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Abstract 

 In the use of peer group data to assess individual, typical or best practice 

performance, the effective detection of outliers is critical for achieving useful 

results. In these „„deterministic‟‟ frontier models, statistical theory is now mostly 

available. This paper deals with the statistical pared sample method and its 

capability of detecting outliers in data envelopment analysis. In the presented 

method, each observation is deleted from the sample once and the resulting linear 

program is solved, leading to a distribution of efficiency estimates. Based on the 

achieved distribution, a pared test is designed to identify the potential outlier(s). 

We illustrate the method through a real data set. The method could be used in a 

first step, as an exploratory data analysis, before using any frontier estimation. 

 

Keywords: Data Envelopment Analysis (DEA), Outlier, Efficiency, Paired Sample 

Test. 

 

1.Introduction    

Nonparametric deterministic frontier models are very appealing because they rely 

on few assumptions; but, by construction, they are quite sensitive to extreme 

values and to outliers. Since extreme observations determine the production 

frontier in DEA models, the estimation of the frontier may be sensitive to 

measurement errors in the sample data. If an observation has been contaminated 

with noise that increases the observed output value or decreases the observed 

input values such that it gets rated as efficient, then it may also enter the reference 

set of other observations and distort their estimated efficiency scores. Detecting 

outliers is thus of primary importance: it is not an easy task in this multivariate 

setup. 

Essentially there will always be problems with empirical data either because some 

decision making units (DMUs) are outliers or do not belong to the dataset. Before 
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meaningful DEA results can be obtained, these outliers must be deal with. 

The obvious first step is to double check the data of those DMUs that appear to 

performing too well, or too poorly. One way to find the former is to check the 

number of peers that use them as an efficient reference. It will be easy to see if 

this is much larger than for the other efficient DMUs. Hence, checking data 

integrity is the first step, followed by either correcting data errors or removing 

problematic DMUs. Such outliers may be influential in the estimation results 

obtained using a conventional DEA model. It is desirable, therefore, to consider a 

procedure that allows us to identify and remove such outliers. 

Most of the standard geometrical methods for detecting outliers are very computer 

intensive in multivariate set-ups and do not take the frontier aspects of the 

problem into account: we are mostly interested to detect super-efficient outliers 

which will be very influential to the efficiency measures and the obtained optimal 

weights of DEA models.  The rest of this paper is organized as follows.  A brief 

literature review is given in the next section. Section 3 is devoted to describe our 

approach in using paired test in identifying super-efficient outliers. An empirical 

application to the 42 educational departments of Islamic Azad University, Karaj 

Branch (IAUK) illustrates the method in section 4. Section 5 concludes. 

 

2.A brief literature review 

Many studies have been performed to measure sensitivity or robustness of DEA 

results and why this is closely related to many techniques for identifying outliers 

from different points of view in the recent DEA literature. Here we give a brief 

review to some of these works among the others. 

Banker and Gifford (1988) suggested the use of the super-efficiency model to 

screen out observations with gross data errors, and obtain more reliable efficiency 

estimates after removing those identified outliers. Banker et al. (1989) applied this 

method for outlier identification to analyze cost variances for 117 hospitals. The 

Banker–Gifford method is designed for situations when some observations may 

be contaminated and, consequently, erroneously classified as efficient. Wilson 

(1993, 1995) proposed methods making use of influence functions to detect 

outliers in this framework but the methods become computationally prohibitive as 

the number of observations increases. Ondrich and Ruggiero (2002) in their work 

analyze the resampling technique of jackknifing and its capability of detecting 

outliers in data envelopment analysis. Simar (2003) describes using a statistical 

order-m frontier method introduced by Cazals et al. (2002) to detect potential 

outliers. Banker and Chang (2006) present a super-efficiency based approach to 

identify and remove outlier units in DEA estimation of efficiency. And finally, in 

the more recent DEA literature, Johnson and McGinnis (2009) describe an outlier 

identification methodology by using the inefficient frontier.  

