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INTRODUCTION 

   In the last decade, attention have been giving to 

integro-differential equations due to its application in 

Mathematical sciences especially in modeling (such as 

biological application and engineering), Mathematical 

finance and control theory. Most of the problems that 

arise in these areas are very difficult to solve 

analytically. Researchers have employed different 

approaches in finding the numerical solution to 

integro-differential equations using different 

numerical methods. Finite element method for solving 

non-linear integro-differential model was proposed in 

Jangveladze et al. (2011), Biazar & Salehi (2016) 

employed second kind shifted Chebyshev Galerkin 

method to solve integro-differential equations, 

Mohamed et al. (2014) reported Legendre-Galerkin 

method for solving Fredholm form of integro-

differential equations, Yalcinbas & Sezer (2000, 

2006); Huang & Li (2009) employed Taylor 

polynomials to approximate the solution of high-order 

linear Volterra-Fredholm integro-differential 

equations, Tau method were employed in Hosseini & 

Shahmorad (2003a,b); Shahmorad (2005) to estimate 

the error of Fredholm-Volterra integro-differential 

equations. Bildik et al. (2010) compared the accuracy 

of Legendre and variational iteration method while 

Jimoh & Issa (2014) compared variational iteration 

method and homotopy's method for solving general 

linear Fredholm integro-differential equations, Khater 

et al. (2007) employed Legendre polynomials to solve 

integro-differential equations while Shahsavara 

(2010) investigate numerical solution of linear 

Volterra and Fredholm integro-differential equations 

using Haar wavelets. Convergence and stability of 

Galerkin's method was reported in Chen et al. (2015), 

Demir et al. (2021) proposed Pell-Lucas matrix-

collocation method for solving Fredholm-type delay 

integro-differential equations with variable delays, 

Issa et al. (2019) employed perturbed Galerkin method 

to solve delay Fredholm and Volterra integro-

differential equations using first kind shifted 

Chebyshev polynomial as approximating polynomial, 

Golbabai & Seifollahi (2007) employed radial basis 

function networks in the numerical solution of linear 

integro-differential equations; Gumgum et al. (2018) 

investigated Lucas polynomial together with standard 

and Chebyshev-Lobatto collocation points to solve 

functional integro-differential equations involving 

variable delays, analytical properties and asymptotic 

behaviour of solutions for system of integro-

diferential equations was reported in Smarda & Khan 

(2012), Issa, Biazar, et al. (2022) investigated 

perturbed Galerkin method via fourth kind shifted 

Chebyshev polynomials. The main feature in this 

paper is to extend the work reported in Issa, Biazar, et 

al. (2022) by introducing shifted Gegenbauer and 

Jacobi polynomials as approximating polynomial 

( )N u  for solving integro-differential equations, 

since its solution generalizes the results of some other 

orthogonal polynomials such as Legendre, shifted 

Chebyshev polynomials of certain kinds and many 

more. 

This paper is organized as follows. In section 2, we 

review some notable orthogonal polynomials like 

Legendre polynomial ( )jP u  in 2.1.1, shifted 

Chebyshev polynomials in 2.1.2, shifted Gegenbauer 

polynomial 
( ) ( )iC u

 in 2.1.3 and in section 2.1.4, we 

present shifted Jacobi polynomial 
( , ) ( )nC u 

 2.1.4. 

We present the formulation of the scheme for the 

proposed method in section 3, numerical examples are 

presented in section 4 with concluding remarks given 

in section 5. 

PRELIMINARIES 

Some notable orthogonal polynomials 

   Some of the notable orthogonal polynomials ( )t  

are defined here: 

( )t is an orthogonal polynomial with respect to the 

weight function ( )t  in an interval 

[a, b] with the inner product of ( )t  given as: 

( ), ( ) ( ) ( ) ( )

(1)0,

,

b

m n m na

n

t t t t t dt

m n

m n

    






 




 

Some of these orthogonal polynomials ( )m t m(t) are: 

Legendre polynomials 

 

Legendre polynomial is an orthogonal polynomial 

( )mP u  defined in an interval [-1, 1] with weight 

function ( )u and recurrence relation:  

