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  INTRODUCTION 
 

In breeding programs, estimating breeding values with high 
accuracy is one of the main objectives. In recent years, the 
improvement in genotyping technologies and genomic se-
lection methods has resulted in greater accuracy in estimat-
ing breeding values. The term, genomic selection was in-
troduced by Visscher and Haley (1998) and its methodol-
ogy was outlined by Meuwissen et al. (2001). Selection 

based on genome wide distributed markers estimated breed-
ing values (MEBVs) resulted in increased genetic progress, 
due to improvement in the accuracy of estimations of 
MEBVs, reduction in the generation interval (Meuwissen et 
al. 2001) and reduction in inbreeding rates, due to emphasis 
on MEBVs rather than family information (Woolliams et 
al. 2002; Daetwyler et al. 2007; Dekkers, 2007). The accu-
racy in obtaining MEBVs determines the success rate in 
breeding programs. The accuracy with which MEBVs are 

 

The objective of this study was to compare the accuracy of estimating and predicting breeding values using 
two diverse approaches, GBLUP and BayesC, using simulated data under different quantitative trait locus 
(QTL) effect distributions. Data were simulated with three different distributions for the QTL effect which 
were uniform, normal and gamma (1.66, 0.4). The number of QTL was assumed to be either 5, 10 or 20. In 
total, 9 different scenarios were generated to compare the markers estimated breeding values obtained from 
these scenarios using t-tests. In comparisons between GBLUP and BayesC within different scenarios for a 
trait of interest, the genomic estimated breeding values produced and the true breeding values in a training 
set were highly correlated (r>0.80), despite diverse assumptions and distributions. BayesC produced more 
accurate estimations than GBLUP in most simulated traits. In all scenarios, GBLUP had a consistently high 
accuracy independent of different distributions of QTL effects and at all numbers of QTL. BayesC pro-
duced estimates with higher accuracies in traits influenced by a low number of QTL and with gamma QTL 
effects distribution. In conclusion, GBLUP and BayesC had persistent high accuracies in all scenarios, al-
though BayesC performed better in traits with low numbers of QTL and a Gamma effect distribution.  
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estimated depends on several factors including the genetic 
architecture of the trait, the applied method in estimating 
marker effects and the distribution of quantitative trait locus 
(QTL) variance (Meuwissen et al. 2001; Goddard, 2008; 
Solberg et al. 2008; Shirali et al. 2012). 

There are two main approaches in genomic selection for 
estimating breeding values. The first approach assumes that 
all single nucleotide polymorphisms (SNPs) have effects on 
the trait variance and the second approach assumes that just 
some SNPs contribute to the trait variance. In the first ap-
proach, genomic best linear unbiased prediction (GBLUP) 
methods including a form of ridge regression (Meuwissen 
et al. 2001) are applied, which instead of a pedigree rela-
tionship matrix, the marker relationship matrix is used 
(NejatiJavaremi et al. 1997; Villanueva et al. 2005; Hayes 
et al. 2009). The second approach assumes that a limited 
number of SNPs contribute to the trait variances and that 
among these affecting SNPs, only few of them make large 
contributions to trait variance and the rest have small con-
tributions. In this approach, Bayesian methods (e.g., 
BayesB, BayesC and Lasso) have usually been used 
(Tibshirani, 1996; Meuwissen et al. 2001). The Bayesian 
methods use one prior for the QTL effect distribution and 
another prior for the number of QTL (Meuwissen et al. 
2001). However, the true distribution of the QTL effects is 
unknown for many quantitative traits. Goddard (2008) 
found higher accuracies by using a gamma (1.66, 0.4) prior 
distribution for the QTL effects compared to a normal prior 
distribution. Briefly, the GBLUP assumption is that the 
genetic model is an infinitesimal model and all SNPs have 
effects on the trait of interest, while the BayesC approach 
assumes that some QTL have a high impact on trait vari-
ance and the rest have no effect on the trait. Both of these 
approaches may be suitable for different traits due to their 
assumptions regarding the genetic background of the trait 
of interest. The objective of this study was to investigate the 
effects of QTL effect distribution and number of QTL on 
the accuracy of MEBVs using the GBLUP and BayesC 
approaches with simulated data in quantitative traits with 
continuous phenotypes under different genetic architec-
tures. 