In the next section of the present paper, we describe how the statistical pared test 

can also be used to identify outliers and distinguish the frontier units based on 

their influences on the distribution of the other units efficiency score. 
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3.A new super-efficiency method for outlier identification in DEA 

A it is most common in the DEA literature, let‟s suppose that we have n  DMUs 

which jDMU utilizes inputs ijx for 1,...,i m  to produce outputs rjy for 

1,...,r s and 1,...,j n . Also, let ( , ) m s

j j

x y denotes the input/output vector 

of unit “j”. In the classic CCR-DEA model by Charnes et al. (1978), it is derived 

that under the constant return to scale (CRS) assumption the underlying  

production possibility set (PPS) defined by T  {  , |x y m

x  can produce 

s

y } can be written as 
1 1

( , ) ; ; 0
n n

c j j j j

j j
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  
    
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 x y x x y y λ .  We 

restrict our attention to the classic Farrell input efficiency measure, defined 

as     0 0 0 0, min | , cEff T  x y x y , where vector  0 0,x y  refers to the 

DMU under evaluation. The Farrell efficiency measure for each production 

possibility  0 0,x y  can be calculated as the solution of following linear 

programming problem: 
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This linear program is solved once for each observation, 1,...,j n  to compute 

efficiency estimates for that observation.  For each producer, the solution of (1) 

provides not only a non-parametric measure of efficiency, i.e. je  for 1,...,j n , 

but also a referent production „possibility‟ composed of a convex combination of 

observed production possibilities define by the optimal intensity weights 
* * *

1( ,..., )o o

o n λ . Therefore, the production possibility set that composes the 

Farrell efficient referent points can easily be identified. 

We use an iterative technique to estimate the differences made by elimination of 

each observation on the efficiency score of the other units in an attempt to handle 

outliers. For this purposes the unit under analysis is deleted from the sample and 

the following linear programming is solved for all of the other observations to 

obtain the effect of oDMU on the frontier of the production set. For unit k , 

where k o we need the solution of the following LP : 
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The above model is feasible and bounded and also the added constraint 0k

o   

deletes the unit “ o ” from the PPS. The results of this model lead to a distribution 

of 1n   efficiency scores for each observed units. To perform a pared test of 

sample size n, we also suggest using the supper efficiency score, 
o

oe  , computed 

by the above model.  

Now, including the original Farrell measures as the results of the model (1), we 

require to solve 2n n  linear programs.  However, based on the properties of the 

peer set of each observation, by means of the following simple propositions, we 

conclude that it is not necessary to solve the model (2) for observations which 

oDMU is not a member of their peer set in the model (1).  

Proposition 1. If  , 1,...,p q n and 1qe  , i.e. qDMU  be a technically 

inefficient unit then in solving model (2) we have
q

p pe e . 

Proposition 2. If  , 1,...,p q n  and 
* 0p

q   in an optimal solution of the 

model (1) then in solving model (2) we have 
q

p pe e .  

 So, we just need to solve the model (2) for a relatively small subset of original 

observations, i.e. efficient ones. 

 The required statistical background of paired tests is presented in the appendix in 

details. To investigate the potentiality of being an outlier for the efficient unit “j” 

based on this tests, we use two samples of size n; The first is the vector of 

efficiency scores obtained by solving model 1 for each observations and the 

second,
je , the vector consist of the results of model 2, i.e. 

j

ke  , for the efficient 

unit “j” where  1,...,k n  . The meaningful differences between these columns 

shows the influence of the super-efficient unit “j” on the efficiency score of the 

other units, our suggested criteria to detect potential outliers,  which is described 

in the next section with an empirical study. 

 

4.Outliers identification in an empirical study  

Now we turn to illustrate proposed technique for outlier detection by applying it 

to the real-world data of 42 university departments of IAUK. These data are used 

for the internal performance assessment by the university. The input variables are 

the number of post graduate students ( 1x ), the number bachelor students ( 2x ), 
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and the number of master students ( 3x ). The output variables are the number of 

graduations ( 1y ), the number of scholarships ( 2y ), the number of research 

products ( 3y ), and the level of manager satisfaction ( 4y ). Note that all variables 

have integer structure and 4y  is an ordinal variable. Table 1 presents some 

descriptive statistics about the data. 

