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  INTRODUCTION 
Cattle provide a significant source of nutrition and liveli-
hood to humans in the world. Cattle belong to Ruminantia, 
which occupy diverse terrestrial environments. They are 
renowned for their ability to efficiently convert low quality 
forage into energy, fat, muscle and milk. These biological 
processes have been exploited by the human species since 
domestication, which began in the Near East some 8000-
10000 years ago (Willham 1986; Elsik et al. 2009). Since 
then, over 800 cattle breeds have been established repre-
senting an important world heritage and a scientific re-

source for understanding the genetics of complex traits. 
DNA methylation is a type of chemical modification of 
DNA that can be inherited without changing the DNA se-
quence (Amiri Roudbar et al. 2015). It involves the addition 
of a methyl group to DNA and typically occurs at CpG di-
nucleotide (Vercelli, 2016) and it is an important part of 
gene regulation (Irizarry et al. 2009; Wu et al. 2010). The 
DNA of most vertebrates, especially mammals, is depleted 
in CpG dinucleotides. The remaining CpGs are clustered in 
regions referred to as CpG islands (CGIs). Interest in CGI 
has grown up because they are enriched in promoters of 
genes (Hackenberg et al. 2010) and by the presence of al-
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tered DNA methylation in CGIs, they play important roles 
in the regulation of gene expression and gene silencing 
during processes such as X-chromosome inactivation, 
imprinting and silencing of intragenomic parasites (Takai 
and Jones, 2002; Su et al. 2010). Therefore, full 
comprehension of such CGI could help in discovering the 
epigenetic causes of cancer (Han and Zhao, 2009; Wu et al. 
2010; Saito et al. 2016). Because of their crucial roles, 
multiple algorithms (either species specific or overall ones) 
have been developed for identifying CGIs in the genomes. 

The first algorithm was proposed by Gardiner-Garden 
and Frommer in 1987, in which CGI is featured as a region 
of at least 200 bp, with GC content greater than 50% and 
the observed-to-expected CpG ratio (ObsCpG/ExpCpG ) 
greater than 0.6 (Gardiner-Garden and Frommer, 1987; 
Glass et al. 2007; Tan et al. 2011; Yang et al. 2016). Due to 
these CGI inherent features, many algorithms and applica-
tions were designed to work according to these three fea-
tures and also some new algorithms which circumvent pre-
ceding algorithm’s cavities were also introduced (Rice et al. 
2000; Takai and Jones, 2002; Wang and Leung, 2004). 
These algorithms depend on cutoffs and leaves out impor-
tant CpG clusters associated with epigenetic marks, rele-
vant to development and disease and since they were 
mainly developed for humans genome studies, they were 
not applicable at all to non-vertebrate genomes (Irizarry et 
al. 2009) . To solve these problems Wu et al. (2010) pro-
posed an alternative Hidden Markov model-based approach 
that permitted an extensible approach to detecting CGI. The 
main advantage of this approach over others is that it sum-
marizes the evidence for CGI status as probability scores. 
This provides flexibility in the definition of a CGI and fa-
cilitates the creation of CGI lists for other species. The util-
ity of this approach is demonstrated by generating the first 
CGI lists for invertebrates and can create CGI lists that sub-
stantially increases overlap with discovered epigenetic 
marks (Wu et al. 2010). Hidden Markov models (HMMs) 
have been shown to be very effective in representing bio-
logical sequences and they have been successfully used for 
modeling speech signals (Rabiner, 1989). Thus, HMMs 
have become increasingly popular in computational mo-
lecular biology and many state of the arts studies. From 
2009 onwards, the results of whole genome sequencing 
projects in domestic cattle have been released (Elsik et al. 
2009). There have been some reports in terms of compari-
sons of CGIs and their correlation with genomic features in 
some mammalian genomes (mostly human and mouse) and 
non-mammalian genomes (fish) in the literatures (Glass et 
al. 2007; Han et al. 2008; Han and Zhao, 2008; Irizarry et 
al. 2009; Wu et al. 2010), but to our knowledge, there 
hasn’t been a separate research of CGIs and their correla-
tion with genomic features in cattle. Therefore, the main 

objective of this study was to investigate the presence of 
CGIs at the DNA sequence level in cattle genomes and out-
line a comparison to other vertebrate’s genomes.   

