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Abstract 

This paper investigates a procedure for identifying all efficient hyperplanes of 

production possibility set (PPS). This procedure is based on a method which 

recommended by Pekka J. Korhonen[8]. He offered using of lexicographic 

parametric programming method for recognizing all efficient units in data 

envelopment analysis (DEA). In this paper we can find efficient hyperplanes, via 

using the parameterization of the right hand side vector of the envelopment 

problem of each efficient unit.    
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1. Introduction 

 Data Envelopment Analysis (DEA) is a non-parametric method which was 

originally proposed by Charnes, Cooper and Rhodes [2] and it has become one of 

the most widely used methods in operations research/management science.  

 DEA is a mathematical programming approach that focuses on an important task: 

to evaluate performance of the units called decision making units (DMUs). In 

order to reach this aim DEA assess the relative efficiency of comparable units 

(DMUs) with multiple inputs and outputs.  

Based on different essential properties and information about existing data on the 

performance of the units, DEA forms efficient surfaces (frontiers). If a DMU lies 

on the surface, it is referred to as an efficient unit; otherwise, it is inefficient.  

DEA also provides efficiency scores and reference units for inefficient DMUs. 

The reference set for inefficient units consists of efficient units and determines an 

exclusive hypothetical on the efficient frontier, which can be regarded as a target 

unit for those inefficient units. However finding all references of an inefficient 

DMU is not an easy job. 

 Although identifying efficient units has been initial task in DEA, but no many 

papers in DEA have been written on the subject of "finding efficient hyperplanes", 

such as: a) Jahanshahloo et al. [5] tried to establish a method to find all strong 

defining hyperplanes of production possibility set, b) Zohrebandian et al. [9] 

investigated a method to obtain efficient frontier by using 0-1 integer 

programming. 

 Korhonen [8] exhibited using of lexicographic parametric programming to 

classify the units as efficient, extreme efficient, weakly efficient and inefficient. 

Using that interactive technique, we may move from unit to unit along an efficient 

curve. The units entering to basis are recognized efficient and all units dominated 

by an efficient facet are inefficient. 

 In this paper, we suggest a procedure to find all efficient hyperplenes of 

production possibility set. Finding the PPS structural hyperplanes has a special 

significance, like obtaining the returns to scale of DMUs based on the position of 

the efficient hyperplanes of efficient frontier. 

The sections of this paper are organized as follows. In the next section, section 2, 

necessary theory, some basic definitions, models and concepts are represented; the 

main principles of the procedure are described in section 3. Section 4, illustrates 

an example and section 5 concludes the paper with some remarks.  

2. Backgrounds  

2.1. Lexicographic parametric programming  

Consider the MOLP problem: 



 

 

Iranian Journal of Optimization, Vol 3, Issue 1, Winter 2011                                  174            

            

1

2

max        c

max        c    

       

max        c

.         Ax=b

               x 0

P

x

x

x

s t



                                                                                            

(1) 

where ,  (m<n)
m n

ijA a


    , b  is a m-vector and  , 2
p n

iC c p


    . Also 

assume that    rank  and rankA m C p  . One way to solve this kind of 

problems is "Lexicographic optimization" as follows: 

                

1 2lex max  { , ,..., }

        .     

0,

pc x c x c x

s t Ax b

x





                                                                      

(2) 

 In lexicographic optimization, we proceed in this manner: initially, solve the 

problem only with the first objective function. If the optimal solution is unique 

consider it for whole program, else the second objective is used with this 

additional restriction: 
1

1c x q  , that 1q 
 is the optimal value of objective function. 

If second problem had unique solution, then it is the optimal solution of whole 

program, else use the next objective function with this additional 

restriction:
2

2c x q   and so on. Generally, k-th problem that we should solve is: 

                   
*

max       

s.t           ,     1, 2,..., 1

             ,

                 0

k

i

i

c x

c x q i k

Ax b

x

  





                                                (3) 

Consider x 
 as the optimal basic feasible solution of lexicographic optimization 

problem (2). Let B  be an optimal basis corresponding to the optimal solution x 
 

and let ],[],...,,[ 21 NBaaaA n  , where N consists of the non-basic columns of 

A . We denote 
j

k

B

k

j aBcZ 1 . 

