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  INTRODUCTION 
Bovine tuberculosis is a zoonotic disease, caused by Myco-
bacterium bovis, is one of the most critical diseases in terms 
of economic losses and threats to public health (Ejeh et al. 
2014). Annually, more than 50 million cattle become in-
fected with Mycobacterium bovis globally, and the eco-
nomic cost of this disease is about $3 billion (Waters and 
Palmer, 2015). Although cattle are the primary hosts of 
Mycobacterium bovis, however, this bacterium is still re-
sponsible for about 5% of tuberculosis in humans (Michel 
et al. 2010). Tuberculosis is a deadly disease that killed 
about 1.7 million people in 2016 (Alam et al. 2019).  

Macrophages are essential components of the innate im-
mune system against tuberculosis-causing agents such as 
Mycobacterium bovis. These intracellular pathogens have 
acquired some abilities to overcome their host immune sys-
tems during evolution. The success of these pathogens de-
pends on factors such as their ability to survive and prolif-
erate inside infected macrophages (Philips and Ernst, 2012). 
The most important strategy of these bacilli to survive in-
side macrophages is to manipulate the phagocytosis process 
and prevent the normal maturation of phagosome into the 
acidic and hydrolytic components. Through this, pathogens 
are protected from the direct access of the immune system 
(Russell, 2001).  

 

Bovine tuberculosis is one of the serious public health challenges which also causes economic damage in 
the livestock industry. Understanding the interaction mechanism between the host immune system and the 
causative pathogen of tuberculosis is one of the essential areas of study for success in designing effective 
drugs to treat tuberculosis. Here, we used four publicly available microarray data to light up the response of 
the cattle immune systems to Mycobacterium bovis at the gene level. Our integrating analysis results on 
microarray data led to identifying 189 (160 up- and 29 down-regulated) differentially expressed genes for 
infected samples with Mycobacterium bovis against uninfected samples. Gene ontology and pathway analy-
sis indicated that most of the differentially expressed genes are related to the immune system's (especially 
innate immune system) response to the pathogen. Finally, 122 proteins (108 up-regulated and 14 down-
regulated) were included in the constructed protein-protein interaction network among the proteins from 
differentially expressed genes. We identified 11 genes as hub genes based on three methods using the cyto 
Hubba plug-in in the Cytoscape. Based on our analysis, most differentially expressed genes are related to 
the innate immune system. However, considering the impact of time on the microarray data analysis indi-
cated that associated gene expression with the adaptive immune system increased by time. 
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One of the most effective ways to help researchers design 
effective drugs to treat tuberculosis is to study gene interac-
tion between pathogens and the host immune system. Sev-
eral studies (Killick et al. 2011; Magee et al. 2012; Caimi et 
al. 2013; Killick et al. 2014) have investigated gene expres-
sion differences in the macrophages and other immune cells 
infected with Mycobacterium bovis in cattle. In this study, 
four publicly available data of the gene expression omnibus 
(GEO) database have been combined to recognize differen-
tially expressed genes (DEGs) of cattle immune systems in 
response to Mycobacterium bovis. Also, pathway enrich-
ment analysis, gene ontology (GO), protein-protein interac-
tion (PPI), and detection of hub genes construction were 
carried out for detected DEGs.  
 

  MATERIALS AND METHODS 
Obtaining and pre-processing microarray data 
To identify studies profiling the response of cattle immune 
system to Mycobacterium bovis infection, we searched the 
National Center for Biotechnology Information (NCBI) 
GEO database (http://www.ncbi.nlm.nih.gov/geo/).  

Mycobacterium bovis was used as a search keyword, and 
filtration was done based on the organism (Bos taurus), 
study type (expression profiling by array), entry type (Data-
set/Series), and platform (Affymetrix Bovine Genome Ar-
ray, GPL2112). Based on the mentioned criteria, 4 microar-
ray data sets (GSE33309, GSE33359, GSE39819, 
GSE59774) were selected, and their CEL files were 
downloaded for downstream analysis (Table 1). 