 

  MATERIALS AND METHODS 
Genome sequences and other genome information  
Assembled genome sequences of cattle were downloaded 
from the National Center for Biotechnology Information 
(NCBI). The statistic and other genome information at the 
chromosome level are given in Table 1. CGIs of sheep, 
goat, dromedary camel, bactrian camel and alpaca were 
predicted by HMM algorithm. CGIs analysis for other ver-
tebrate genomes (human, mouse, dog, horse, chicken and 
zebrafish) were downloaded from website (www.rafa-
lab.Jhsph.edu/CGI/) and predicted according to HMM algo-
rithm by Wu et al. (2010). Data of recombination rate in 
cattle (window size, 1 Mb) were obtained from (Weng et al. 
2014). 
 
Algorithm for detection of CGIs 
CGIs were identified based on HMM algorithm (Irizarry et 
al. 2009; Wu et al. 2010). The foundation of this algorithm 
is the stochastic modeling of bases in the genome. This 
algorithm assumes that each genome is divided into 2 states 
(CGI and baseline). In this algorithm the genome is divided 
into non-overlapping segments of length L (in bp). The 
length L= 16 is used for the segments, because at this 
length the association of identified CGI with epigenetic 
markers is higher, then use the number of C, G and CpG in 
segment of length L as parameters for the model and the 
hidden state Y(s) for segment s with states Y(s)= 1 as CGI 
and Y(s)= 0 as baseline. Assume that Y(s) is a stationary 
first-order Markov chain. The choice of the state is based 
on two HMM. One is for GC content to be high or low with 
assumption of the binomial distribution approximated with 
the normal density. The second one is for CpG number with 
the assumption of Poisson distribution as follow: 
 
ai × L × p(s)2 / 4 
 
Where: 
ai: O/E for the CGI (i=1) and baseline (i=0).  
p(s): GC content for segment that is calculated in the first 
step.  
 

As a final step, the algorithm could obtain posterior prob-
abilities of being in each state and creates lists of CGI using 
different specificity cutoffs values. A cutoff value of 0.9 is 
chosen based on the association of CGI with epigenetic 
markers. For the mathematical details of this algorithm see 
Wu et al. (2010).  
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This algorithm is implemented as an R adds-in package 

for R software which is called make CGI. 
 
CGI mapping to different genomic regions 
The method of Han et al. (2008) is used to identify CGIs in 
different genomic regions (genes, intergenic regions, in-
tragenic regions and transcriptional start sites (TSS) re-
gions). Concisely, locations of CGIs compared with the 
coordinates of different genomic regions, is based on the 
cow gene annotation information from the NCBI and 
UCSC databases by BEDTools (Quinlan and Hall, 2010). 

CGIs overlapped with any genes were classified as gene-
associated CGIs; CGIs whose whole sequences were in 
intergenic regions were classified as intergenic CGIs; CGIs 
whose sequences were in gene regions were classified as 
intragenic CGIs and CGIs overlapped with TSSs were clas-
sified as TSS CGIs. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Statistic and distribution of CpG islands and genome in chromosomes of cattle

Items 
Whole 
genome 

Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 

Size (Mb) 2660.91 158.34 137.06 121.43 120.83 121.19 119.46 112.64 113.39 105.71 

GC content in 
whole (%) 

41.8 40.1 40.8 41.9 40.6 41.7 40.0 42.0 41.2 40.0 

Number of 
gene 

26,410 1,430 1,441 1,973 1,241 1,905 1,116 1,957 1,258 944 

Number of 
CGIs 

90668 3784 4082 3890 4042 4244 3831 3324 2233 3154 

CGI density 
(/Mb) 

34.47 23.90 29.78 32.03 33.45 35.02 32.07 29.51 19.69 29.84 

GC content in 
CGIs (%) 

63.30 62.66 63.18 63.84 63.29 63.58 63.63 64.16 62.97 62.39 

Items Chr10 Chr11 Chr12 Chr13 Chr14 Chr15 Chr16 Chr17 Chr18 Chr19 

Size (Mb) 104.31 107.31 91.16 84.24 84.65 85.3 81.72 75.16 66.00 64.06 

GC content in 
whole (%) 

41.5 42.9 40.4 43.7 41.4 41.8 42.6 42.3 45.4 46.0 

Number of 
gene 

1,618 1,440 770 1,274 888 1,560 1,076 978 1,792 1,694 

Number of 
CGIs 

4248 4367 2746 2715 2019 2047 1933 3173 4371 4396 

CGI density 
(/Mb) 

40.72 40.70 30.12 32.23 23.85 24.00 23.65 42.22 66.23 68.62 

GC content in 
CGIs (%) 