Definition 1. The solution x 
 is the optimal solution of lexicographic 

optimization problem (2) if it is feasible and the following optimal conditions are 

fulfilled: 

                 

1 1

1 1

0 ,    

and  if   , : 0   then   0,   .

j j

i i i i

j j j j

Z c j R

i j Z c Z c j R 

  

      
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where R  is the index set of all non-basic variables. 

 

 2.2. DEA  

  Suppose that we have n DMUs, each of them consumes m inputs to produce 

s outputs. We denote by m

jx  , the vector of inputs consumed by jDMU  that 

produces output vector s

jy  , also denote by 1 the summation vector 

 1,...,1
T

. 

  In DEA, the Production Possibility Set (PPS) is defined as follows:  

                   ,   can be produced by T x y y x . 

This can be defined by (in presence of constant returns to scale): 

                    1

1 1

, , , ,..., 0
n n

c j j j j n

j j

T x y x x y y    
 

  
     
  

  , 

where 
n   is semipositive vector. Adding the constraint1 1  , to cT , we 

obtain vT  as follows:  
1 1

, , ,1 1, 0
n n

V j j j j

j j

T x y x x y y   
 

  
     
  

  . 

As mentioned cT is built on the assumption of constant returns to scale but in 

vT we don’t agree to any assumption of returns to scale of activities. 

  For calculating the efficiency of DMUs under assumption of constant returns to 

scale, Charnes et al. [2], [3] introduced the CCR models. Later Banker et al. [1] 

developed the so-called BCC models with variable returns to scale. 

  The CCR and BCC models can be presented in a primal or dual form, that we 

call them multiplier and envelopment form, respectively. The multiplier model 

provides information on the weights of inputs and outputs, wherever the 

envelopment models give us information on the lacks of outputs and surplus of 

inputs of a unit. Moreover, the envelopment model characterizes the reference set 

for inefficient units. References of an inefficient oDMU ( under evaluation  

DMU) are efficient DMUs that there is a combination of them such that 

dominates oDMU . We say  : ,p p pDMU x y  dominates  : ,q q qDMU x y  if and 

only if p qx x  , p qy y  and inequality be strict in at least one component. All 

references of a unit are efficient and there exist a defining hyperplane which 

contains all these DMUs, i.e. the references are always on efficient surfaces. [6] 
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  Without loss of generality, we will consider a DEA model, that Halme et al. [4] 

called it a general combined model. This model uses a general directional vector 

0,  0
y

x

w
W W

w

 
   
 

. By different value of W in the following general DEA 

formulation, in the so-called envelopment form, we can obtain basic envelopment 

models of DEA: 

               

1

1

max      (1 1 )

   .     

           

             ,

            , , 0,

            0     (''Non-Archimedean''),

T T

n
y

j j o

j

n
x

j j o

j

z s s
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x w s x

s s
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 

 







 









 

  

  

  









                                                  (4) 

 

where ox  is the input vector and oy  is the output vector of a oDMU  under 

consideration.  

 

{ |1 1 , 0}   for variable returns to scale model

{ |1 1 , 0}   for non-increasing returns to scale model

{ |1 1 , 0}   for non-decreasing returns to scale model

{ | 0}                   for con

T

T

T

  

  

  

 

 

 
 

 

 stant returns to scale model









 

  

  In (4), when 
y

ow y  and  
x

ow x we have combined model. In the input 

oriented model 0yw   and 
x

ow x  and for output oriented model 0xw   and 
y

ow y . The value of   is called an inefficiency score. A DMU is efficient if 

and only if the optimal value of model (4),   , equal 0 and also all the slack 

variables ,s s 
 are zero. Otherwise, the DMU is inefficient [7]. In the case 

0z    but 0   , we have weakly efficient solutions. 