 

 

Table1: Descriptive statistics of 42 units 

Variables Min Max Mean Median St. Dev 

# post graduate students ( 1x ) 0 484 78.55 0 137.4 

# bachelor students ( 2x ) 0 1202 394.6 304.5 360.3 

# master students ( 3x ) 0 535 26.86 0 82.28 

# graduations ( 1y ), 32 1158 385.4 327 297.3 

# scholarships ( 2y ) 0 14 2.31 1 3.181 

# research products ( 3y ) 0 12 1.905 1 2.783 

manager satisfaction ( 4y ) 1 4 2.595 3 0.8851 

 

The input oriented radial efficiency scores obtained by applying the model (1) are 

presented as the first column of Table 2 which shows that departments 14, 16, 17, 

18, 19, 35, 36 and 37 are the efficient units in this evaluation. Now as a measure 

of influence of these units over the efficiency scores of the other units, the results 

of eliminating each efficient unit on the shape of production set are obtained 

through the optimal value of the model (2) and presented in the rest columns of 

Table 2.  For these computations we used EMS software
1
 version 1.3.0 on an Intel 

(R), 512 Mbytes RAM, 1.73 GHz Laptop computer. The computational times 

were negligible for all LP programs. 

Table 2: Efficiency scores before and after eliminating the efficient units 

DMUj 
je  14e  

 

16e  
17e  

18e  
19e  

35e  
36e  

37e  

1 

 

 

0.8852 0.8852 0.8856 1.0000 0.8863 0.8852 0.8852 0.8852 0.8852 

2 0.9564 0.9866 0.9564 1.0000 0.9564 0.9564 0.9564 0.9564 0.9564 

3 0.9398 0.9634 0.9398 0.9678 0.9398 0.9398 0.9398 0.9398 0.9398 

4 0.9405 0.9633 0.9405 0.9718 0.9405 0.9405 0.9405 0.9405 0.9405 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

6 0.9168 0.9168 0.9168 0.9168 0.9168 0.9168 0.9478 0.9168 0.9168 

7 0.8709 1.0000 0.8709 0.8709 0.8709 0.8709 0.8709 0.8709 0.8709 

                                                             

1
 Efficiency Measurement System,  by Holger Scheel (H.Scheel@wiso.uni-dortmund.de) 
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8 0.5378 0.5378 0.5378 0.6331 0.5378 0.5378 0.5378 0.5378 0.5378 