After downloading the mentioned datasets, we found that 
21 samples are common between GSE33309 and 
GSE59774 datasets. A series of duplicate data were 
removed to avoid bias in the analysis. Data reading and 
normalization of each experiment were done using a robust 
multi-array average (RMA) algorithm in the R affy package 
(Gautier et al. 2004). It should be noted that due to the 
corruption in 4 files (GSM979839, GSM979840, 
GSM979841, GSM979842) related to the GSE39819 data-
set, we used the deposited gene expression matrix of the 
GSE39819 dataset (which contained all 10-samples) instead 
CEL files. In the next step, the quality test was performed 
using the array quality metrics package (Kauffmann et al. 
2009) for all samples based on normalized datasets. Finally, 
95 samples were used in the final data set. Affymetrix bo-
vine annotation data (Bovine.db) Bioconductor package 
was used to annotate (adding official gene symbol and En-
trez ID) each normalized dataset. 
 

Identification of differentially expressed genes 
After data integration of 4 sets, batch effect removal was 
done using ComBat in sva R package.  

The batch effect represents the non-biological and sys-
tematic technical variations that arise during sample proc-
essing and measurement at different times, places and, con-
ditions (Lazar et al. 2013).  

Principal component analysis (PCA) was performed be-
fore and after batch effect removal to visualize clustering 
patterns of studied sets and samples (Figure 1). LIMMA 
package (Phipson et al. 2016) was performed to identify 
differentially expressed genes. Cut-off criteria for final se-
lection of DEGs defined as false discovery rate (FDR) ad-
justed p-value < 0.05 and |log2 Fold change| ≥ 0.58 (Fold 
change≥1.5) (Figure 2). Also, based on PCA results, we 
divided samples into three groups, including G1 (healthy 
samples), G2 (infected samples 2-6 hours after the infec-
tion, as well as infected samples which the time after infec-
tion was not specified for them), and G3 (infected samples 
24 hours after infection). We compared G2 (43 samples) vs. 
G1 (38 samples) and G3 (14 samples) vs. G1 to identify 
DEGs. GO analysis was performed on DEGs to understand 
the time effect on gene expression profile for the classified 
samples. 
 

Functional analysis 
We subjected the list of down- and up-regulated genes for 
the KEGG pathway and GO analyses using DAVID 
(Sherman and Lempicki, 2009). The results of GO analysis 
were categorized into three classes, including Biological 
Process, Cellular Component, and Molecular Function. 
Benjamini-Hochberg correction was used for calculated p-
values of the multiple testing, and p-adjusted < 0.05 was 
considered a significant level. 
  
Construction PPI network and identification of hub 
genes 
The STRING app from Cytoscape (Shannon et al. 2003) 
software was used for PPI network construction of DEGs. 
In the constructed network, nodes edges represent the pro-
teins and the interaction between them, respectively, and 
the labels of nodes indicate the official symbols of the iden-
tified DEGs.  

PPI networks facilitates the understanding and interpret-
ing of the relationship between proteins in a complex bio-
logical process. cytoHubba (Chin et al. 2014) plug-in in the 
cytoscape was used to identify hub genes, commonly iden-
tified genes using maximal Clique Centrality (MCC), 
maximum neighborhood component (MNC), and degree 
(based on the number of interactions per gene) methods, 
were considered as hub genes in this study. Hub genes are 
defined as genes with a highly connected to other genes in a 
PPI network. Since each extensive network may have con-
tained several sub-networks, we used the MCODE plug-in 
in the Cytoscape to identify denser sub-network.  
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Figure 1  PCA results for studied samples before (a) and after (b) batch effect removal. Control, infected and in-
fected_T24 are classified as G1, G2, and G3, respectively 

Figure 2 Volcano plot showing the DEGs between infected and healthy samples. Green (up-regulated) and red (down-
regulated) dots indicate DEGs with adjusted P-value < 0.05 and |log2 Fold change| ≥ 0.58 (Fold change≥1.5). The black 
dots fail to meet our criteria. Genes with the highest fold change and lowest adjusted p-value were marked for up- and 
down-regulated genes

Table 1 Summary of datasets presented in this study 
Experiment Arrays Infected samples Control samples Reference 

Dave et al. (2002GSE33309 49 21 28 ) 

GSE33359 16 8 8 Caimi et al. (2013) 

GSE39819 10 8 2 DesJardin et al. (2002) 

GSE59774 20 20 - Ejeh et al. (2014) 
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Network clustering was performed based on topology to 
find densely connected regions. Then, a Cytoscape plug-in 
named CluGO (Bindea et al. 2009) was carried out for GO 
analysis and to visualize functionally grouped terms of the 
obtained sub-network. GO analysis allows us to understand 
better and express the biological function of genes and it 
classifies them into three categories, including biological 
process (BP), molecular function (MF), and cellular com-
ponent (CC) (Khalkhali-Evrigh et al. 2022).  
 