  There is two ways to deal with the infinitesimal in the model (4): a) to replace it 

by a small number or b) to use a lexicographic approach. The second is a better 

way. Hence we use the lexicographic formulation model (4):  
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
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
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                                                               

(5) 

   

  As declared before we first solve (5), using   as an objective function. If the 

optimal solution,  , is not unique, we formulate a new model by adding the 

constraint     into model (5) and solve it by using 1T s  as the objective 

function
1
. 

  Korhonen and Siitari [8] formulated a lexicographic parametric programming 

approach to identifying efficient units in DEA: 

 

 

 

 

1

1

lex max     ,1

.       

           

             ,

            , , 0,

             : 0 1.

T

n
y

j j o j o

j

n
x

j j o j o

j

S

s t y w s y t y y

x w s x t x x

s s

t



 

 













 

    

    









                                (6) 

  Let us to define the set  

   1

1 1

, , , ,...,
n n

j j j j n

j j

K x y x x y y   
 

  
    
  

   then we have the 

following definitions [8]: 

 Definition 2. A point  ,x y K    is efficient iff there dose not exist another 

 ,x y K  such that dominates  ,x y 
.  

                                                             

1
 For details see [7]. 
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Definition 3. A point  ,x y K    is weakly efficient iff there dose not exist 

another  ,x y K  such that  x x   and y y  , 

 When  ,x y   is not efficient, it is inefficient. If  ,x y   is not even weakly 

efficient, we call it strictly inefficient.  

Efficient Frontier is the set of all points (actual or virtual) with efficiency score is 

equal to zero. 

Definition 4. A hyperplane H in n  is a set of the form  Tx p x   where p  

is a non-zero vector in n  and   is a scalar. Also, p  is usually called the normal 

or gradient to the hyperplane [5]. A hyperplane is strong if none of component of 

p  are zero; and it is weak if some component of p  are zero. 

 

  A hyperplane divides 
n

 into two regions, called halfspaces. Hence two 

halfspaces H 
 and H 

 are two collection of points of the form  Tx p x   

and  Tx p x  , respectively, so that H H H  .  

Definition 5. A hyperpane H is supporting hyperplane of X , if H X   and 

(  or XX H H   ). 

Definition 6. H  is a strong defining hyperplane (Efficient hyperplane) of PPS if 

and only if it is supporting at least m s  strong efficient DMUs of PPS lying on 

H and in its gradient components corresponding with output vector are 

nonnegative and components corresponding with input vector are nonpositive (in 

presence of variable returns to scale). Note that when we deal with cT , one of 

these m+s DMUs can be origin, therefore only m+s-1 strong efficient DMUs of 

PPS necessarily  lie on H .
2
 

  Suppose among all DMUs, L of them are strong efficient; then all of these 

DMUs are on some strong supporting hyperplane. The following theorem 

demonstrates which DMUs lie on the same supporting hyperplane. 

Theorem 1. Let  ,p px y  and  ,q qx y  be observed DMUs that lie on a strong 

supporting hyperplane, then each convex combination of them is on the same 

hyperplane (in vT and cT ). 

                                                             

2  For details and properties see [6]. 
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Proof. See Jahanshahloo et al. [5]. 

    

Corollary. If  ,p px y  and  ,q qx y  are two efficient DMUs lying on the same 

hyperplane then for       0,1 ,  , 1 ,p p q qx y x y      is efficient and on that 

hyperplane. 

  As stated in Definition 6; each efficient hyperplanes, at least consist of 1m s   

efficient extreme units (in presence of variable returns to scale). Now we use this 

fact to identifying all efficient hyperplanes. 

Theorem 2. Suppose B  be the optimal basis of following envelopment model and 

: 1,...,i Bx i q   , then there exist a hyperplane which passes through DMUs 

corresponding to 1 2, ,..., q   and they are efficient. 