 

  MATERIALS AND METHODS 
Simulation  
A genome consisted of one chromosome with a length of 
100 cM was simulated and one thousand SNPs were equal-
ly spaced over the chromosome. Three different numbers of 
QTL (5, 10 and 20) were considered and QTLs were uni-
formly distributed over the chromosome. One hundred in-
dividuals, including 50 males and 50 females, were simu-
lated for the base population (zero generation). These indi-

viduals were assumed to be biallelic for both SNPs and 
QTL with allele frequencies equal to 0.50 (Table 1). For the 
first generation, one male and one female were randomly 
chosen from the base population as parents. The parent’s 
gametes were simulated assuming linkage equilibrium (LD) 
based on the Haldane mapping function (Haldane, 1919) to 
generate recombinant gametes and were randomly com-
bined to create the individual. The first generation structure 
was followed through to the 50th generation of random mat-
ing to make linkage disequilibrium populations. The oc-
curred recombination in the chromosome had a poisson 
distribution. For each generation, LD was measured using 
r2 which was the average LD of all SNPs. Subsequent to the 
LD populations four more generations (51 to 54) were con-
structed. The population sizes for each of these four genera-
tions were considered to be 500 individuals, consisted of 
250 males and 250 females for each population. In this 
study, generation 51 was assumed as a training population 
and the other generations (52 to 54) as validation popula-
tions. In simulating training and validation populations, 
three QTL (5, 10 and 20) were assumed to be influencing 
the trait of interest. This indicates the genetic background 
of the trait by the proportion of the SNPs that influenced the 
trait. Furthermore, the three different distributions were 
assumed for the QTL effect were uniform, normal and 
gamma (1.66, 0.4) (Table 2). Overall these assumptions for 
simulations generated traits for this study that had different 
genetic architectures. 
 
Estimating the breeding values 
Two methods, GBLUP and BayesC, were used to estimate 
SNPs effects and genomic breeding values. The main dif-
ference between these two applied approaches is in their 
assumptions regarding genetic models of the trait. GBLUP 
assumes an infinitesimal model is the genetic model of the 
trait of interest, and the BayesC assumes a QTL model. The 
genomic MEBVs (GEBVs) for individuals in validation 
generations (52-54) for both GBLUP and BayesC methods 
were predicted using the model: 
 
 
 
Where:  
n: number of chromosome across the genome.  
Xi: design matrix which refers to individual genotypes for 
chromosome i. 
gi: vector of SNPs effects in chromosome i. 
 
GBLUP method 
The GBLUP approach was based on simple mixed model 
and assumed that all SNPs had equal effects on genetic var-
iance of the considered trait.  
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Table 1 Population structure and simulated parameters 

 
 
 
 
 
 
 
 
 
 
 
 

In GBLUP, this assumption has been shown to be unreal-
istic. However, Meuwissen et al. (2001) showed that 
GBLUP is easy, fast, simple and intelligible and it is still 
one useful approach in genome-wide association studies 
(GWAS). In the GBLUP approach, the following model 
was applied using ASReml (Gilmour et al. 1995): 
 
y= µ1  + X g  + e n i i

 
Where:  
y: vector of phenotypic values.  
μ: overall mean.  
n: number of records.  
1n: vector of n ones.  
gi: represents the additive genetic effects of the ith SNP.  
Xi:  design matrix for the ith SNP.  

e: residual error with normal distribution.  
 Parameter Value 

The additive genetic effects of SNPs (g) were assumed to 
have a normal distribution N(0, σ ) g where g was the real-
ized relationship matrix for all loci. The g was calculated 
based on the identical-by-state probabilities between a pair 
of individuals for all individuals in the training and valida-
tion populations. 

Number of chromosome 1 

Number of SNP markers 
per chromosome 

1000 

Genome length 100cM 

Marker distance (cM) 0.1 

Number of QTL 5, 10 and 20 

QTL effects 
distributions 

Normal, gamma (1.66; 0.4) and uniform The total allelic relationship between each pair of indi-
viduals was calculated based on the method of NejatiJava-
remi et al. (1997). The mixed model equation to obtain 
breeding values is (Henderson, 1975): 

Recombination Haldane map function 

Number of generation 54 

LD populations 50 

 LD population size per 
generation 

100 individuals (50 males and 50 
females)  

 
 
 
Where: 

Number of generation 
for population 

4 (generation 51 to 54) 

500 individuals (250 males and 250 
females) 

Population size 

All individuals of generation 51 (500 
individuals include 250 males and 250 

females) 
Training set 

α= (σ /σ ). 2
e

2
g

All individuals of generations 52 to 54 
(1500 individuals include 750 males and 

750 females) 

I: identity matrix. Validation set 
 
BayesC method Heritability 0.3 

QTL: quantitative trait locus and LD: linkage equilibrium.  The BayesC method was performed using the model: 
  Table 2 Scenarios with different numbers of QTL and different distribu-

tions of QTL variances  
 

Scenario Number of QTL Distribution of QTL variance 

NE5 5 Normal 
Where:  

GE5 5 Gamma 
y: phenotypic value vector.  

