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  INTRODUCTION 
The estimation of breeding values in order to select the best 
animals as parents of the next generation is the main goal of 
animal breeding programs. Traditional methods of genetic 
evaluation were performed using a combination of pheno-
typic and pedigree information to produce estimated breed-
ing values (EBV) (Dekkers, 2012). The rapid progress and 
reducing costs of genotyping of whole genome have led to 
a great interest in using molecular markers information to 

identify individuals of high genetic merit (Daetwyler et al. 
2010). Meuwissen et al. (2001) proposed an approach 
called genomic selection (GS), which uses high density 
markers to estimate breeding values. Using simulations, 
they showed that with a dense marker panel, it is possible to 
accurately estimate the breeding value of animals without 
information about their phenotype or that of close relatives 
(Moser et al. 2009). The accuracy of GS is expected to be 
considerably higher than that of traditional best linear unbi-
ased prediction (BLUP) selection (Daetwyler et al. 2008; 

 

The accuracy of genomic breeding value prediction was investigated in various levels of reference popula-
tion size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, includ-
ing Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the 
marker effects for each of 27 scenarios resulted from combining three levels for heritability (0.1, 0.3 and 
0.5), training population size (600, 1000 and 1600) and QTL numbers (50, 100 and 150). A finite locus 
model was used to simulate stochastically a historical population consisting 100 animals at first 100 genera-
tions. Through next 100 generations, the population size gradually increased to 1000 individuals. Then the 
animals in generations 201 and 202 having both known genotypic and phenotypic records were assigned as 
reference population, and individuals at generations 203 and 204 were considered as validation population. 
The genome comprised five chromosomes of 100 cM length and 500 single nucleotide polymorphism 
markers for each chromosome that distributed through the genome randomly. The QTLs and markers were 
bi-allelic. In this study, the heritability had great significant positive effect on the accuracy (P<0.001). By 
increasing the size of the reference population, the average genomic accuracy increased from 0.64±0.03 to 
0.70 ± 0.04 (P<0.001). The accuracy responded to increasing number of QTLs non-linearly. The highest 
and lowest accuracies of Bayesian methods were 0.40 ± 0.04 and 0.84 ± 0.05, respectively. The results 
showed having the greatest amount of information (i.e. highest heritability, highest contribution of gene 
action in phenotypic variation and large reference population size), the highest accuracy (0.84) was ob-
tained, with all investigated methods of estimation.  
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Goddard, 2009; Hayes et al. 2009). In addition, genome-
wide selection reduces inbreeding rates due to increasing 
emphasis on own rather than family information, that is a 
better estimation of mendelian sampling term (Daetwyler et 
al. 2007; Dekkers, 2007). Genomic estimated breeding val-
ues (GEBV) can be calculated for both sexes at the early 
time of life. Therefore, the GS can increase the profitability 
through accelerated genetic gain resulted from reduced 
generation interval and lowering the cost of proving ani-
mals. 

In whole-genome analyses, the number of marker effects 
to be estimated, may exceed the number of individuals 
(curse of dimensionality). Under this condition the models 
are at risk of being over parameterized. In order to deal 
with these problems, estimation of marker effects is often 
performed using penalized estimation methods such as 
ridge regression, the least absolute shrinkage and selection 
operator (LASSO) (Tibshirani, 1996), Bayesian methods, 
semi-parametric (Gianola et al. 2006) or non-parametric 
methods. Among the Bayesian methods, those using 
marker-specific shrinkage of effects (e.g., BayesA or 
BayesB of Meuwissen et al. 2001, or the Bayesian LASSO 
of Park and Casella (2008) are commonly used in animal 
breeding applications. 

The Bayesian methods proposed by Meuwissen et al. 
(2001) differ in the way of looking at the variances of pa-
rameters. BayesA applies the same prior distribution for all 
of the variances of the markers. BayesB assumes that some 
markers contribute largely to the genetic variation, and 
seems more realistic for GS than Bayes A.  

BayesC uses a common variance for all markers and the 
scale parameter of the scaled inverse chi square distribution 
is the user pre-specified value. Park and Casella (2008) 
introduced the Bayesian LASSO method for estimating the 
regression coefficients. They connected the LASSO method 
with the Bayesian analysis using Tibshirani’s idea. 
Tibshirani (1996) noticed that the LASSO estimates of the 
regression coefficients can be interpreted as posterior mode 
estimates assuming double exponential prior distributions 
for the regression coefficients. 