  RESULTS AND DISCUSSION 
After data collection and running the pre-processing on 
them, finally, we reached 95 samples which comprised 57 
infected samples and 38 healthy individuals as control sam-
ples. A total of 189 DEGs were identified after analyzing 
all mentioned samples (infected vs. control), of which 160 
were up- and 29 were down-regulated genes. The fold 
change of up-regulated genes ranged from 1.50 for the SPX 
gene to 7.57 for the PTX3 gene, while this range for down-
regulated genes was from 1.50 for the CD101 gene to 2.09 
for the FOS gene. Also, based on the statistic parameter 
(adjusted P-value), the most significant up- and down-
regulated genes were the PVR gene (adjusted P-value equal 
to 1.27E-09) and the GADD45A gene (adjusted P-value 
equal to 2E-06), respectively. 

Significantly enriched terms from GO analysis on up-
regulated genes in BP, CC, and MF categories were 19, 2, 
and 5 terms, respectively (Table 2). With the mentioned 
criteria in the material and methods section, we found no 
significantly enriched terms for down-regulated genes. 

The number of identified DEGs for G2 vs. G1 and G3 vs. 
G1 that passed our criteria were 262 (213 up- and 49 down-
regulated genes) and 627 (394 up- and 233 down-regulated 
genes), respectively. Also, the number of shared DEGs be-
tween the G2 vs. G1 and G3 vs. G1 was 42 (36 up- and 6 
down-regulated genes). 

 
Pathway analysis 
Obtained results from kyoto encyclopedia of genes and 
genomes (KEGG) analysis revealed that 34 KEGG path-
ways significantly enriched for up-regulated genes list (Top 
ten pathways in Table 3. The KEGG is a collection of man-
ual pathway maps demonstrating our knowledge of the mo-
lecular interaction, reaction, and communication networks 
in different areas of biological science like metabolism, 
genetic information processing, cellular processes, and or-
ganism systems.  

In the present study, the most enriched pathways for 
mentioned genes were associated with the immune system 
(such as Cytokine-cytokine receptor interaction, TNF sig-
naling pathway, Toll-like receptor signaling pathway, etc.) 

and disease (such as Rheumatoid arthritis, Salmonella in-
fection, Tuberculosis, etc.).  

For enriched pathways, the p-value adjusted based on 
Benjamin-Hochberg less than 0.05 was considered the sig-
nificant cut-off value. No significantly enriched pathway 
was found for down-regulated genes. 

 
PPI network 
We used all DEGs (189) for PPI network construction, and 
184 genes from this list were included in the network. After 
removing singleton nodes (nodes without edges) from the 
constructed network, finally, 122 proteins (belonging to the 
108 up- and 14 down-regulated genes) with 804 edges (in-
teraction) were included in the network (Figure 3a). The 
number of interactions for ten genes with the most interac-
tion is represented in Table 4. 

Extracted sub-network from the leading network that was 
the densest subset consisting of 21 proteins and 204 edges 
(Figure 3b). The GO analysis of 21 genes present in the 
sub-networks showed that more than77 percent of enriched 
terms were classified in four gropes including “cellular re-
sponse to lipopolysaccharide” (40.78%), “cytokine receptor 
binding” (20.39%), “granulocyte chemotaxis” (8.74%) and 
“positive regulation of response to external stimulus” 
(7.38%; Figure 3c).  

The defense response of the immune system against dif-
ferent pathogens like bacteria and viruses is a routine proc-
ess in organisms. However, studying how the immune sys-
tem responds at the level of genes and proteins can help us 
to control diseases by developing effective diagnostic and 
treatment methods. Inflammation can be defined as a multi-
component response of the immune system to different ex-
ternal threats like pathogens (Medzhitov and Horng, 2009). 

Macrophages, a prominent part of the innate immune sys-
tem, are among the first defensive lines against tuberculosis 
(Queval et al. 2017).  

Along with the phagocytic activity of macrophages, se-
cretion of chemotactic and inflammatory cytokines, and the 
beginning of a process called chemotaxis bring together the 
components of the innate immune system against pathogens 
(Sokol and Luster, 2015).  