1 1

2 1
( ) ( ) ( ),  1, (2)

1 1
k k k

k k
P u uP u P u k

k k
 


  

 
 

With 0 1( ) 1,  ( ) .P x P u u   

Chebyshev polynomials 
Chebyshev polynomials are of different kinds, the 

prominent ones are given here with their respective 

weight functions ( )u  in the interval [-1, 1] as: 

 



Iranian Journal of Optimization, 15(1), 7-14 March 2023 

,2023 

 2022 

 

                                                                                                                                                                                                 9  
    

Issa et al / Numerical solution of integro-differential … 

 

2

2

1
( ) cos( ), ( )

1

sin( 1)
( ) , ( ) 1

sin( )

1
cos( )

1 (3)2( ) , ( )
1

cos( )
2

1
sin( )

12( ) , ( )
1

sin( )
2

m

m

m
m

m

T u mn m

u

m
U u m u

u

m u
u

V u m
u u

m u
u

W u m
u u











 


 

  




   

 


 
 

 





  

The inner product for the third and fourth kinds 

Chebyshev polynomials in the interval [-1, 1] are 

defined as: 

1

1

1

1

( ), ( ) ( ), ( )

1
( ) ( )

1

0,
,

,
(4)

( ), ( ) ( ), ( )

1
( ) ( )

1

0,
,

,

m n m n

m n

m n m n

m n

t t V u V u

u
V u V u du

u

m n

m n

t t W u W u

u
W u W u du

u

m n

m n

 



 















 











 







 

 

See Mason & Handscomb (2003) for details. 

Shifted Gegenbauer polynomials 

Gegenbauer polynomials 
( ) ( )iC u

 defined in the 

interval [-1, 1] with respect to weight function  

 
1

2 2( ) 1u u



 

 
    can be determined using 

   

( )

0

( )

1
( 1) (2 2 ) (5)2

1
( )! 2 1

2

i

j
i

i j

j

C u

i j

u

i j j i j



 

 







 
      

 

 
        

 


 

The recurrence relation is given as: 

 

 

( )

1( )

( )

2

2 1 ( )1
( ) ,  2, (6)

2 2 ( )

i

i

i

i uC u
C u i

i i C u















  
  

    

 

where
( ) ( )

0 1( ) 1,  ( ) 2C u C u u    .This recurrence 

relation can be transform to another interval [a, b] by 

introducing the variable 
2 ( )u a b

b a


 



. Hence, the 

shifted Gegenbauer polynomial in term of u is 

obtained as: 

 

 

( )*
1( )

( )*
2

2 ( )
2 1 ( )1

*( ) ,  
(7)

2 2 ( )

2,

i
i

i

u a b
i C u

b aC u
i

i C u

i














   
   

   
 
    



where 

( )* ( )

0 1

2 ( )
( ) 1,  ( ) 2

u a b
C u C u

b a

  
  

   
 

. 

The analytic form of the shifted Gegenbauer 

polynomial 
( ) *( )iC    is given as: 

   

( )*

0

( )

1
( 1) (2 2 ) (8)2

1
( )! 2 1

2

i

j
i

i j

j

C

i j

i j j i j




 



 







 
      

 

 
        

 



 

The orthogonality condition is 

 

( ) ( )

1
( )1 ( ) ( )2 2

0

1 4

2

*( ), *( )

( ) *( ) *( ) (9)

0,

2 ( 2 )=  
,

! ( ) ( )

m n

m n

C u C u

u u C u C u du

for m n

n
for m n

n n

 

  

 

 





 




 



 


 

see Issa, Yisa, & Biazar (2022); Izadkhah & Saberi-

Nadja_ (2015) for details. 

Jacobi polynomials 

The well-known Jacobi polynomials 
( , ) ( ),  0,  1, ,nP u n    with parameters ,  1     

and weight function    ( ) 1 1u u u
 

    . The 

explicit form of Jacobi polynomials that was used in 

Szego (1975) takes the form: 

   

 

 

 

,

0

1
( )

! 1
(10)

! 1 1

( )! ! 1 2

n

mn

m

n
P u

n n

n m n u

n m m m

  

 

 



  


   

      
  

     


 

where 
 ,

0 ( ) 1P u
 

 , 

     ,

1

1
( ) 1 2

2

u
P u

 
  

 
      

 
. When

0   , then its reduces to Legendre polynomials, 

while choosing 
1

2
   , gives Chebyshev 

polynomials of first kind and also when 1   , 
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gives Gegenbauer polynomials of the form , that’s 

3

(1,1) 2( ) ( )n nP u C u  and so on. 