Many studies have shown that factors such as size of the 
reference data set (Meuwissen et al. 2001; VanRaden and 
Sullivan, 2010), trait heritability, the number of loci affect-
ing the trait (Daetwyler et al. 2008), the degree of genetic 
relationships between training and validation samples 
(Habier et al. 2007) and distributions of allele frequencies 
(Clark et al. 2011) have great effect on accuracy of ge-
nomic prediction.  

The aim of this study was to investigate the accuracy of 
five genomic evaluation methods under various levels of 
reference population size, trait heritability and the number 
of QTL.  

  MATERIALS AND METHODS 
Simulation 
Various scenarios were defined according to all 
combinations of three different levels of heritability, 
training population size and QTL numbers. For each 
scenario five Bayesian methods of estimation were 
compared in terms of prediction accuracy, the correlation 
between the predicted genomic breeding values and the true 
values. Parameter estimate was performed via Gibbs 
Sampler algorithm implemented in the BGLR package of R 
software (Perez and De los Campos, 2014). 

A historical population of 100 effective numbers with 
equal sex ratio was simulated using QMSim software, 
assuming the heritability values of 0.1, 0.3 or 0.5. During 
the first 100 historical generations, mating was performed 
by drawing the parents of an animal randomly from the 
animals of the previous generation. Then, in order to arrive 
at a mutation-drift balance, 100 more generations were 
simulated while increasing the population size to 1000 
individuals gradually. After the last historical generation, 
the recent population was constructed by random selection 
of 300, 500 or 800 individuals and four successive 
generations were generated by random mating. The animals 
in generations 201 and 202 with known genotypes and 
records for the trait constructed the training population. The 
animals of generations 203 and 204 formed the validation 
population, which assumed having no phenotypic records. 
The genome is comprised of five chromosomes of 100 cM, 
on which 500 marker loci and QTL loci were randomly 
distributed.  

All marker and QTL loci were bi-allelic. The number of 
segregating QTL affecting the trait was set at 50, 100 or 
150. The Marker and QTL allele frequencies were assumed 
to be equal in the 200th generation. The following quality 
control measures were applied to the SNP data: markers 
with a minor allele frequencies (MAF) < 0.1 and a Hardy-
Weinberg Equilibrium (HWE) P-value < 0.000001 were 
removed. Samples with genotype failure rate greater than 
0.1 were also removed.  
 
Linkage disequilibrium calculating  
To achieve accurate genomic prediction, sufficient level of 
linkage disequilibrium (LD) is imperative. The extent of 
LD in the training populations was measured by r2 (Hill, 
1973): 
 
r2 = D2 / (freq(A1)×freq(A2)×freq(B1)×freq(B2)    
 
Where:  
freq (A1): frequency of A1 allele, and likewise for the other 
alleles in the population.  
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D: another statistic of linkage disequilibrium that was cal-
culated as: 
 
D= freq(A1-B1) × freq(A2-B2) - freq(A1-B2) × freq(A2-
B1)  
 

PLINK software and Synbreed and GGPLOT2 packages 
were used to calculate and display the LD properties. 
 
Models 
Following linear model was used to estimate the marker 
effects: 
 
Y= µ + Xβ + ε    [2] 
 
Where:  
Y: phenotypic value.  
μ: population mean.  
X: marker design matrix.  
β: vector of marker effects 
ε: error term that is assumed to be normally distributed with 
mean and variance equal to 0 and σ2.  
 
The estimator of β is:  
 
(X`X +λI)–1X`y  
 
Where:  
λ: regularization parameter.  
 

The elements of the X for each individual depended on 
the number of alleles present in its genotype. For example, 
per ith individual having genotypes AA, Aa or aa at jth 
marker locus the Xij element in X was assigned equal to 2, 
1 or 0, respectively. 
 