Proof. Consider following envelopment model: 

              
1

1

min    

.       ,   1,...,

          ,   1,...,

                   0      ,    1,...,

n

j ij ip

j
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j rj rp

j
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y y r s

j n


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







 

 
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


                                                         

(7) 

Let B be the optimal basis of (7) and t Bx  so 0t
  . The dual form of (7) is: 

              

1

1 1

1

max      

.         0  ,  1,...,

                               1

                                0  ,  1,...,

                                0  ,  

p

r rp

r

p m

r rj i ij

r i

m

i ip

i

r

i

u y

s t u y v x j n

v x

u r s

v



 



  



 





 



1,...,i m

                                         (8) 

Assuming  ,u v 
 as optimal solution of (8), we have: 

                 0   or    0o

t t t t tu y v x u y v x u         

First let 0t
   then by Theorem of complementary slackness we get: 

0, 0o

t t tu     hence 0o

tu  . This means that t-th constraint is binding: 



 

 

Iranian Journal of Optimization, Vol 3, Issue 1, Winter 2011                                  180            

                   0t tu y v x    

  Now let 0t
   then using Fundamental Theorem of Duality: 

0  so   0o

t t tu u y v x    . Since t
  is in the optimal basis, degeneracy is 

occurred. To avoid this matter we can use a "Lexicographic cycling prevention 

rule", but instead of this rule we can formulate (7) as follows: 

                

1

1

min    

.     - 0        ,    1,...,

                   +  ,    1,...,

                                 0          ,    1,...,

                              

n
i

j ij ip

j

n
m r

j rj rp

j

j

s t x x i m

y y r s

j n



  

 









   

 

 





    0     ("Non-Archimedean"), 

                   (9) 

The dual of (9) is: 

                

1 1 1

1 1

1

max       

.         0  ,  1,...,

                               1

                                   0  ,  1,...,

               

s s m
m r i

r rp r i

r r i

s m

r rj i ij

r i

m

i ip

i

r

u y u v

s t u y v x j n

v x

u r s

 

  

 



 

  



 

  

 



                    0  ,  1,...,

                                  0     ("Non-Archimedean"),

iv i m



 



                  (10) 

 

Since (9) is non-degenerate, consequently for each t Bx , corresponding 

constraint in (10) is tight, means: 0t tu y v x   . 

  Subsequently, 0t tu y v x    is the hyperplane which passes through DMUs 

corresponding to 1 2, ,..., q   . □ 

 Theorem 3. All efficient hyperplanes of a PPS can be identified with this 

procedure. 

Proof. Since we consider all efficient extreme units of PPS and make the 

directions with them in every possible direction, thus by Theorem 2 and 

Definition 6 all efficient hyperplanes of a PPS are identified. □ 
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  Suppose we solve (6). If the entering variable is not uniquely defined, use the 

lexicographic rule as in [8]. If after using that rule the entering variable is not 

uniquely defined, yet, then select the non-basic variable as the entering variable, 

which corresponds to the maximum value of t-parameter. 

 

3. Using lexicographic parametric programming for identifying efficient 

hyperplanes 

  Assume that we have n  DMUs each consuming m inputs to produce s outputs, 

as declared in section 2. We are interested in spotting efficient hyperplanes. To 

achieve our aim we will suggest a procedure. This procedure is based on: a) the 

"lexicographic parametric programming for identifying efficient units in DEA", 

which proposed by Korhonen et al. [8], in his method we can identify all efficient 

extreme units. b) Also we use the attributes stated in Definition 6 and c) Theorem 

2.  

 

Step 0. Define the set:  1,...,J j j n  . 

Step 1. Choose an initial unit ,oDMU o J . Project  ,o ox y  onto the efficient 

frontier by using the formula: 

              

 

1

1

lex max     ,1

.       

           

             0  ,             1,...,

              , 0,

T

n
y

j j o

j

n
x

j j o

j

j

S

s t y w s y

x w s x

j n

s s



 

 











 

  

  

 





                                                         

(11) 

After solve (11) let B  be a square matrix which is the optimal basis of (11).  