9 0.9285 0.9285 0.9285 0.9677 0.9285 0.9285 0.9285 0.9285 0.9285 

10 0.9017 0.9017 0.9017 0.9263 0.9017 0.9017 0.9017 0.9017 0.9017 

11 0.7727 0.9242 0.7727 0.7727 0.7727 0.7727 0.7727 0.7727 0.7727 

12 0.2711 0.2711 0.2711 0.3046 0.2711 0.2711 0.2711 0.2711 0.2711 

13 0.8823 0.8823 0.9028 0.9297 0.8883 0.8823 0.8823 0.8823 0.8823 

14 1.0000 1.1961 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

15 0.7579 0.7579 0.7584 0.8571 0.7719 0.7579 0.7579 0.7579 0.7579 

16 1.0000 1.0000 1.0459 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

17 1.0000 1.0000 1.0000 4.7518 1.0000 1.0000 1.0000 1.0000 1.0000 

18 1.0000 1.0000 1.0000 1.0000 1.0250 1.0000 1.0000 1.0000 1.0000 

19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0018 1.0000 1.0000 1.0000 

20 0.8923 0.8923 0.8923 0.8923 0.8923 0.8923 0.8923 0.8923 0.8923 

21 0.8796 0.8796 0.8888 0.8799 0.8885 0.8796 0.8796 0.8796 0.8796 

22 0.8742 0.8742 0.8817 0.8744 0.8858 0.8742 0.8742 0.8742 0.8742 

23 0.8396 0.8396 0.8426 0.8563 0.8563 0.8396 0.8396 0.8396 0.8396 

24 0.7569 0.7569 0.7570 0.7655 0.7711 0.7569 0.7569 0.7569 0.7569 

25 0.7388 0.7388 0.7419 0.7391 0.7496 0.7388 0.7388 0.7388 0.7388 

26 0.8901 0.8901 0.8901 0.9169 0.9071 0.8901 0.8901 0.8901 0.8901 

27 0.9990 0.9990 1.0000 1.0000 1.0000 0.9990 0.9990 0.9990 0.9990 

28 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

29 0.6181 0.6181 0.6181 0.7957 0.6181 0.6181 0.6181 0.6487 0.6181 

30 0.6217 0.6217 0.6217 0.9775 0.6217 0.6217 0.6217 0.6217 0.6217 

31 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

32 0.7761 0.7761 0.7761 0.7947 0.7761 0.7761 0.7761 0.7761 0.7761 

33 0.8163 0.8163 0.8163 0.8163 0.8163 0.8163 0.8446 0.8163 0.8163 

34 0.9711 0.9711 0.9722 1.0000 0.9711 0.9711 0.9711 1.0000 0.9711 

35 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0757 1.0000 1.0000 

36 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.1744 1.0000 

37 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 5.4828 

38 0.9215 0.9267 0.9215 1.0000 0.9215 0.9215 0.9215 0.9215 0.9215 

39 0.3640 0.3665 0.3640 0.4016 0.3686 0.3640 0.3640 0.3640 0.3640 

40 0.9227 0.9710 0.9227 0.9227 0.9227 0.9227 0.9227 0.9227 0.9227 

41 0.7772 0.7772 0.7772 0.7772 0.7772 0.7772 0.7772 0.7772 0.7772 

42 0.7288 0.7288 0.7288 0.7288 0.7288 0.7288 0.7288 0.7288 0.7288 

 

Since, using parametric statistical methods depends on normality condition of 

observations distribution, it is necessary to apply normality tests for the obtained 

data in the first step; here we use Kolmogorov-Smirnov empirical distribution 

function and visual tests. The results are summarized in the table 3 
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Table 3: Kolmogorov-Smirnov Test 

  EFF E14 E16 E17 E18 E19 E35 E36 E37 

N 42 42 42 42 42 42 42 42 42 

Normal 

Parameters(a,b) 

Mean 
.855943 .870450 .858140 .976410 .859060 .855986 .859157 .861512 .962676 

  Std. 

Deviation 
.1695478 .1784681 .1707749 .6163929 .1694246 .1695853 .1717203 .1747358 .7339701 

Most Extreme 

Differences 

Absolute 
.202 .210 .198 .461 .206 .202 .194 .190 .456 

  Positive .198 .210 .179 .461 .179 .195 .182 .190 .456 

  Negative -.202 -.199 -.198 -.273 -.206 -.202 -.194 -.188 -.256 

Kolmogorov-Smirnov Z 1.308 1.362 1.281 2.987 1.332 1.307 1.257 1.233 2.955 

Asymp. Sig. (2-tailed) .065 .049 .075 .000 .057 .066 .085 .096 .000 

 

The significance probability is a real number that is determined by the sample, 

e.g. 085.0Sig in the last row of E35 column.  In the statistical hypothesis testing 

we will reject H0 if and only if Sig , where  is the significance level that is 

fixed and known to the researcher and will takes the values like 05.0 . 

The last row of above table shows that all units, except DMU17 and DMU37 follow 

the normality distribution. More diagnostic test for lack of normal fitting on these 

units are shown in the figures 1-4 bellow. 
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Figure 1: Q-Q  plot for DMU17 
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 2Figure 2: Box plot for DMU17 

 



 

 

Iranian Journal of Optimization, Vol  6, Issue 1,winter  2014                                    685 

 

 

 

 

 

 

 

 

 

For Q-Q plot if the selected unit matches the normal distribution, the points 

cluster around a straight line, whereas we don‟t see it here. The box plots show 

another useful visualization for viewing how the data are non-symmetric and 

hence non normal distribution.  

So, except these two units, we can use parametric and nonparametric paired 

sample tests for detection of outliers.  In the below table we show the results of 

parametric paired-samples t test 

Table 4: Parametric paired sample t test results 

 Paired Differences t df 
Sig. (2-
tailed) 

  Mean 

Std. 

Deviati
on 

Std. 