BRR, Bayes A, B, C and Bayesian LASSO 
Ridge regression best linear unbiased predictor (RR-BLUP) 
assumes all markers have a common variance (Meuwissen 
et al. 2001) and therefore shrinks equally for each marker 
effect. Bayesian Ridge regression (BRR) makes the same 
assumptions, but the level of shrinkage is estimated with a 
Bayesian hierarchical model. In a Bayesian Ridge regres-
sion, the conditional prior assigned of marker effects are 
independent and identically distributed (IID) and have a 
normal prior distribution: 
 

2( , ) ( 0,
jj jp N 

2 )      and 

2 2( ) ( ,
j

)p d f s       

 
 

Where: 
βj: marker effect. 
p(βj|θβ,σ

2): prior density of the jth marker effect.  
θβj: vector of parameters indexing the prior density assigned 
to marker effects.

 p(θβj|ω): prior density assigned to θβj. 
ω: parameters indexing this density.

 
 

Meuwissen et al. (2001) proposed Bayesian regressions 
including BayesA and BayesB on the genomic markers. 
BayesA assumes a normal prior distribution on the SNPs 
effects, with zero mean and variance σj

2 associated to each 
marker.  
This variance is assumed to be distributed as a scaled in-

verted chi-squared probability distribution X-2(ν; S2) with 

degrees of freedom ν and scale parameter S2 as the prior 

distribution.  
BayesB assumes a normal prior distribution on the mark-

ers effects with zero mean and variance σj
2. Then, a mixture 

of distributions is assumed on this variance being equal to 
zero with probability π and distributed as in BayesA with 
probability 1 - π. 

BayesC was proposed to compensate some of the defi-
ciency of BayesB, as the estimation of the probability π or 
the distribution of mixtures, which in BayesC is applied on 
the SNPs effects instead of the variances. In a comparison 
using simulated data, Bayes BLUP, BayesA, BayesB and 
BayesC had the same predictive ability with correlation 
over 0.85 (Verbyla et al. 2010). 

Park and Casella (2008) introduced the Bayesian LASSO 
method for estimating the regression coefficients. De los 
Campos et al. (2009) used the Bayesian LASSO in GS. The 
LASSO estimates can be viewed as the posterior mode in a 
Bayesian model considering a double-exponential prior for 
the regression coefficient estimates. The summary of inves-
tigated scenarios (Each scenario was repeated for 10 times) 
and statistical methods is presented in Table 1. 
 
Prediction accuracy  
The correlation coefficient between the true breeding values 
(BV) and the genomic predicted BV (rTBV,GEBV) was used as 
a measure of the accuracy. Fitting five Bayesian methods, 
the GEBV values for all scenarios were predicted. An 
analysis of variance was performed to investigate the effect 
of method, heritability, number of individual in training 
population and number of QTL on the accuracy. The model 
to investigate the factors affecting the accuracy was: 

 
y= μ + method + h2 + NQTL + NIND + interaction effects + ε 
[3] 
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Where:  
y: rTBV,GEBV.  
μ: overall mean,  
method: effect of method (BRR, Bayes A, B, C and BL).  
h2: effect of heritability (0.1, 0.3 and 0.5).  
NQTL: effect of number of QTL (50, 100 and 150).  
NIND: effect of the number of individuals in each generation 
of training population.  
interaction effects: two-way interactions between main ef-
fects.  
ε: random error. 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The statistical analyze of all main and interaction effects 

were conducted using the GLM procedure of SAS software 
(SAS, 2003).  

The expected accuracy of genome-wide selection has 
been anticipated as a function of the training population 
size (N), trait heritability (h2), and the effective number of 
quantitative trait loci (QTL) or effective number of chro-
mosome segments underlying the trait (Me) (Daetwyler et 
al. 2008; Daetwyler et al. 2010): 
 

rg^g= [Nh2 / (Nh2+Me)]
1/2       [2] 

 

Where:  
r: expected correlation between predicted genotypic value 
and true genotypic value.  
Me: refers to the idealized concept of having a number of 
independent, bi-allelic, and additive QTL affecting the trait 
(Daetwyler et al. 2008). The Me is a function of the breed-
ing history of the population and of the length of the ge-
nome. The objective of this research was to investigate the 
accuracy of GEBV under various underlying genetic archi-
tecture using some different Bayesian methods. 
 