62.82 64.14 61.97 62.95 63.35 63.31 63.71 63.69 63.58 63.55 

Items Chr20 Chr21 Chr22 Chr23 Chr24 Chr25 Chr26 Chr27 Chr28 Chr29 Chr X 

Size (Mb) 72.04 71.6 61.44 52.53 62.71 42.9 51.68 45.41 46.31 51.51 148.82 

GC content in 
whole (%) 

41.0 43.1 43.4 43.4 41.9 47.1 42.8 41.8 42.2 44.2 40.6 

Number of 
gene 

601 967 850 1,231 540 1,043 638 484 510 968 1,791 

Number of 
CGIs 

2082 2383 2802 3236 2282 4556 2217 1698 678 2901 1234 

CGI density 
(/Mb) 

28.90 33.28 45.61 61.60 36.39 106.20 42.90 37.39 14.64 56.32 8.29 

GC content in 
CGIs (%) 

62.55 63.33 63.5 62.21 61.79 64.34 63.33 61.76 63.62 64.22 61.12 

CGI: CpG island and GC: guanine-cytosine. 

 

  RESULTS AND DISCUSSION 
CGIs and CGI density in cattle genome 
CGIs detected by HMM algorithm for all chromosomes in 
cattle genome is summarized in Table 1. Because the size 
varied across chromosomes, the CGI density was measured 
by the average number of CGIs per Mb. The number of 
predicted CGIs and correspondingly CGI densities varied 
downwardly among chromosomes. Chromosome 25 had the 
largest number of CGIs (4556) and the highest CGI density 
(106.20 CGIs/Mb). The CGI density in the smallest chro-
mosome (Chr 25) was about five times greater than the 
largest chromosome (Chr 1), that would give out a high 
density of CGIs on micro chromosomes. Moreover, previ-
ous analyses of CGIs in the chicken genome revealed a 
high concentration of CGIs on micro chromosomes (Hillier 
et al. 2004; Rao et al. 2013).  
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These results suggest that some other genomic factors 
might have also played important roles in the course of CGI 
evolution (Han and Zhao, 2008). Figure 1 shows box plots 
of the lengths of detected CGIs for all chromosomes. The 
average length and variance of CGI across chromosomes 
was low. These results were similar to other studies 
(Hackenberg et al. 2006; Chuang et al. 2011; Chuang et al. 
2012).  

The total number of predicted CGIs for cattle was 90668. 
Han et al. (2008) analyzed CGIs in 9 mammalian genomes. 
They predicted the number of CGIs in cattle to be 58327. 
Interestingly, the CGIs number reported there are quite 
lower than those reported in the current study, which is 
probably due to the different approaches used for predicting 
CGIs. 
 
Correlation between CGI density and other genomic 
features of cattle genome 
A significant negative correlation (r=-0.49, p=0.006) was 
observed between CGI density and log10 (chromosome 
size) (Figure 2(A
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Also extremely significant positive correlation were dis-
covered among CGI density with GC content (r=0.83, 
p=2×10-8) (Figure 2(B)) and ObsCpG/ExpCpG (r=0.90, 
p=8.3×10-12) (Figure 2(C)) on the chromosomes. These 
results indicate that chromosome GC content is probably a 
main genetic factor impacting CGI density. In addition CGI 
density was significantly positively correlated with gene 
density (r=0.74, p=2.8×10-6) (Figure 2(D)). The pattern of 
significant correlation between CGI densities and some 
genomic features at the chromosome level such as chromo-
some size, GC content and ObsCpG/ExpCpG was similar to 
other studies (Han et al. 2008; Han and Zhao, 2008). 

The significant positive correlation between CGI density 
and gene density in chromosome level was in agreement 
with research of Han and Zhao (2009) in dog genome 
(r=0.63, P=8.0×10−6). Most of CGIs are sites of transcrip-
tion initiation, including thousands that are remote from 
currently annotated promoters. Shared DNA sequence fea-
tures adapt CGIs for promoter function by destabilizing 
nucleosomes and attracting proteins that create a transcrip-
tionally permissive chromatin state.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Lengths of CGIs in chromosomes of cattle by HMM algorithm  
Small difference in the average length and variance of CGI between chromosomes 
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CGIs are therefore generically equipped to influence lo-

cal chromatin structure and simplify regulation of gene ac-
tivity (Deaton and Bird, 2011). Table 2 shows mean of CGI 
densities in segregated chromosomes by sizes into different 
groups (<50, 50-100, 100-150 and >150 Mb). When the 
size of chromosomes increased, the CGI densities de-
creased. The CGI density in the smallest chromosome 
group was about two times greater than the largest chromo-
some group. Previous study of GC content and CGIs in the 
chicken genomes (Hillier et al. 2004; Rao et al. 2013) and 
some mammalian genomes (Han et al. 2008) revealed a 
high density of CGIs on microchromosomes.  