FORMULATION OF THE SCHEME FOR 

PERTURBED GALERKIN METHOD 
Consider integro-differential equations of the form: 

0

1 1 2 2

( ) ( ) ( )

(11)

( , ) ( ) ( , ) ( )

jm

j j
j

b b

a a

d
P u u f u

du

u t u du u t u du   



 

   



 

 

subject to the initial condition: 

 ( ) ,  0,  1, ,  1 (12)j

ja j m     

where ( )u  is an unknown function, 

1( ),  ( ),  ( , )jP u f u u t  and 2 ( , )u t  are known 

functions, m is the order of Eq. (11), 1 2,  are real 

numbers and u  is the independent variable defined in 

the interval  

[a, b] except stated otherwise. 

Suppose ( )N u  is an approximant of degree N to the 

function ( )u , then we write 

0

2 ( )
( ) . (13)

N

N i

i

u a b
u

b a
 



  
   

 
  

where I are unknowns to be determined and 

( ),  0,  1,  ,I u i N  are orthogonal polynomials 

(which is either Gegenbauer or Jacobi polynomials). 

Perturbing Eq. (11), we obtain 

1 1

0

2 2

( ) ( ) ( ) ( , ) ( )

(14)

( , ) ( ) ( )

bjm

j j
j a

b

N

a

d
P u u f u u t u du

du

u t u du u

 

 



   

  

 



 

Multiplying Eq. (14) by 

2 ( )
,  ,  1,  1k

u a b
k m m M m

b a


  
    

 
and 

integrate the resulting equation with respect to the 

independent variable, in the intervals [a, b], we obtain: 

 

0 0

1 1

0

2 2

0

2 2 ( )
( )

2 ( )
( , ) (15)

2 ( )
( , ) ( )

2 ( )

2 ( )
( )

j jm Nb

j i ija
j i

Nb

i i
a

i

Nu

i i N
a

i

k

k

d u a b
P u

b a du b a

u a b
v u t du

b a

u a b
v u t du u

b a

u a b
du

b a

u a b
f u

b a

 

  

  





 





     
    

    

  
  

 

  
    

  

  
 

 

   
  

 

 





, , 1,..., 1,
b

a
du k m m N m


    
 



 

where 

1 1

0

2 ( )
( ) , (16)

m

N r N m r

r

u a b
u

b a
    



  
   

 
  

N is the degree of approximation. 

Eq. (15) in matrix form becomes 

, (17)G   

The remaining equations are obtained using the 

attached conditions (12), that is 

0

2 2 ( )
( )

,  0,  1,  1. (18)

jj jN

Nj j
i u a

j

d d u a b
u

du b a du b a

j m





 

    
     

    

  

  

From Eqs. (15) and (18), we obtain the values of the 

unknowns ,  0,  1,  , ,i i N   then substitute in Eq. 

(13) to obtain the approximate solution of degree N. 

NUMERICAL EXAMPLES 

In this section, we implement the proposed method 

(PM) on selected problems from the literature and 

compare the results with existing results by computing 

the absolute maximum error N , where

0 100
max ( ) ( ) ,  (19)N i N i i

i
u u u a ih

 
      

Example 1 

Consider the following delay Volterra integro-

differential equation Issa et al. (2019) 

1

'( ) ( 1) 4 ( ) 3 ( )
(20)

2exp(1 ),  0

u

u

u u u t dt

u u



      

  

  

with initial condition (0) 1,   and the exact solution 

( ) exp( )u u   . 

Replacing ( )u  in Eq. (20) with the corresponding 

approximate solution ( )N u  and add perturbation 

terms ( )N u , we obtain 
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1

1 1

0

' ( ) ( 1) 4 ( )

3 ( ) 2exp(1 ) (21)

2 ( )
.