  RESULTS AND DISCUSSION Table 1 The summary of investigated scenarios and statistical methods

H23 Model4 NIND
1 NQTL

2 

Marker statistics and extent of LD 
The mean values of r2 for each chromosome are shown in 
Table 2. An overall mean value of 0.19 was observed for r2. 
The largest gap between SNPs (12.18 cM) was located on 
chromosome 4. The highest and lowest number of SNPs 
and therefore the highest and lowest mean of r2 were lo-
cated on chromosome 1 and 4 respectively (Figures 1a and 
1b). The sufficient average LD over the entire genome is 
necessary for accurate estimations in genomic selection and 
whole-genome association studies. Calus et al. (2007) dem-
onstrated that if the mean r2 between adjacent SNPs was > 
0.2, accurate genomic breeding values could be obtained. In 
Holstein-Friesian cattle, r2 of 0.2 occurs at approximately 
100 kb, suggesting that 30000 markers should be sufficient 
to apply genomic selection. The extent of genome-wide LD 
considerably depends on the past effective population size. 
In a simulation study, Meuwissen et al. (2001) demon-
strated that, to get very accurate genomic estimated breed-
ing values, 10NeL markers are required, where L is the 
length of the genome in Morgan and Ne is the effective 
population size. In Holstein-Friesian cattle, Ne is approxi-
mately 100, and the length of the genome is 30 Morgans, 
again suggesting that 30000 markers are required. In spe-
cies with large effective population sizes, dense marker 
panels will be required. Provided the number of markers are 
enough (i.e. LD=0.2 that was obtained in the current study), 
the accuracy of GEBV will depend on the number of indi-
viduals genotyped and phenotyped in the reference popula-
tion, the heritability of the trait, and the number of loci af-
fecting the trait (Daetwyler et al. 2008; Goddard, 2009). 
 

Factors affecting the prediction accuracy 
Table 3 shows the result of analysis variance for accuracy 
and implies that the effect of all main factors, including 
method, heritability, number of QTL, number of individuals  
in each generation of training population and all interaction  
effects, except Method × h2 and Method × NQTL × h2, were 
significant (P<0.05). 
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1 The number of individuals in each generation of training population. 
2 The number of QTLs. 
3 Heritability. 
4 Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO. 
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Table 2 Statistical information for genome-wide LD (measured by r2) 

Minimum r2 Maximum r2 Average r2 Chromosome Number of SNP pairs 

Chr 1 2466 8.6E-8 1 0.17±0.23 

Chr 2 2574 5.8E-10 1 0.18±0.22 

Chr 3 2430 4.3E-10 1 0.17±0.22 

Chr 4 2025 1.7E-8 1 0.22±0.25 

Chr 5 1926 2.3E-7 1 0.19±0.25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B 

 

 
 

Figure 1 a) Density visualization of marker map 
b) visualization of pairwise LD estimates versus marker distance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 Accuracy of Bayesian methods for different genetic architectures

DF SS MS F-value  Pr > F Source of variation 

Method 4 0.00596389 0.00149097 69.05 < 0.0001 

NIND
1 2 0.08591211 0.04295606 1989.43 < 0.0001 

NQTL
2 2 0.01828878 0.00914439 423.5 < 0.0001 

H23 2 1.8334959 0.91674795 42457.4 < 0.0001 

Method × NIND 8 0.00044007 0.00005501 2.55 0.0212 

Method × NQTL 8 0.00169005 0.00021126 9.78 < 0.0001 

Method × H2 8 0.0001988 0.00002485 1.15 0.348 

NIND × NQTL 4 0.0940171 0.02350427 1088.55 < 0.0001 

NIND × H2 4 0.00037608 0.00009402 4.35 0.0044 

NQTL × H2 4 0.00955119 0.0023878 110.59 < 0.0001 

Method × NIND × NQTL 16 0.00190706 0.00011919 5.52 < 0.0001 

Method × NQTL × H2 16 0.00052593 0.00003287 1.52 0.1308 

NIND × NQTL × H2 8 0.03980656 0.00497582 230.45 < 0.0001 
1 The number of individuals in each generation of training population. 
2 The number of QTLs. 
3 Heritability. 
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According to the F values in Table 3, the descending or-
der of the main factors in terms of importance was herita-
bility, reference population size, number of QTL and the 
estimating method. Among the interaction effects, the ef-
fects containing the reference population size had higher 
importance. 
 
Main factors affecting the genomic evaluation accuracy 
Figure 2 presents the plots of correlations (R) between true 
breeding value and GEBV obtained for the validation popu-
lation, for the different heritability (plot a), training popula-
tion size per generation (plot b), number of QTLs (plot c) 
and marker effect estimating methods (plot d).  