Interestingly, in the current study, the CGI density in the 
smallest chromosome group was greater than largest chro-
mosome and it was consistent with those studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 

Figure 2 Correlations between CGI densities with genomic features in cattle genome  
(A) CGI density (per Mb) versus log10 (chromosome size)  
(B) CGI density (per Mb) versus chromosome GC content (%)  
(C) CGI density (per Mb) versus chromosome ObsCpG/ExpCpG  
(D) CGI density (per Mb) versus Gene density (per Mb)  
The Y chromosomes were excluded because of insufficient data 

  
 
 
 
 
 
 
 
 

 

Table 2 CGIs densities in chromosomes with different sizes in cattle 
genome. The Y chromosomes were excluded because of insufficient data 

Chromosome Size 
(Mb) 

Number of 
chromosomes 

Mean of CGI 
density/Mb±SD 

< 50 3 52.74±47.67 

50-100 15 41.06±15.56 

100-150 11 30.10±9.23 

> 150 1 23.90±0.0 

Total 30 37.64±18.99 

These results increase the possibility that gene density on 
microchromosomes approaches the maximum value known 
for vertebrates (McQueen et al. 1996). CGIs overlapped or 
within genes (gene-associated CGI) and CGIs in the inter-
genic regions (intergenic CGI) of cattle genome, correlated 
with genomic features.  
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An extremely significant correlation was discovered be-
tween gene-associated CGI densities with log10 (chromo-
some size) (r=-0.69, p=2.4×10-5), with GC content of the 
chromosomes (r=0.90, p=1.1×10-11) and ObsCpG/ExpCpG of 
the chromosomes (r=0.95, p=8.9×10-16). However, correla-
tion among intergenic CGI densities with log10 (chromo-
some size) (r=-0.39, p=0.03), GC content of the chromo-
somes (r=0.47, p=0.008) and ObsCpG/ExpCpG of the chro-
mosomes (r=0.65, p=8.5×10-5) were very low and also less 
significant than gene-associated CGI densities. These find-
ings support the opinion that, CGIs can function as gene 
markers. The significant positive correlation between CGI 
density with GC content and gene density indicates that 
CGIs depend on both local genomic features and gene 
number (Han and Zhao, 2009). Also for a more detailed 
investigation, cattle gene annotation data was used to search 
for CGIs in different regions of genome. 

Table 3 displays significant correlation among CGI den-
sities in all genomic regions of cattle and genomic features 
(log10 (chromosome size), GC content and ObsCpG/ExpCpG) 
at the chromosome level. According to gene annotation in 
the NCBI and UCSC databases, 61095, 29613, 48759 and 
12315 CGIs were overlapped with genes (gene–associated 
CGIs), intergenic regions (intergenic CGIs), intragenic re-
gions (intragenic CGIs) and transcriptional start sites (TSS 
CGIs), respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number of CGIs and corresponding CGI density in inter-
genic region was remarkably lower than that in the in-
tragenic and genes regions and had lower significant corre-
lation with other genomic features (Table 3). 

Other researcher founded similar results for CGIs in 
various genomic regions (Han et al. 2008; Han and Zhao, 
2009; Medvedeva et al. 2010). These observations imply 
that CGIs are a considerable gene feature and they can be 
used to identify transcripts in cattle genomes. 
 
CGI density and recombination rate in cattle genome 
A set of recombination rate data of cattle (window size, 1 
Mb was obtained from (Weng et al. 2014). A meaningful 
correlation (r=0.61, p=0.00031) was detected between CGI 
density and recombination rate (Figure 3(a)). Because the 
recombination rate increases from centromeric toward te-
lomeric regions (Jensen-seaman et al. 2004; Han et al. 
2008; Poissant et al. 2010; Weng et al. 2014), the trend of 
CGI density in length of chromosomes can be obtained. 
Attractively, a trend of higher CGI density in the telomeric 
regions is obtained (Figure 3(b)). This feature may be the 
reason of a positive correlation between CGI density and 
recombination rate. Several GC related measures (GC-rich 
repeats, CpG dinucleotide sites and CpG islands) were posi-
tively correlated with recombination rate in previous studies 
(Han et al. 2008; Tortereau et al. 2012; Rao et al. 2013). 
 