If o Bx  , then drop index " "o  from "J".  

   If J   then repeat step 1 

    Else 

   Stop 

Else  
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If o Bx   then define the set    1,2,...,J n o    and go to step 2. 

Step 2. 

 Choose j J   and consider the parametric programming formulation as follows: 

              

 

 

 

1

1

lex max     ,1

.       

           

             0  ,             1,...,

              , 0,

T

n
y

j j o j o

j

n
x

j j o j o

j

j

S

s t y w s y t y y

x w s x t x x

j n

s s



 

 











 

    

    

 





                                    (12) 

To solve (12) use lexicographic parametric programming pending to o Bx  . 

Whenever in iteration, o selected as the leaving variable, or jDMU  selected as 

the entering variable, then stop. 

Define:  o

j i BE i x  .  

Set cardinal o o

j jE E . 

If 1o

jE m s    then the members of  o

r jDMU r E  are on a same 

hyperplane. 

  Set o

jJ J E   . 

  IF J    then go to step 2 

  Else 

  Set  J J o   

  If J   then go to step 1 

  Else 

  Stop. 
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4. An illustrative numerical example 

  We formulate the algorithm by the general combined model (5) with 

lexicographic optimization in presence of constant returns to scale.    

 

Example 1. 

  Assume we have 7 units which are evaluated with three outputs and one input as 

illustrated in Fig. 1. Data are available in Table 1. 

 

Table 1. Illustrative example 

Unit 

6(F) 

Unit 5(E) Unit 

4(D) 

Unit 3(C) Unit 2(B) Unit 1(H) Unit 0(A)  

2.75 1.5 4 1.5 0.9 0.95 1 Output 1 

2 2.5 1 3 2 1 0 Output 2 

0.45 1.6 2 1.5 2.5 2.75 3 Output 3 

1 1 1 1 1 1 1 Input 

  

 

Fig. 1. Illustration of example  

 

 In this example we choose  1 2 3 1output output outputw w w    and 0inputw  . 

H 
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  Step 0:  0,1,2,3,4,5,6J   

  Step 1. 

Start the procedure by investigating the efficiency of unit A. An optimal tableau is 

given in Table 2. Since 0 Bx , so unit A is  efficient. As you can see in the 

optimal tableau we have  1 3m s    basic variable associated with a unit, ''4, 0 

and 2'' which are corresponding with ''D, A and B'' respectively. So the set points 

of , ,D A B  are on the same efficient hyperplane. Therefore  1,3,5,6J    

Table 2. An optimal tableau for unit A 

RHS  u  11 10 9 8 6 5 3 1 Nonbasic 

variables 

0 2151.174 662.043 172.913 162.043 1057.609 411.957 391.304 0 j jz c  

0 2.152 0.663 0.174 0.163 1.058 0.412 0.391 0 7 

0 0.413 0.228 0.043 -0.272 0.971 0.347 0.348 0 4 

1 -0.283 -0.446 0.391 0.054 -1.014 -0.629 -0.87 0.5 0 

0 0.87 0.217 -0.435 0.217 1.043 1.283 1.522 0.5 2 

  Step 2. 

 Choose 1 J   next and define the parameter vector H Au u   . In the tableau, 

we subtract column 0u  from the column 1 as shown in Table 3. 