As shown in Figure 2a, heritability of the trait affects the 
accuracy of genomic breeding values severely. According 
to Daetwyler et al. (2008), a trait with a heritability of 0.8 is 
expected to yield the same accuracy as a trait with a herita-
bility of 0.25 but in a reference population that includes 3.2 
times more animals. For low heritability traits, such as fer-
tility and health, for the same reference population size, 
lower accuracy of genomic predictions were obtained 
(Daetwyler et al. 2008; Goddard, 2009). 

The training population size is the factor that is most eas-
ily controlled by the investigator. By increasing the size of 
the training population, from 300 to 800, there was an as-
cending trend in average genomic accuracy from 0.64 to 
0.70 (Figure 2b). Increasing the accuracy by the size of the 
training population, has been anticipating using simulation 
studies (VanRaden and Sullivan, 2010) and also was con-
firmed in empirical analyses (Lorenzana and Bernardo, 
2009).  

Bastiaansen et al. (2010) and Meuwissen et al. (2001) 
showed that as the number of phenotypic records increased 
from 500 to 1000, correlations between true and estimated 
breeding values raised from 0.58 to 0.66 and 0.71 to 0.79 in 
BLUP and BayesB methods, respectively. Calus and Veer-
kamp (2007) also concluded that an increase in the number 
of individuals in the training population would result in 
higher accuracy of GEBVs of selection candidates. Muir 
(2007) also showed that increasing the training population 
size would increase the accuracy. The reasons for the effect 
of sample size on accuracy are: First, the accuracy of esti-
mates of marker effects increases with sample size. This 
occurs because bias and variance of estimates of marker 
effects decrease with sample size. Additionally, in some 
cases an increase in sample size may also increase the ex-
tent of genetic relationships between subjects in the training 
and validation populations (De Los Campos et al. 2013). 

The amount of accuracy was different for various levels 
of QTL numbers. The lowest value achieved for NQTL= 100 
but the highest value was for NQTL= 150 (Figure 2c). In a 
study that the accuracy of genomic prediction was evalu-

ated for five different QTL numbers, increasing the number 
of QTL resulted in an inverse V shape trend for accuracy. 
As it increased from 3 to 30, the accuracy raised, but further 
increasing the number of QTLs from 30 to 300 and then to 
3000, resulted in decreasing trend in accuracy (Piyasatian 
and Dekkers, 2013). In a simulation study of investigation 
of factors affecting the genomic evaluation accuracy using 
GBLUP and BayesB methods, Daetwyler et al. (2010) re-
ported that for reference population size= 1000 when the 
number of QTL increased from 0.03 Me to 0.05 Me and 
then to 0.15 Me (Me=445, 1887 and 3543 is the number of 
independent chromosome segments), the accuracy of 
GBLUP had an V shape but the accuracy of BayesB had an 
inverse V shape oppositely. 

In a study that the effect of NQTL (including 50, 100, 300, 
500, 1000 and 2000) and the distribution of QTL effects 
(gamma and equal variance distributions) were investi-
gated, it was shown that under gamma distribution, as the 
number of QTL changed from 50 to 100 and then to 150, 
the accuracy first increased and then decreased. However, 
under equal variance distribution, the trend of accuracy was 
completely opposite, so that the accuracy declined first and 
then increased. Non-linear trend observed for the effect of 
QTL number on accuracy in this study suggested that its 
effect may be related to the interaction between NQTL with 
other components of genetic architecture, i.e. interaction 
between QTLs alleles and interaction between QTLs and 
non-genetic factors.  

The comparison of five Bayesian methods showed that 
the highest (0.676±0.034) and lowest (0.661±0.041) mean 
accuracy belonged to BayesB and BayesC methods, respec-
tively.  

Clustering Bayesian methods in term of accuracy, three 
groups were formed: I) high accuracy group, including 
BayesB II) medium accuracy group, including BayesA and 
Bayesian LASSO and III) low accuracy group, including 
BRR and BayesC methods (Figure 2d). An optimal GS 
method should yield the highest possible accuracy, prevent 
over fitting on the training dataset, and be based as much as 
possible on marker-QTL LD rather than on kinship. More-
over, such methods must be easy to preform, consistent 
across a wide range of traits and datasets, and easy to com-
pute (Habier et al. 2007; Heslot et al. 2012).  