N N N

u

N

u

m

r N m r

r

u u u

t dt u

u a b

b a
 



   



    

   

  
  

 





 

Multiply Eq. (21) by  

2 ( )
,  1,  2, 2k

u a b
k N

b a


  
  

 
 

 then integrate the resulting equation over  

[a, b], we get: 

1

1 1

0

' ( ) ( 1) 4 ( ) 3 ( )

2 ( )

2 ( )
2exp(1 )

2 ( )
(22)

b u

N N N N

a u

k

b m

r N m r

ra

k

u u u t dt

u a b
du

b a

u a b
u

b a

u a b
du

b a



 





   



 
       
 

  
  

 

   
     

  

  
  

 

 



 

Solving Eq. (22) together with the initial condition 

(expressing in terms of shifted Gegenbauer 

polynomial or Jacobi polynomial), that's firstly, in 

terms of shifted Gegenbauer polynomial, we have: 

   

 0

1 2
(0) 1 1 (23)

! 2

r
N

r

r

r

r






  
   


  

To obtain the approximate solution N (u) of degree N. 

Table 1 and 2 shows the maximum errors at different 

values of N relative to the existing results in the 

literature. Figure 1a display the exact solution and its 

corresponding approximate solutions at various values 

of N while the errors graphs is display in Fig. 1. Fig. 2 

is the comparison of the errors. 

 

Table 1: Gegenbauer approximation: Maximum absolute errors for Example 1 at various values of N 

Issa et al. (2019) 3  2  1  N 
46.96 10 44.78 10 44.18 10  45.69 10 4 
78.19 10 77.89 10 77.98 10  78.07 10 8 
91.30 10 91.26 10 91.27 10  91.28 10 12 

Table 2: Jacobi approximation: Maximum absolute errors for Example 1 at various values of N 
5 5

( , )
2 2 ( )P u 

3 3
( , )
2 2 ( )P u 

1 1
( , )
2 2 ( )P u N 

44.78 10 44.18 10  45.69 10 4 
77.89 10 77.98 10  78.07 10 8 
91.26 10 91.27 10  91.28 10 12 

 
Fig. 1. Example 1: Approximate solutions (left-side) and its corresponding absolute errors (right-side) 

Example 2 

Consider the Volterra integro-differential equation in 

Issa & Salehi (2017); Biazar & Salehi (2016); Wazwaz 

(2011); Issa, Biazar, et al. (2022): 

0

'( ) ( ) 1 2 sin( ),  0 1, (0) 0.

u

u t dt u u u          

with exact solution ( ) cos( ).u u u   

Comparison of the maximum absolute errors at 

various values of N relative to the existing ones in the 

literature is shown in Table 3. We have the exact 

solution and its corresponding approximate solutions 

in Fig. 2.
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Table 3: Maximum absolute errors with Gegenbauer as approximating polynomial 

Biazar and Salahi (2016) Issa et al. (2022) 3  2  1  N 

32.30 10 48.12 10 
31.00 10 

43.69 10  
44.49 10 4 

81.38 10 107.49 10 
103.13 10 

108.36 10  
101.66 10 8 

158.09 10 169.40 10 
146.64 10 

159.55 10  
167.77 10 12 

 
Fig. 2. Example 2: Approximate solutions and its absolute errors with ( )NC u

and approximating polynomial 

   Example 3 

Considering the Volterra integro-differential equation 

Issa & Salehi (2017); Biazar & Salehi (2016); Wazwaz 

(2011); Issa, Biazar, et al. (2022): 

2

0

1
'( ) ( ) 1 exp( ) 0,

2

0 1,  (0) 0,

u

u t t dt u u u

u

      

   

  

with the exact solution ( ) 1 exp( ).u u    

Table 4 displays the maximum absolute errors at 

different values of N and   using Geqenbauer as 

approximating polynomial while Table 5 is the 

corresponding maximum absolute errors using Jacobi 

polynomial as approximation. Fig. 3 exhibit the graphs 

of the exact and the corresponding approximate 

solutions at various values of N and using Gegenbauer 

polynomial as approximating polynomial. 