 
 
 
 
 
 
 

Table 3 Correlation between CpG island (CGI) density in various cattle genomic regions and genomic features

Items 
Gene-associated CGIs 

(61095) 

Intergenic CGIs 

(29613) 

Intragenic CGIs 

(48795) 

TSS CGIs 

(12315) 

 r p r p r p r P 

 Log10 (chromosome size) -0.61 2.9×10-5 -0.39 0.03 -0.48 0.01 -0.53 0.003 

 contentcytosine-nineaGu 0.91 4.1×10-12 0.47 0.01 0.85 2.3×10-9 0.87 3.2×10-10 

ObsCpG/ExpCpG   0.94 3.1×10-14 0.65 8.5×10-5 0.83 1.8×10-8 0.86 8.6×10-10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3 (A) correlation among CGI density and recombination rate (cM/Mb) in the cow genome,  
(B) Distribution of CGI density (per Mb) on chromosome 28 
The data demonstrate a trend of higher CGI density in telomeric regions 
A similar trend was found for other chromosomes 
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The same result was observed in this study (Figure 3(a)). 
It is difficult to reveal the causality of the observed rela-
tionships between GC related measures such as CGIs and 
recombination rate, i.e., which parameter drives which. 
Further analyses of the mechanisms underlying recombina-
tion are needed to identify the molecular mechanism.  
 
Comparison of CGIs in cattle genome and other verte-
brate genomes 
To detect the information on difference of CGI density be-
tween cattle and other vertebrate genomes, CGI density was 
scanned in eleven vertebrate genomes, including the sheep, 
goat, dromedary camel, bactrian camel, alpaca, human, 
mouse, horse, dog, chicken and zebrafish genomes (Figure 
4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Cooperation of CGI density (per Mb) in various vertebrate ge-
nomes. CGI density varied among genomes 
 

Predicted CGI density ranged from 23.05 (human) to 
85.17 (zebrafish). Variation of CGI density between cattle 
with, chicken and other mammals (including ruminants) 
was reported to be not very high. According to previous 
studies, there are a lot of similarities between cattle genome 
and other ruminant as they have a close phylogeny, 
syntenic maps and orthologous genes (Elsik et al. 2009; 
Archibald et al. 2010; Jirimutu et al. 2012; Dong et al. 
2013; Wu et al. 2014).  

Probably, this is the reason of almost close CGIs density 
among these genomes. In mammals, the dog genome had 
the largest CGI density in comparison to other mammals 
and especially cattle. Han and Zhao (2009) studied contrast 
features of CpG islands in the promoter and other regions in 
the dog genome. They revealed a remarkably higher CGI 
density in the dog genome than in the human and mouse 
genomes.  

But the dog genome had fewer promoter-associated CGIs 
than the human and mouse, and the abundance of CGIs in 
the dog genome was largely contributed by the non coding 
regions including the intergenic and intronic regions. The 
zebra fish genome had the largest CGI density in compari-
son to cattle and other ruminant genomes. CpGs are pro-
gressively depleted from fish to mammals.  

This is mostly consistent with the idea of a greater degree 
of CpG loss with organism complexity (Irizarry et al. 
2009). Variation in the number of CGIs and CGI density in 
warm-blooded vertebrate such as mammals, but very high 
in fish (Han et al. 2008). Fish genome is different in both 
number of CGIs and CGI density. In the study of Han and 
Zhao (2008) on fish genomes, they found that number of 
CGIs and the CGI density varied greatly in four fish ge-
nomes. They concluded that this feature might be caused by 
genetic (sequence composition evolution) and environ-
mental factors such as water temperature, speed of flow, 
extent of light in different depth of water during the long 
evolutionary period after the divergence of common ances-
tor of fishes. 

 

  CONCLUSION 

A systematic comparative genomic analysis of CGIs and 
CGI density was conducted in the cattle genome. The num-
ber of CGIs and the CGI density showed low variations in 
chromosomes. This study discloses significant correlations 
between CGI density and genomic features such as chro-
mosome size, GC content, ObsCpG/ExpCpG, gene density 
and recombination rate in cattle. The results indicates neatly 
a close relationship between cattle evolution and CGI den-
sity.When comparing CGI between cattle and other verte-
brates, it is evident that the former are characterized by 
lower number of CGI and CGI density when opposed to 
col-blooded vertebrates such as fishes. This is mostly con-
sistent with the idea of a greater degree of CpG loss with 
organism complexity. 
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