UE5 5 Uniform 
μ: overall mean.  

NE10 10 Normal 
n: number of records.   GE10 10 Gamma 
1n: vector of n ones.  UE10 10 Uniform 
Xi: represents the vector of genotypes (1, 2 and 3 for geno-
types 00, 10/01 and 11, respectively) of the ith SNP.  

NE20 20 Normal 

GE20 20 Gamma 

gi: allelic substitution effect for SNP i.  UE20 20 Uniform 
QTL: quantitative trait locus. e: vector of residual distributed with N(0, σ ). eGE: gamma; NE: normal and UE: uniform. 

 
In the BayesC approach, the model assumption was for 

an allelic substitution effect for each SNP with a mixture 
distribution in which a portion of SNPs (π) have effects on 
the trait with N(0, σ ) snps distribution and the rest have no 
effect on the trait. Gibbs sampling was used for implemen-
tation of the model. A flat prior was applied to calculate the 
parameters π, σ  and σ . 2

snps
2

e

For each analysis, a Markov chain Monte Carlo (MCMC) 
with 210000 cycles ran and the first 10000 cycles were dis-
carded as burn-in period. Estimates at every 5th iteration 
were sorted as a sample, resulting in a total 40000 samples. 
 
Comparison of the methods to estimate breeding values 
Estimations from each method were compared based on the 
accuracy and the mean square error of prediction (MSEP) 
of GEBV. The correlation between GEBV and true ge-
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nomic breeding value (TGBV) was used as measure of ac-
curacy. MSEP is the average of the squared prediction er-
rors of MEBVs. To calculate the accuracy and MSEP, the 
GEBV estimates of each individual in the training popula-
tion were used following Coster et al. (2010). In addition, 
the accuracy and MSEP were also estimated for the valida-
tion generations. GEBVs from BayesC and GBLUP in all 
scenarios were compared with each other using t-tests. 

 

  RESULTS AND DISCUSSION 
In the simulation analysis, calculated average LD between 
all SNPs (r2) in last generation of the LD population (gen-
eration 50) was 0.185 ± 0.012. This indicates that 87% of 
the expected LD had been achieved in this simulation. The 
expected LD based on Sved (1971) is 0.211. 
 
Accuracy under different numbers of QTL  
Using GBLUP, no differences in the accuracy of estima-
tions were detected by increasing in the number of QTL. 
However, the BayesC method was more accurate under the 
scenario with 5 QTL and with the gamma QTL effect dis-
tribution (GE5) than under scenarios with 10 and 20 QTL 
with the gamma effect distribution (GE10 and GE20, re-
spectively). This indicates that the BayesC approach per-
formed differently under different numbers of QTL when 
the QTL effect distribution is gamma. 
 
Accuracy under different distributions of the QTL ef-
fect  
Table 3 indicates that the average accuracy of MEBVs cal-
culated by BayesC and GBLUP while considering different 
distributions of the QTL effect. The result indicates that in 
all scenarios for different distributions of the QTL effect 
and different numbers of QTL, the BayesC estimations 
were significantly (P<0.05) better than those by GBLUP 
except under uniform distribution with 20 QTL (UE20) 
scenario. The accuracies of MEBVs estimations were sig-
nificantly (P<0.05) higher for BayesC compared to GBLUP 
when comparing the following scenarios: normal and uni-
form distribution of QTL effects with 5 QTL scenarios 
(NE5 and UE5, respectively), gamma and normal distribu-
tions of QTL effects with 10 QTL (GE10 and NE10, re-
spectively) and gamma distribution of the QTL effect with 
20 QTL (GE20) scenarios.  