 

 

 

Table 4: Maximum absolute errors using Gegenbauer as approximating polynomial 
Biazar and Salahi 

(2016) 

 
Issa et al. (2019) 3  2  1  N 

37.20 10  57.38 10 
51.88 10 

52.81 10  
51.78 10 4 

92.31 10  118.59 10 
92.95 10 

111.50 10  
111.16 10 8 

169.24 10  178.91 10 
175.11 10 

171.33 10  
172.22 10 12 

Table 5: Maximum absolute errors using Jacobi as approximating polynomial 
5 5

( , )
2 2 ( )P u 

3 3
( , )
2 2 ( )P u 

1 1
( , )
2 2 ( )P u N 

41.88 10 
52.81 10  

51.78 10 4 

92.95 10 
111.50 10  

111.16 10 8 

155.11 10 
171.33 10  

172.22 10 12 
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Fig. 3. Example 3: Approximate solutions and its absolute errors with ( )NC u and approximating polynomial 

Example 4 

Considering Fredholm-Volterra integro-differential 

equation (Issa & Salehi (2017); Biazar & Salehi 

(2016); Yalcinbas & Sezer (2000); Shahmorad (2005); 

Issa, Biazar, et al. (2022)): 
1

1

''( ) '( ) ( ) sin( )exp( ) ( )

exp( ) 2sin( ), 1 1, (0) 1,  '(0) 1,

u u u u u u t t dt

u u u



      

        

  

with the exact solution ( ) exp( )u u  . 

Table 6 shows the maximum errors at various values 

of N and  . Fig. 4 displays the exact solution and the 

approximate solution ( )N u  at different values of N 

and   using Gegenbauer as approximating 

polynomial.

 

Table 4: Maximum absolute errors using Gegenbauer as approximating polynomial 
Shahmorad (2005)  Issa et al. (2022) 3  2  1  N 

33.19 10  44.66 10 
41.30 10 

42.41 10  
42.18 10 5 

62.10 10  105.49 10 
106.85 10 

101.83 10  
104.61 10 10 

117.50 10  171.27 10 
174.42 10 

177.42 10  
189.10 10 15 

 

 
Fig. 4. Example 4: Approximate solutions and its absolute errors with ( )NC u

and approximating polynomial 

DISCUSSION OF RESULTS AND 

CONCLUSION 

Discussion of Results 

Table 1-6 depict maximum errors obtained for the four 

selected problems from the literature. It was observed 

that the proposed method is more effective and 

accurate compared to the existing ones, although it 

gives the same degree of accuracy when compare with 

Issa, Biazar, et al. (2022) but the proposed method is 

more robust and more effective than Issa, Biazar, et al. 

(2022) because the proposed method generalize the 

results of other orthogonal polynomials such as 

Legendre polynomial, second kind shifted Chebyshev 

polynomial and some other orthogonal polynomials. 

Moreover, the accuracy improves as values of N 

changes. Figures 1-4 are the exact solutions and the 

corresponding approximant at various values of N 

while 1b-4b are the errors graphs. 

Conclusion 

   In this paper, we propose a perturbed Galerkin 

method for solving integro-differential equations 

using shifted Gegenbauer and shifted Jacobi 

polynomials as approximating polynomials. We 

introduce 1m  perturbation terms into the integro-

differential equation, which is then transformed into a 

system of algebraic linear equations using the 

Galerkin method. The resulting system is solved to 

obtain the unknown coefficients. For experimentation, 

we use 1,  2, 3   for the shifted Gegenbauer 

polynomials ( ) ( )iC u  and 
1

2
   , 

3

2
    , 

5

2
    (with the same values for   and  ) for 

shifted Jacobi polynomial 
( , ) ( )iP u 

. The method is 

applied to selected problems from the literature, and 

the results are compared with existing solutions. The 

proposed method shows better accuracy compared to 

the Galerkin method, Tau method, and radial basis 

method, and agrees well with the perturbed Chebyshev 

Galerkin method. However, it is more robust and 

effective as it generates results using other orthogonal 

polynomials. In summary, the method is both more 

effective and accurate. In conclusion, the proposed 

method is more effective and accurate than existing 

methods. 
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