Error 
Mean 

95% Confidence 

Interval of the 
Difference       

        Lower Upper       

Pair 
1 

EFF - 
E14 

-
.01450

7 

.042366

0 

.006537

2 

-
.02770

9 

-
.00130

5 

-

2.219 
41 .032 

Pair 

2 

EFF - 

E16 

-

.00219

8 

.007787
3 

.001201
6 

-

.00462

4 

.00022
9 

-
1.829 

41 .075 

Pair 

3 

EFF - 

E18 

-

.00311

7 

.006192
7 

.000955
6 

-

.00504

6 

-

.00118

7 

-
3.262 

41 .002 

Pair 

4 

EFF - 

E19 
-
.00004

.000277

7 

.000042

9 
-
.00012

.00004

4 

-

1.000 
41 .323 
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Figure 1: Q-Q plot for DMU37 
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           Figure 2: Box plot for DMU37 
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3 9 

Pair 

5 

EFF - 

E35 

-

.00321
4 

.013120

9 

.002024

6 

-

.00730
3 

.00087

4 

-

1.588 
41 .120 

Pair 
6 

EFF - 
E36 

-
.00556

9 

.027445

9 

.004235

0 

-
.01412

2 

.00298

4 

-

1.315 
41 .196 

 

 

Based on the significance probabilities values 0.032 and 0.002 for units 14 and 18, 

we can reject H0 and conclude that in comparison to other units, these units have 

more capacity to be outlier.  

Table 5: Non-parametric Wilcoxon signed ranks test 

  

E14 - 

EFF 

E16 - 

EFF 

E17 - 

EFF 

E18 – 

EFF 

E19 – 

EFF 

E35 – 

EFF 

E36 - 

EFF 

E37 – 

EFF 

Z -

2.666(a) 

-

2.934(a) 

-

4.286(a) 

-

3.059(a) 

-

1.000(a) 

-

1.604(a) 

-

1.604(a) 

-

1.000(a) 

Asymp. 

Sig. (2-

tailed) 

.008 .003 .000 .002 .317 .109 .109 .317 

 

 

Table 6: Non-parametric sign test 

  
E14 - 
EFF 

E16 - 
EFF 

E17 – 
EFF 

E18 - 
EFF 

E35 - 
EFF E36 – EFF 

Exact Sig. (2-

tailed) 
.004 .001 .000 .000 .250 .250 

 

The non-parametric related sample tests for 17 and 37 units are shown in Tables 5 

and 6.   

In these two non-parametric tests, the results obtained for the significance 

probabilities of the units 14, 16, 17 and 18 are less than 0.05 and using parametric 

results we conclude that DMU14, DMU17 and DMU18 can be considered as a 

potential outliers.  
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5.Conclusions 

This paper presents a statistical pared sample t test to identifying outlier as the 

first step in using any DEA models. It is shown that the presented approach is a 

powerful tool to remove any potential super-efficient outliers. An empirical study 

to an Iranian university department‟s further illustrated the importance of 

removing outliers in DEA estimation of production function.  
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Appendix 1: Proofs 

Proposition 1. If  , 1,...,p q n and 1qe  , i.e. 
qDMU  be a technically 

inefficient unit, then in solving model (2) we have
q

p pe e . 

 Proof.  Since 
qDMU is an inefficient unit then in any optimal solution of the 

model (1) for evaluating 
pDMU  we have 0p

q  . Otherwise by the 

complementary slackness property of linear programming, the corresponding dual 

constraint will be bind. This means that in its multiplier dual form, we have a set 

of feasible weight by which the unit q reaches the maximum possible efficiency 

score 1. This contradicts with inefficiency of this unit. 

Proposition 2. If  , 1,...,p q n  and 
* 0p

q   in an optimal solution of the 

model (1) then in solving model (2) we have 
q

p pe e .  

Proof. It is easy to verify that both model have the same optimal solution, hence 

their optimal values are equal.  

 

Appendix 2: The statistical preliminaries 

Paired Test 

There are two reasons for using a paired design: reduction of bias and increased 

precision. Both reasons may be true at once. Two measurements are paired when 

they come from the same observational unit: the efficiency scores obtained before 

and after elimination of the units.  