Table 3. The problem formulation for moving from A to H 

1u u  

 
u  11 10 9 8 6 5  3 1 Nonbasi

c 

variable
s 

0 0 2151.17
4 

662.0
43 

172.9
13 

162.0
43 

1057.60
9 

411.9
57 

391.3
04 

0 j jz c  

0 0 2.152 0.663 0.174 0.163 1.058 0.412 0.391 0 6 

0 0 0.413 0.228 0.043 -0.272 0.971 0.347 0.348 0 3 

-0.5 1 -0.283 -0.446 0.391 0.054 -1.014 -0.629 -0.87 0.5 0 

0.5 0 0.87 0.217 -0.435 0.217 1.043 1.283 1.522 0.5 1 

When we desire to increase parameter t, the variable 0 is selected as the leaving 

variable, which corresponds to the unit under consideration. This means we leave 
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the hyperplane containing unit 0. Hence we stop and select another unit as our 

direction to move. Seeing that  3,5,6J   , with selecting 3 and defining the 

parameter vector C Au u   in Table 2, the variable 0 is selected as the leaving 

variable. So we cannot move and select the next direction, 5. This direction 

doesn't give us permission to move on the existing hyperplane more, as in 

direction 4, also with the last direction, 6. Set  0J J  . Since J    and 

J  , stop and go to step 1.  

 Step1.Now consider unit 1. The optimal tableau is given in Table 4. 

Table 4. An optimal tableau for unit H 

RHS 11 10 9 6 5 4 3 1 Nonbasic 

variables 

0 2397.48 79816 198.84 1636.428 618.724 596.32 598.72 0 j jz c  

0.5 -0.2 -0.4 0.4 -0.82 -0.56 0.2 -0.8 0.5 0 

0.5 1.2 0.4 -0.4 1.82 1.56 0.8 1.8 0.5 2 

0 2.4 0.8 0.2 1.64 0.62 0.6 0.6 0 7 

0 -1.52 -0.84 -0.16 -3.572 -1.276 -3.68 -1.28 0 8 

Since 1 Bx , so unit H is not efficient. Set    1 2,3,4,5,6J J   , repeat step 

1. 

Step 1.Now consider unit 2 as initial unit. The optimal Table is given in Table 5.  

Table 5. An optimal tableau for unit B 

RHS 11 10 9 8 6 5 1 0 Nonbasic 

variables 

0 2024 461.5 349 186.5 601.25 128.75 225 450 j jz c  

0 0.3 0.05 0.2 -0.25 0.565 0.095 0.2 0.4 4 

1 0.375 -0.563 0.25 0.313 -0.731 0.181 1.375 1.75 2 

0 2.025 0.462 0.35 0.187 0.601 0.129 0.225 0.45 7 

0 0.325 0.513 -0.45 -0.063 1.166 0.724 -
0.575 

-1.15 3 

 

   The preliminary units which are on the same hyperplane are "4, 2 and 3" means 

 D,B,C . So  0,1,5,6J   .  
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Step2. With choosing 0 J  , we obtain following tableau: 

Table 6. The problem formulation for moving from B to A 

  RHS 11 10 9 8 6 5 1 0 Nonbasic 

variables 

450 0 2024 461.5 349 186.5 601.25 128.75 225 450 j jz c  

0.4 0 0.3 0.05 0.2 -0.25 0.565 0.095 0.2 0.4 4 

0.75 1 0.375 -

0.563 

0.25 0.313 -0.731 0.181 1.375 1.75 2 

0.45 0 2.025 0.462 0.35 0.187 0.601 0.129 0.225 0.45 7 

-

1.15 

0 0.325 0.513 -

0.45 

-

0.063 

1.166 0.724 -

0.575 

-

1.15 

3 

 

We cannot increase parameter t before we have the basis in which the positive 

values of the element of the parameter vector correspond to zeroes in the right-

hand side, for this reason the leaving variable is 3, but the entering variable is not 

uniquely defined. The alternative entering variables are 0, 1. For both of them, the 

ratio is 450/(-0.563)= 225/(-.575)= 391.304. Also when we use the second 

objective, we get the same ratio. Consequently we select the non-basic variable as 

the entering variable, which corresponds to the maximum value of t-parameter. 

The value of t-parameter which variable 0 gives us is equal to 1 and the variable 1 

gives us 0.5. Thus the correct entering variable for guaranteeing the efficient basis 

is variable 0 ( Table 7). Set    0,1 5,6J J    . 

