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INTRODUCTION
The notion of fixed point theory has gained a

lot of momentum recently in the area of
mathematical analysis and its applications. The
existence of a fixed point for a contractive-type
mapping in partially ordered metric spaces has
been recently worked on by several authors, Ran
and  Reurings  (2004), Bhaskar  and
Lakshmikantham (2006), Lakshmikantham and
Ciric (2009), Loung and Thuan (2011). After the
presentation of the earlier works in this sense,
research interest in this subject matter has
expanded significantly.

In order to ensure the existence and uniqueness of
a solution of periodic boundary value problems,
Bhaskar and Lakshmikantham (2006) proved the
existence and uniqueness of a coupled fixed point
in the setting of partially ordered metric spaces.
Consequently, so many researches has been done
on tripled fixed point, for its existence and
uniqueness, and also the analysis of fixed point
properties via mixed monotone mappings in a
complete metric spaces (Abbas, Aydi &
Karapinar, 2011; Aydi, Karapinar & Shatanawi,
2012; Aydi & Karapinar, 2012; Aydi, Karapimar
& Radenovic, 2013; Karapinar, Aydi & Mustafa,
2013).

The Mann iterative procedure is the earliest
known iterative procedures examined in linear
spaces except the most widely used Picard
iteration. Some of the most recent references on
Mann iteration can be found in (Dehaish, Khamsi
& Khan, 2013; Kim, 2019).

Recently, in the work of Choudhury and Kundu
(2016), the authors initiated the study of coupled
fixed point iteration by introducing a coupled
Mann iterative scheme and applied the same to the
context of Hilbert space of approximate coupled
fixed points of certain mappings. Coupled and
tripled fixed points research have become the
focus of interest in recent times, particularly for
their potential applications. Very recently, Kim
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(2020) extensively worked on a constructive
scheme for common coupled fixed point
problems in Hilbert space and based on this, our
aim is to generalize this work to tripled fixed point
for Mann pair iterative scheme in the context of
Hilbert space.
PRELIMINARIES

In this section, we will consider some
definitions that will be relevant in the course of
demonstrating our findings.
Definition 1 (Cheng & Ross, 2015) The
Parallelogram law states that for any vector k and
A in a Hilbert space H, we have

e + 2117 + Nl — 217 = 2[IxI? + 2]|AlI%.
Definition 2 (Kim, 2020) The Mann iteration is
as follows: Let A be a closed convex subset of a
Hilbert space H and T: A — A be a self-mapping.
Then for 6, € 4,
Ontr = (1 —1n)0n + 1,70, n=0.

where {n,} c (0,1) satisfying suitable control
conditions.

Definition 3 (Kim, 2020) For a non empty set X

and mappings ¥,Q: X* > X, (k,A) € X* is a

common couple fixed point of ¥ and Q, if

Y, ) =1 YLk) =1, Q) =k,

QA K) = A

The following contractive inequality conditions

are used on ¥ and Q which are subdivided into

two conditions.

Definition 4 (Kim, 2020) Let H be a Hilbert

Space and C a nonempty Closed convex subset of

H. Then ¥, Q: C? - C be any mappings.

(1) (¢,Q) satisfies  contractive  inequality
condition 1 if V k,4,6,,08, € C,

1 (re, ) — ¥(8y, 0> + [1Q(k, 1) —
Q(64,0)1> < Bi (Il — 61117 + |11 —

6, 11>) + Bo{(16, — (6, 61> + 116, —
P01, 017 (A + |l — Pk, DII* +
12— Q@ 117 + (Il — P 0, DI +
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11— Q@A + 116, —

P (61, 017 + 116, — Q(62,61)117)},

(2) (¥, Q) satisfies contractive inequality condition
Nifvk 6,0, €C,

123k, 1) — (61, 61
+ ¥ (4, 1) — Q(6,, 0017
< Bl — 64117
+ 112 = 6,11
+ B {(Il6; — (64,617
+ 16, — Q62,61 (1
+ e — QQe, DI?
+ 12 =P, 0)1?)
+ (Il — Qe DI
+12 =201
+ 116, — ¥ (61, 61
+ 116, — Q(6,,60)11)}

where f;, 8, > 0 and f, < 5

Definition 5 (Kim, 2020) Let H be a Hilbert space
and C a nonempty closed convex subset of H. Let
¥, Q: C? > C be a mapping. Also, let {x,} and
{A,.} be sequences in C. Then, the coupled Mann
pair iterative scheme is as follows:

Kn+1 = (1= )iy + 0P (icn, 42),

Anv1 = (1 =) An + 1 QA k), n 2 0,
Where 0 <n, <1, nZOandO<rlli_r)r010nn=6.