The BayesC analysis indicated that the greatest accuracy 
(P<0.01) is achieved compared to GBLUP under gamma 
distributions of the effect and with 5 QTL. Furthermore, in 
the BayesC approach the scenario with gamma distributions 
of the QTL s and 5 QTL (GE5) had significantly greater 
accuracy of estimation compared to the uniform and normal 
distributions of the QTL effects with 5 QTL (UE5 and NE5, 

respectively). In addition, BayesC under normal distribu-
tion of the QTL effect with 10 QTL (NE10) performed sig-
nificantly more accurately than with the uniform distribu-
tion of QTL effects with 10 QTL (UE10). Furthermore, the 
type of QTL effect distribution did not show any significant 
effect on the accuracy of MEBVs estimations using the 
GBLUP approach. In the current study, 5, 10 and 20 QTL 
were considered to simulate traits variance and 1000 mark-
er simulated to analyse the trait. In fact 0.5, 1 and 2 present 
of markers are in complete LD with simulated QTL. 

In this study, GBLUP and BayesC methods of analysis 
were compared for diverse populations with different trait 
genetic architectures. The results indicated that GBLUP had 
a consistently high accuracy in all QTL distributions and in 
scenarios with different numbers of QTL. The results are in 
agreement with the study of Shirali et al. (2012) who re-
ported that different QTL variance distributions and differ-
ent numbers of QTL had no effects on accuracies of 
GBLUP estimations. The maximum accuracy of BayesC 
estimates was achieved for the lowest number of QTL. This 
indicates that BayesC has an advantage over GBLUP for 
analysis of traits that are influenced by a low number of 
QTL. The results of the current study are in agreement with 
Daetwyler et al. (2010) who found a decrease in the accu-
racy with an increase in the number of QTL. The current 
study found that the accuracy of BayesC dropped as the 
number of QTL increased, which resulted in no advantage 
over GBLUP when the number of QTL was less than 20, 
with a uniform distribution. By increasing the number of 
QTL for a trait, the average variance of each QTL for the 
trait of interest will decrease and the estimation of the QTL 
effect will be less accurate. With uniform QTL effect dis-
tribution, by increasing the number of QTL the proportional 
contribution of each QTL on the trait will be very low and 
therefore some of their effects will be missed and missing 
heritability will be increased. Shirali et al. (2012) reported 
that in traits influenced by a high number of QTL, the QTL 
variance distribution does not influence the accuracies 
when using the BayesC method. This can be due to the fact 
that by increasing the number of QTLs, the effect of each 
QTL on the trait will decrease and thus estimated QTL ef-
fects will be small and the QTL effect distribution will be 
more similar to a uniform distribution. Therefore, the effect 
of each QTL for the trait of interest will decrease resulting 
in difficulties for the BayesC model to detect the QTL ef-
fects. The BayesC method provided more accurate esti-
mates under different QTL distributions compared to 
GBLUP. However, Shirali et al. (2012) suggested that 
GBLUP can provide estimations as accurate as BayesC 
under different QTL variance distributions. BayesC esti-
mated QTL effects are more accurate in simulated QTL 
effect distributions than in QTL variance distributions. 
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Therefore the MEBVs in different QTL effect distribu-

tions have a higher accuracy rather than in QTL effect dis-
tributions. Gamma distributions of QTL effects resulted in 
better accuracy in BayesC. Shirali et al. (2012) also re-
ported better accuracy using BayesC estimation for gamma 
distribution in QTL variance.  

These effects can be due to two possible reasons; first, 
the prior, the QTL effect and the QTL variance are all 
gamma distributions. As a result, BayesC would have a 
better estimation of any SNP effect. Goddard (2008) re-
ported that BayesC under gamma prior provide better accu-
racies for MEBVs and this is in agreement with the current 
study.  

Second, gamma distribution captures QTL with very high 
effects compared to a normal distribution, resulting in more 
accurate estimation of GEBVs for traits which are influ-
enced by a number of QTL with high effects. The correla-
tions between GEBVs from BayesC and TEBV were above 
80% in all scenarios, which is in agreement with Nadaf and 
Pong-Wong (2011), Daetwyler et al. (2010) and Solberg et 
al. (2008). 

 

  CONCLUSION 
The GBLUP method of analysis was as good as the BayesC 
method fortraits influenced by a high number of QTL and 
with a uniform QTL effect distribution, such as traits with a 
polygenic genetic model. GBLUP had a consistently high 
accuracy in scenarios with all QTL effect distributions and 
all numbers of QTL. BayesC produced estimates with high-
er accuracies in traits influenced by low number of QTL 
and with a gamma QTL effect distribution. 
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