Here, the results of GO analysis for DEGs were consis-
tent with the behavior of the immune system against patho-
gens, so most up-regulated DEGs are enriched in “inflam-
matory response”, “immune response”, “cellular response 
to interferon-gamma”, “monocytes chemotaxis” and “de-
fense response to bacterium” in BP category; also 
“chemokine activity” and “cytokine activity” in MF cate-
gory. Cellular component analysis revealed that the most 
productive up-regulated DEGs were localized in the ex-
tracellular space and the external side of the plasma mem-
brane of cells.  
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In the present study, of the 10 most up-regulated genes, 

the PTX3 gene was in the first rank (Fold change equal to 
7.56). Based on an RNA-Seq study on humans, this gene is 
mainly expressed in the bone marrow tissue (Fagerberg et 
al. 2014).  

The product of this gene increases in response to inflam-
mation and stress, and interacting with pathogens and dam-
aged host cells help the innate immune system remove them 
(Balhara et al. 2013). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Significantly gene ontology (GO) terms for up-regulated genes

Class GO term Description Genes P-value 

GO:0006954 Inflammatory response 22 1.67E-12 

GO:0006955 Immune response 20 1.28E-10 

GO:0070098 Chemokine-mediated signaling pathway 11 3.39E-09 

GO:0071346 Cellular response to interferon-gamma 10 1.12E-08 

GO:0071347 Cellular response to interleukin-1 10 1.19E-07 

GO:0071222 Cellular response to lipopolysaccharide 11 2.19E-07 

GO:0030593 Neutrophil chemotaxis 9 2.11E-06 
BP (top 15) GO:0060326 Cell chemotaxis 8 3.97E-05 

GO:0042832 Defense response to protozoan 6 4.98E-05 

GO:0042742 Defense response to bacterium 9 1.15E-04 

GO:0071356 Cellular response to tumor necrosis factor 8 1.26E-04 

GO:0048247 Lymphocyte chemotaxis 6 1.53E-04 

GO:0050729 Positive regulation of inflammatory response 7 2.26E-04 

GO:0070374 Positive regulation of ERK1 and ERK2 cascade 10 3.46E-04 

GO:0044130 Negative regulation of the growth of symbionts in the host 5 3.74E-04 

GO:0005615 Extracellular space 39 3.15E-13 
CC  GO:0009897 External side of plasma membrane 12 1.24E-05 

GO:0033256 I-kappaB/NF-kappaB complex 3 0.0381 

GO:0008009 Chemokine activity 12 7.67E-12 

GO:0005125 Cytokine activity 13 6.45E-07 
MF GO:0048020 CCR chemokine receptor binding 6 1.63E-04 

GO:0045236 CXCR chemokine receptor binding 5 1.70E-04 

GO:0008083 Growth factor activity 7 0.0037 
BP: biological process; MF: molecular function and CC: cellular component. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Table 3 Top 10 enriched KEGG pathways for up-regulated genes

Term Genes P-value 

EDN1, CSF2, IL15, CCL20, CFLAR, TRAF1, PTGS2, CXCL3, GRO1, 
CXCL2, TNF, NFKB1, ICAM1, PIK3R5, SOCS3, IL6, CCL5, IL1B, LTA, 

CCL2, BIRC3 
TNF signaling pathway 2.83E-18 

IL10, CD40, CSF3, CSF2, IL15, CCL20, CXCL13, TNF, TNFSF13B, IL1A, 
IL6, LOC510185, IFNG, CCL5, IL1B, CCL4, LTA, CCL3, IL12B, ACKR3, 

CCL2 
Cytokine-cytokine receptor interaction 4.16E-12 

CSF2, IL15, CCL20, MMP1, CD80, TNF, CXCL5, ICAM1, TNFSF13B, 
IL1A, IL6, IFNG, CCL5, IL1B, CCL3, CCL2 

Rheumatoid arthritis 1.13E-11 

CD40, CFLAR, TRAF1, PTGS2, TNF, NFKB1, RELB, ICAM1, NFKB2, 
TNFSF13B, IL1B, CCL4, LTA, LAT, BIRC3 

NF-kappa B signalling pathway 8.29E-11 

IL1A, IL6, CSF2, IFNG, NOS2, IL1B, CCL4, CCL3, CXCL3, GRO1, 
CXCL2, NFKB1 

Salmonella infection 5.96E-09 

Malaria SELP, IL10, CD40, CSF3, IL6, IFNG, GYPC, IL1B, CCL2, TNF, ICAM1 1.17E-08 

IL10, NOS2, CFLAR, TNF, NFKB1, PIK3R5, IL6, IFNG, CCL5, IL1B, 
CCL3, IL12B, CCL2 

Chagas disease 1.49E-08 

Legionellosis IL6, IL1B, IL12B, GRO1, CXCL3, CXCL2, TNF, NFKB1, NAIP, NFKB2 1.88E-08 