MAIN RESULTS
In order to show our main results, firstly we must
define some useful terms.
Definition 6 For a nonempty set X and mappings
ILY,Q: X3 > X, with (kx,Lu)eX® is a
common tripled fixed point of II, ¥ and Q, if
Ik, A, u) =k, Y(4u k) =2, Q(u,k, 1) =
u, Qe Ap) =x YA u,k) =11y x 1) =
u
Definition 7 Let H be a Hilbert space and C a
nonempty closed convex subset of H. Then,
I1,¥,Q: C3 - C be any mappings which satisfies
any of the following contractive inequality
conditions

(1) dL, ¥, Q) satisfies contractive inequality
condition 1 if V x, A, 1, 604,6,,65 € C,

IT1 (¢, A, 1) — T1(64, 6, 63) 11> +
I¥ (4, 1, 1) — (65,605, 0)11” +
|2, 1, 1) — (65, 64, 92)”2 < B1(llx -
61117 + 11— 6,117 + llu — 6511) +
Bo{(1161 — T1(64, 6,,05) 1> + 116, —
¥ (6,03, 00|17 + 1165 —
Q(65, 61, 0)11P)(1 + [l — T, 4, W |I* +
1A =P, 1N + I — Qo 1, DII?) +
(e = TG0 A WIZ + 12 = P4, w101 +
I —Qu, 16, DIIF) (A + 116, —
I1(64, 62, 8) 11> + 116, — ¥(6,, 63,0 1* +
165 — Q(63, 61,6113,

(2) 0L, ¥, Q) satisfies contractive
condition I1'if V x, A, u, 64, 0,,65 €

inequality

Definition 8 Let H be a Hilbert space and C a
nonempty closed convex subset of H. then, let
ILY,Q:C3—>C be a mapping. Also, let
{r,}, {1} and {u,,} be sequences in C. Then, the
tripled Mann pair iterative scheme is as follows:
Kni1 = (1 = nn)in + Nadl(kn, A, ),
Apr1 = (A=) + 1, ¥ At k), (1)
tni1 = (1 =)ty + 1002 (Un, K, Ay)
Where 0 <n,<1, n>0 ()
0<limn, =6 3)
Theorem 1 Let IT, ¥, Q : €3 — € be m such that
mappings define on a closed nonempty convex
subset C of a Hilbert space H, such that (I1, ¥, Q)
satisfies contractive inequality conditions I and I1.
Therefore, the tripled Mann pair iterative scheme
which is constructed in(1) — (3), where if is

7
T < 6 <1, and

converges to a common tripled fixed point of
IL Y, Q.
Proof. Let (kp, Ay, tn) = (1,4, 1) asn = oo.

convergent, it § satisfies

Iranian Journal of Optimization, 14(2), 93-100, June 2022

95



Adamariko Aniki /A Constructive Scheme...

192Gk, 4, 1) =¥ (64,65,05)|I? TG, 24, 1) — K 12

+ 19 (4, 1, 50) o [CESIGICYANERS)
— 2 2
+ ﬁlr(lg(z' i3'l9)1)” + nn(H(Ky /‘{i ,Ll) - n(KTll }ln: I'ln))”
e < 2(1 = n)2 MM, A4, 1) — iyl
- Q(93'91J92)” 2
2 + 27,7 M1, 2, )

< B1(llx — 641l 2
+ 12— 0,117 + llu = 6511%) — 0 A )] ®

2 3 Similarly,

+ B2{(116; — T1(64, 65, 63) |7

+ 116, — ¥ (65,63, 6,)|I?

+ 1165 — Q(63,64,6) 1) (1

+ [l — Qe A, WII?

+ 1A =¥, 1, 1) |I?

+ [l = O, 16, D) and
+ (Il — Qe 2, W12 192G 16, 2) = s 12

+ 12 = %@ poll? < 2(1 = 7,210 1, 1) — py 12
+ [l = T, 1, VNP (A + 20,2119k, K, 2)

+ 116, — T1(81, 65, 65)|I? — Q(ty, K, A2 (7)
+ 116, — (62, 83,0117 Employing condition I, (5), (6) and (7) in (4), we
+ 1165 — Q(83,64,6,) 1)} obtain;

MG, 2, ) = K12 + 1WA, 1) — A2

+ 1120 K, ) — pll?
< 2llknss — kll? + 2014041 — AlI?

+ 2|l tps1 — ull?

1WA, 1, 6) = Ay ll?

< 2(1 = 1) 2 1WA 1 1) = Agll?

+ 20,2 1P (A, 1, )

— YA, tn) Kn)llz (6)

Where B4, 8, > 0 with 8, < i

Contractive Inequality Condition |
On utilizing the parallelogram law, we obtain;

N (e, 2, 1) — Kc|?

+ 1WA, p, 1) = AlJ2

+ 12, x, 1) — ull?

= [ITT(k, &, 1) = Kpyq + Knyq — K||?
+ W, 1K) = Apgq + Ayr — Al
+ 100 1, 2) = pnr + tnsr — ull?
< 2|I1(k, A, 1) — Ky lI?

+ 2|lrep 41 — KlI?

+ 2P, p 6) = Apgall?

+ 2| A1 — A1

+ 21190, 16, 2) — i |I?

+ 2||#n+1

— ull? (4)

V k, A, € C. Since by (Kim, 2020),

96 |ranian Journal of Optimization, 14(2), 93-100, June 2022

+4(1 = 02Tk, A, ) — ke I?