Pairing seeks to reduce variability in order to make more precise comparisons 

with fewer subjects. When independent samples are used, the difference between 

treatment means is compared to the variability of individual responses within each 

treatment group. This variability has two components:  

The larger component is usually the variability between subjects (between-subject 

variability). It's there because not every subject will respond the same way to a 

particular treatment. There will be variability between subjects.  

The other component is within-subject variability. This variability is present 

because even the same subject doesn't give exactly the same response each time 

s/he is measured. There will be variability within subjects. 

When both measurements are made on the same subject, the between-subjects 

variability is eliminated from the comparison. The difference between treatments 

is compared to the way the difference changes from subject to subject. If this 

difference is roughly the same for each subject, small treatment effects can be 

detected even if different subjects respond quite differently. If measurements are 

made on paired or matched samples, the between-subject variability will be 

reduced according to the effectiveness of the pairings. The pairing or matching 

need not be perfect. The hope is that it will reduce the between- subject variability 

enough to justify the effort involved in obtained paired data.  
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Sometimes pairing turns out to have been a good idea because variability is 

greatly reduced. Other times it turns out to be having been a bad idea, as is often 

the case with matched samples. Pairing has no effect on the way the difference 

between two treatments is estimated.  

The estimate is the difference between the sample means, whether the data are 

paired or not. What changes is the uncertainty in the estimate. 

  Parametric Test 

The paired t test statistic is the difference between the paired observations, which 

is symbolized by d , which in our purposes denotes the difference between the 

efficiency scores of the units before and after the eliminations and d is average 

difference. Note that d has the same value as the difference between the means of 

the two samples (ave. after elimination minus ave. before elimination).The mean 

of the differences is the same as the difference between the means 1 2d     . 

One can also calculate the standard deviation of d . The sample size ( n ) is simply 

the number of paired observations. Here we use null-hypothesis ( 0H ) for the case 

the unit under consideration does not appear as an outlier and alternative-

hypothesis denotes by aH : 











0:

0:0

dH

dH

a  

The test statistics that we can use is 
s

d

d
t

SE
   with ( 1)n  degrees of freedom. P-

value ( valueP : significance probability) is the probability of being wrong 

(committing a type I error) if one rejects H0 and the confidence interval is  

, ( )a df d
d t SE . We note that the d 's must be distributed normally when the 

sample size is small. This assumption is relaxed as the sample size gets large due 

to the effect of the central limit theorem. 

 Non-Parametric Test 

Occasionally, the assumptions of the t-tests are seriously violated. In particular, if 

the type of data you have is ordinal in nature and not at least interval. On such 

occasions an alternative approach is to use nonparametric tests. We are not going 

to place much emphasis on them in this unit as they are only occasionally used. 

But we should be aware of them and have some familiarity with them. In our 

purpose, when the units have both cardinal and ordinal data and we want detect 

the outliers. 

Nonparametric tests are also referred to as distribution-free tests. These tests have 

the obvious advantage of not requiring the assumption of normality or the 

assumption of homogeneity of variance. They compare medians rather than means 

and, as a result, if the data have one or two outliers, their influence is negated. 

 Signed-Rrank Test 

This test is useful when sample size is small and no particular distribution is 

assumed and there are real doubts about whether or not a t-test can be used. It is 

based on the sign of the difference between paired observations. Let's restate the 
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null and alternative hypotheses so that we are clear: 











0:

0:0

dH

dH

a  
If 0H  is true, then the error between the observations is random. If this is so, then 

there should be an equal chance of getting a positive difference or a negative 

difference. That is, we expect half of the signs to be + and half to be -. The signs 

test is based on this assumption and the binomial distribution.  

 Wilcoxson Signed-Rank Test 
This uses a bit more information than does the signs test, so it is a bit more 

powerful. 

To do this test, rank the d 's from smallest to largest (based on their absolute 

value). 

Restore the + and - signs. Add the negative ranks and take their absolute value. 

Add the positive ranks. The test statistic ( sW ) is whichever is the larger of the two 

sums above. There are few assumptions to use the Wilcoxson signed ranks test. If 

it is reasonable to assume that the d 's are as likely to be positive as negative and 

no particular distribution is assumed. 