Toll-like receptor signalling pathway CD40, IL6, CCL5, IL1B, CD80, CCL4, CCL3, IL12B, TNF, NFKB1, PIK3R5 6.49E-07 

IL10, ARG2, IL6, CSF2, IFNG, NOS2, IL1B, ACTN1, IL12B, TNF, NFKB1, 
PIK3R5 

Amoebiasis 1.15E-06 

Two (CCL20 and CXCL2) and four genes (IL1-a, IL1-b, 
IL6, and TNF) from the mentioned list belonged to 
chemokines and cytokines, respectively. CCL20, and 
CXCL2 were produced by macrophage and mast cells and 
induced the recruitment and migration of innate immune 
cells to infected tissues (Sokol and Luster, 2015). Produc-
tion of IL1-b by macrophages due to its antimicrobial prop-
erties is considered an effective strategy to prevent disease 
development (Lee et al. 2019).  
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Figure 3 DEGs PPI network construction. (a) Constructed PPI network for DEGs including 108 up- (green) and 14 down-regulated 
(red) genes; the size of nodes is based on the number of connections; larger nodes have more edges. (b) Extracted sub-network from the 
main PPI network including 21 nodes. (c) Grouped results of GO analysis for 21 genes included in the sub-network  

 
 
 
 
 
 
 
 
 

 

Table 4 Ten top genes with the most interaction in the constructed protein-protein interaction (PPI) network

Gene Description Position Number of edges 

TNF Tumor necrosis factor Chromosome 23 60 

IL6 Interleukin 6 Chromosome 4 52 

IL1B Interleukin 1 beta Chromosome 11 51 

IL10 Interleukin 10 Chromosome 16 51 

GRO1 Chemokine (C-X-C motif) ligand 1 Chromosome 6 48 

CD40 CD40 molecule Chromosome 13 42 

CCL2 chemokine (C-C motif) ligand 2 Chromosome 19 41 

ICAM1 Intercellular adhesion molecule 1 Chromosome 7 39 

CXCL2 chemokine (C-X-C motif) ligand 2 Chromosome 6 39 

CCL20 C-C motif chemokine ligand 20 Chromosome 2 39 
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However, there is evidence to show that its long-term 
production can lead to host tissue damage (Zhang et al. 
2014).  

The PVR gene, along with interaction with other genes 
like DNAM-1 promotes monocyte transendothelial migra-
tion (Reymond et al. 2004; Gerhardt and Ley, 2015), as a 
prerequisite for innate immune system response to patho-
gens. The encoded protein by the TFPI2 gene can play an 
essential role in inhibiting serine proteases. Studies on My-
cobacterium tuberculosis have shown that this pathogen 
employs serine protease as a virulence factor to damage and 
disable the host immune system (Dave et al. 2002; Naffin-
Olivos et al. 2017). Therefore, it is possible that increasing 
the expression of the TFPI2 gene suppresses this ability in 
the bacteria. 

Pathway analysis for up-regulated genes revealed mostly 
enriched terms related to disease (like Tuberculosis) and 
immune system response. In the present study, some crucial 
enriched pathway terms were “TNF signaling pathway”, 
“Cytokine-Cytokine receptor interaction”, “NF-kappa B 
signaling pathway” and “Toll-like receptor signaling path-
way”. In response to mycobacterial pathogens, macro-
phages produce toll-like receptors (TLRs) to interact with 
pathogen-associated molecular patterns (PAMPs) and in-
duce TNF secretion (Killick et al. 2013).  

One of the essential roles of TNF as a pro-inflammatory 
cytokine is inducing apoptosis and necroptosis in infected 
macrophages as a preventive strategy against the develop-
ment of infection (Xu et al. 2014). The NF-kappa B signal-
ing pathway is considered a key and central to the immune 
system response to many pathogens like mycobacteria. This 
pathway is activated through pattern-recognition receptors 
(PRRs) expressed in response to PAMPs and responsible 
for stimulating the production of cytokines, chemokines, 
adhesion molecules, and many other molecules required by 
the innate and adaptive immune system (Liu et al. 2017). 