The interaction between NQTL and NIND was completely 
strong. For each level of NQTL by increasing NIND, an as-
cending trend, although non-linear, were observed for accu-
racies (Figure 3b). By 500 NIND the accuracy from 150 QTL 
was the lowest and from 50 QTL was the highest one. Effi-
ciency of increasing the number of animals was higher with 
50 QTL than with 150 QTL. By 800 NIND a different situa-
tion was observed and the accuracy from 100 QTL was the 
lowest one.  
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Investigation of the accuracy of genomic prediction of 

the standard marker effects using method BayesB showed 
that in the case of NQTL= 5, doubling the NIND in 1th genera-
tion after training led to decreasing in accuracy from 0.73 to 
0.72 but when NQTL= 50 accuracy increased from 0.63 to 
0.65 (Piyasatian and Dekkers, 2013). In a simulation study 
of affecting factor on genomic prediction accuracy, 
Daetwyler et al. (2010) reported that for five level of NQTL  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2 Accuracy of GEBV’s for main factors: a) heritability; b) Training population size; c) number of QTLs and d) Bayesian methods

expressed as proportions of marker density, with increasing 
the NIND from 500 to 2000, accuracywas increased but the 
highest increment occurred for the lowest level of NQTL 

(0.03 M) while the effect of increasing of NIND for the 
highest level of NQTL (1 M) was negligible. 

Using each investigated Bayesian method, increasing the 
size of the training population resulted an ascending trend 
in average genomic accuracy (Figure 3c).  
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However, the trend was a little different among methods 

and this declared the existence of interaction between train-
ing population size and estimation method. In the study by 
Clark et al. (2011), it was shown that the highest accuracy 
was achieved by the BayesB method when genetic variation 
was controlled by a few QTL with relatively large effects 
(100 vs. 1000 and 10000 QTLs) but with GBLUP method  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3 Accuracy of:  
a) different number of individuals per generation and heritabilities 
b) different number of individuals per generation and number of QTL  
c) different number of individuals per generation and Bayesian methods  

d) Bayesian methods and number of QTL 

differences were negligible. In this study for all methods 
increasing the number of QTLs, accuracies had V shape 
pattern so that the highest and lowest accuracies were ob-
served for NQTL= 150 and NQTL= 100, respectively (Figure 
3d). Coster et al. (2010) showed that by using Bayesian 
regressions and LASSO methods high accuracies achieved 
when the number of QTL decreased, while accuracy of par- 
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tial least square regression (PLS) was unaffected by the 
number of QTL. The same results were reported by 
Wientjes et al. (2015). 

At constant heritability, RR-BLUP is insensitive to ge-
netic architecture (i.e., the number of QTL and the distribu-
tion of their effects), while the accuracy of Bayesian meth-
ods improves as the number of QTL decreases and their 
effects increase (Luan et al. 2009; Daetwyler et al. 2010). 
 
 

25-34, )1(8) 8201(Animal Science Applied  ofIranian Journal   51 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  CONCLUSION 

Although having sufficient LD is essential for high accura-
cies but in the next step, other factors relating to population 
structure and genetic architecture of trait are important. The 
results of this study declared that among well-known 
Bayesian methods for genomic prediction, in most scenar-
ios, well known methods introduced by Meuwissen 
(BayesB and BayesA) had the highest accuracies. Therefore 
among the Bayesian methods, we can propose these meth-
ods specially BayesB for marker effects estimation because 
of it’s more realistic prior density assigned to marker ef-
fects. The economically important traits that involved in the 
breeding programs, vary in their heritability and number of 
QTLs. In traditional and genomic methods, the accuracy of 
traits with high heritability is higher than traits with low 
heritability due to low contribution of genes effects in phe-
notypic variation. Increasing the number of response vari-
able (training population size) led to high accuracies be-
cause with more records, estimated marker effects were  
 

As mentioned before, three way interaction between her-
itability, number of QTL and marker effect estimation 
method was not significant and for all level of combinations 
of heritability and number of QTL, BayesB had the highest 
accuracy but when NQTL= 50 the accuracy clusters were 
more obvious and with increasing NQTL medium and high 
accuracy clusters merged together and displayed as a same 
cluster (Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 4 Accuracy of Bayesian methods for different combinations of heritability and number of QTL

more accurate and using these effects in testing population 
give the accurate GEBVs. 
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