Table 7. Variable 3 is replaced by variable 0 in the basis 

  RHS 11 10 9 8 6 5  3 1 Nonbasic 

variables 

0 0 2151.174 662.043 172.913 162.043 1057.609 411.957 391.304 0 -1 

0 0 0.413 0.228 0.043 -0.272 0.971 0.347 0.348 0 4 

-1 1 0.87 0.217 -0.435 0.217 1.043 1.283 1.522 0.5 2 

0 0 2.152 0.663 0.174 0.163 1.058 0.412 0.391 0 7 

1 0 -0.283 -0.446 0.391 0.054 -1.014 -0.629 -0.87 0.5 0 

 

The units    4,2,0 , ,D B A are on the same hyperplane. Because the entering 

variable is 0, so stop moving on this direction. When we choose 5, 6 as the 
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direction, we don’t achieve any efficient hyperplane because variable 2 leave the 

basis. Set  3,4,5,6J   and go to step 1. 

When we repeat the process for unit 3, we realize the set points of , ,C B D  are on 

the same efficiant hyperplane. With using unit 4 (D) as the initial unit, we reach 

the sets  , ,C B D  and  , ,A B D , put on two different hyperplanes, in view of 

the fact that we desired. Choosing the units 5 (E) and 6 (F) as the initial unit and 

solve (11) we recognize that these units are not efficient. 

5. Conclusion 

  This paper has presented a process to find efficient hyperplanes, by means of 

using the parameterization of the right hand side vector of the envelopment 

problem of each efficient unit. With considering all efficient extreme units of PPS 

and make the directions with them in every possible direction, all efficient 

hyperplanes of a PPS can be identified, so based on this fact we formulate an 

algorithm. This algorithm demonstrates which set of efficient units are on the 

same hyperplanes. Since we categorized all efficient units in the sets which 

containing m+s-1 member, all efficient hyperplanes can be identified. As future 

study, we propose using this method for the other models of DEA and trying to 

make this procedure better. 

 

References 

[1] Banker R.D., Charnes A., Cooper W. W., Some models for estimating 

technical and scale inefficiencies in Data Envelopment Analysis, Management 

Science, 30, 1078-1092, 1984. 

 

[2] Charnes A., Cooper W. W., and Rhodes E., Measuring the efficiency of 

decision making units, European Journal of Operational Research, 2, 429-444, 

1978. 

[3] Charnes A., Cooper W. W., Rhodes E., Short communication: Measuring 

efficiency of decision making units, European Journal of Operational 

Research, 3,339, 1979. 

 

[4] Halme M., Joro T., Korhonen P., Salo S., Wallenius J., A value efficiency 

approach to incorporating preference information in data envelopment 

analysis, Management Science, 45, 103-15, 1999. 

 

[5] Jahanshahloo G. R., Hosseinzadeh Lotfi F., Sohraiee S., characteristics of 

Defining Hyperplanes of Variable Returns to Scale Technology in DEA. 

 



 

 

Iranian Journal of Optimization, Vol 3, Issue 1, Winter 2011                                  188            

[6] Jahanshahloo G. R., Hosseinzadeh Lotfi F., Zhiani Rezai H., Rezai Balf F.,  

Finding Strong Defining Hyper planes Of Production Possibility Set, 

European Journal of Operational Research, 177, 42-54, 2007.  

 

 [7] Korhonen P., Halme M., Using lexicographic parametric programming for 

searching a nondominated set in multiple objective linear programming, 

Journal of Multi-Criteria Decision Analysis, 5, 291-300, 1996. 

 

[8] Korhonen P., Antti Siitari P., Using lexicographic parametric programming for 

identifying efficient units in DEA, Computers and operations Research, 34, 

2177-2190, 2007. 

 

[9] Zohrehbandian M., Jahanshahloo G. R., Hosseinzadeh Lotfi F., Finding the 

piecewise linear frontier production function in Data Envelopment Analysis, 

Applied Mathematics and Computation, 163 (1), 483-488, 2005. 

 