We observed that the number of immune-related genes 
with a significantly different expression between infected 
and control samples increased over time so that DEGs in 
G2 vs. G1 and G3 vs. G1 were 262 and 627, respectively. 
Comparison of GO and pathway analysis results showed 
that one of the exciting differences between the two groups 
was the enriched term “antigen processing and presentation 
of endogenous peptide antigen via MHC class I” in the bio-
logical process category and “Antigen processing and pres-
entation” in the KEGG pathway for G3 vs. G1.  

During antigen processing and presentation as an immu-
nological process, foreign proteins are digested into peptide 
fragments and transported to the surface of antigen-
presenting cells (APCs) for recognition by T cells. Major 
histocompatibility complex (MHC) class I molecules form 
a complex with antigen peptides in the endoplasmic reticu-

lum to export to the plasma membrane (Abele and Tampe, 
2009). It seems MHC class I is a critical factor against tu-
berculosis, so disruption of MHC class I antigen processing 
made the studied mice more susceptible to Mycobacterium 
tuberculosis infection (Urdahl et al. 2003). Also, evidence 
suggests that MHC class I serve as a target for suppression 
by Mycobacterium tuberculosis (Meng et al. 2017). Since 
antigen presentation by MHC proteins plays a vital role in 
adaptive immunity (Wieczorek et al. 2017), it seems, over 
time, genes associated with the innate immune system are 
replaced by genes that light up the adaptive immune system 
for a more efficient defeat of Mycobacterium bovis. While, 
results of GO analysis revealed that in the early hours of 
infection (G2), genes associated with GO terms such as 
“cell chemotaxis”, “cytokine activity”, “chemokine 
activity” and “CXCR chemokine receptor binding” have 
significantly changed in expression level. Chemokines are 
chemotactic cytokines that play various vital roles in im-
mune system function (Griffith et al. 2014), especially in 
the first hours of infection. 

All 11 identified hub genes (CCL20, CD40, CSF2, 
CXCL2, GRO1, ICAM1, IFNG, IL1b, IL6, IL10, and TNF) 
belonged to up-regulated genes. The product of the CD40 
gene is a transmembrane protein that acts as a receptor on 
APCs. Its interaction with CD40L (ligand on T cells) acti-
vates macrophage and other APCs antimicrobial properties 
(Méndez-Samperio et al. 2003) it has a vital role in immu-
nity against intracellular pathogens (Gurunathan et al. 
1998) like Mycobacterium bovis. CSF2, also known as a 
granulocyte-macrophage colony-stimulating factor (GM-
CSF) is expressed by nonhematopoietic and hematopoietic 
cells and restricts the development of tuberculosis 
(Robinson, 2017). Following our study, several studies 
have shown that ICAM1 expression increases after infec-
tion with Mycobacterium bovis and tuberculosis (DesJardin 
et al. 2002; Li et al. 2017). 

One of the crucial roles reported for ICAM1 expressed 
on APCs is facilitating leukocyte transmigration across the 
endothelium (Müller, 2019) as an essential part of the im-
mune system's response to pathogens. IL6 which is pro-
duced by T cells and macrophages is probably involved in 
the secretion of IFNG (Goovaerts et al. 2013). IFNG is a 
cytokine that mediates the activation of macrophages to kill 
intracellular pathogens and the production of other cyto-
kines (Flynn et al. 1993). 

 

  CONCLUSION 

In the present study, we combined four publicly available 
microarray data to integrate separately conducted studies. 
Analysis of the mentioned data led to the detection of 160 
up- and 29 down-regulated genes. These genes were sig-
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nificantly enriched in immune-related GO terms and path-
ways. We highlighted 11 genes defined as hub genes based 
on three methods, including MCC, MNC, and the number 
of interactions (degree). Most identified hub genes as cyto-
kines and chemokines play a role in innate immune system 
response to pathogens. Also, the investigation of the effect 
of time on the pattern of gene expression in infected sam-
ples showed that associated gene expression with the adap-
tive immune system increase over time. Some of the ob-
tained results in this study can be the basis for designing 
experiments to understand better the host (cattle) immune 
response to Mycobacterium bovis. The genes identified in 
this study can be used as genetic markers to identify the 
mentioned disease and design effective drugs. However, 
more studies are needed to confirm these results. 
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