0.722 

CSSM19 7.000 4.477 1.660 0.863 0.777 
Na: observed allele; Ne: expected allele; I: Shannon index; Ho: observed heterozygosity and He: expected heterozygosity. 
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Figure 5 Overview of molecular genetic descriptive statistics for investigated microsatellite loci across all families  
Na: observed allele number; Ne: expected allele number and I: Shandon index 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6 Summary of related literature about QTL identification for growth in chr 1 in livestock

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Author Country Breed Marker 
QTL 

location 
QTL 
peak 

confidence 
level(cM) 

Closest 
marker(s) 

Trait 

81.03-
81.23 
(cM) 
62.9-
63.0 

(Mbp) 

 
(Raadsma et al. 
2009

Awassi, Merino 
sheep 

Australia Microsatellite 87.3 (cM) < 0.05 BM4129 Body weight 
and growth 

) 

(Visser et al. 
2013

South 
Africa ) 

Angora goat Microsatellite - - None - 
Pre-weaning 

growth 

(Seyedsharifi et 
al. 2021) 

Iran Sanjabi lambs Microsatellite 
235(cM) 

225-
238(cM) 

- None 
MCM130 

Growth trait 
MCM137 

BM8246 
and 

McM130 

Suffolk sheep BMS2321 < 0.05 (Walling et al. 
2004

UK Microsatellite 227(cM) Growth trait 
) Texel sheep BMS1789 < 0.01 

591(cM) 591(cM) < 0.05 Cssm019 
Cssm032 

Pre-weaning 
growth 

Our study Iran Ghezel sheep Microsatellite 
689(cM) 689(cM) < 0.01 

 

Figure 6 Graph for information of content (CI) and F-statistic curves resulted from the joint analysis of half-sib families on chromosome 1 of 
sheep  
The lower and upper horizontal lines represent five and 1% chromosome-wide significant levels of linkage, respectively 
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Table 6 provides some related literature about QTL iden-
tification for growth in chr 1 in livestock. 

As logical justification, the reason for a difference in the 
present result with other findings seems mainly due to dif-
ferent sheep breeds and geographical, chromosomal re-
gions, investigated microsatellite loci, genotyping technique 
and, which may influence the output of analysis and inter-
pretation of raw data. 

There are limitations in this study: natural service was a 
routine breeding program for Ghazel sheep breeding station 
and several different HF families and offspring within each 
paternal HF families were affected due to this natural bar-
rier. Only two sires exhibited heterozygote patterns for 
most of the investigating loci and analyses; using more 
families and more animals will be useful to confirm these 
findings. 

There are limitations in this study: natural service was a 
routine breeding program for Ghazel sheep breeding station 
and a number of different HF families and offspring within 
each paternal HF families affected due to this natural bar-
rier. Only two sires exhibited heterozygote patterns for 
most of investigating loci and analyses using more families 
and more animals will be helpful to confirm these findings. 
 

  CONCLUSION 

Based on our results, we conclude that the Brody model is 
the best growth model for growth data given its lower val-
ues of RMSE, AIC and BIC and generally greater values of 
R2adj than other models. Thus, Brody model parameters 
(A, B and C) were subjected to further QTL analysis. Our 
observation identified one significant QTL between the 
markers INRA11- CSSM004 associated with Brody model 
A variable (maturity) located in 123 cM in chr 1 (P<0.01). 
To our knowledge, this is the first report of growth model–
based QTL analysis in Ghezel fat-tailed sheep. Future 
GWAS and variant calling–based evidence in whole ge-
nome sequencing / next-generation sequencing investiga-
tions are necessary to validate the kinds of conclusions that 
can be drawn from this study. 
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