+ 41,2 1T (e, 4, 1) — Ty, Ay, i) 11
+4(1 =)V, w1, 10) = A2

+ 40,2 1P, 1, 1) — W (A, i 1) 12
+4(1 = )2 100w, 16, A) — pyI?

+ 40,2190 16, ) — Qtn, Fen, A |I?
< 241 = kl1? + 20| Apq — AP

+ 2| g1 — pll?

+ 477n2(||H(K. A' .u) - H(Kn')‘n! .un)”2
+ W, 1, 1) = W (A, i, 1) |1

+ 120 1, ) = Qun, kn, A1)
+4(1 = 2200k, 4, 1) — xl|?

+ 2|l — K17

+4(1 = n)?[21W A, w1, 1) = AlI?

+ 214 = 4,117

+4(1 = 22190, k, 2) — pll?
+2]lu = pall?] 3
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< 2llknr — kll? + 201241 — All?
+ 2| ptps1 — .“”2
+ 41, [B1 (e — K |12
+ 14 = Al + 1l = pnll®)
+ BoA(llren — My, A, )11
+ |Mn - lp(An: HUn, Kn)llz
+ ”Aun - -Q(.un: Knﬂln)llz)(l
+ [l — MGk, A, 17
+ 14 =¥, 0)ll?
+llu — Qw1 D)
+ (Il — M(x, 4, WII?
+ A=Y@, 1 0l?
+llu— Qw1 DIH (A
+ Nl — Mkn, An, ) 1I?
+ 14 = W (A, i, 1) II?
+ ”.un - Q(.uw Kn, /111)”2)}]
+8(1 — 1) [T Gk, A, 1) — xll?
+ 1Y, 1) = A2
+ 120 1, ) = pll? + Nl — Ky |I?
+ ”A - Anllz + “.u - :unllz]

Since
”Kn - H(Kniln: .un)llz
L
=—|lk
ngo"
— Kpiall? €©))
”An - H(An: Un,y Kn)llz
-
ng o
— An4all? (10)
and

””n - Q(.un: Kn» An)llz
1
= 77_2 Il ptn, — lln+1||2 (11)

n
From (8), we have;

TG, 4, 1) = kell? + 1P (A, 1, 10) = AlJ?
+ 192G, 1, 1) — pll?
< 2llKn4r — x|I?
+ 2| Apgq — AlI?
+ 2|l tpsr — ull?
+8(1 — ) ?[IIM(x, 4, 1) — k||?
+ 1WA, 1, ) = A2
+ 19, 6, 1) = pll* + 1l = 1|17
+ 1A = 217 + Nl = pnlI?]

+ 41,° [ﬁ1(|lk — kenll?

+ 1A = 2112 + 1l = pall®)
1 2

+ B2y (len = Kyl
Mn

+ 140 — A |I?

+ lltn = pnsa 1) (2
+ e = Ik, 2, W17
+ 12 -¥@ull?

+llu = K, VI (1

1 2
+— (I — Kl
M

+ 140 = Ansa I

+ [lpn — Mn+1||2)>}] (12)

akingn — o in (12), by (3), we have;

IT(re, 4, 1) = Il + 1P (A, 1, 1) = AlJ?

+ 19, x, 1) — ull?

< 8(1 = &)[IINCk, 4, 1) — kI + 1P, u 1) = All?

+ 10 1, ) — ull?]

+46% Bl — (i, A, WII? + 1A = WA, , 1) ||?

+ [l = Qu, 1, DI}

= 4(2(1 — 8)% + B85 (1N, A, ) — xcl|?

+ 1Y, 1 x) — A7

+ 192, x, 2)

—ull® (13)

From g, < iand 0 <4 <1, we have;

2(1—8)2 4 6% = 2 — 48 = 28% + B, 62

<2—48+25+ B8
=2-(2-p)8
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7
4(2-B2)
(1—6)% + 6% =2—46 = 26% + ,62

<2—48+ 25+ B,6
=2-(2-p2)0
< &, we obtain;

Since < &, we obtain;

7
4(2-62)

1
2(1=6)% 4 p,6% < 7 (14)

Going by (13) and (14), we get;
T (ke A, 1) — kll? + [W(A, 1, 1) — A2
+ 10wk, ) —ull* =0
ITI(x, A, 1) — kl|I> = 0, [|¥(A, k) — Al>  and

Since

1QCu, x, 1) — ull?.

Therefore,

Ok, ,w) =k, Y4y k) =Aand Q(u, k, 1) = u
(15)

Contractive Inequality Condition Il

On using the parallelogram law, we have;
120k, 2, 1) — xll?
+ YA, p ) — 2012
+ [IT(p, 16, 2) — |2
= 11006, 4, 1) — Kny1 + Kngq — KlI?
+ WA, 1) = Angy + Angg — Al
+ 0, 16, 2) = tngs + pingr — I
< 2[1Q0¢ A, 1) = Knyall?
+ 2|len41 — kll?
+ 2%, 1, 1) — Apall?

+ 2| A1 — A1

+ 2|, 16, ) — i I?

+ 2||#n+1

— ull? (16)

V K, A u € C.since;
102G, A, 1) — K4 I?
= [|(1 = 9D Q0 4, 1) = 1)
+ 7 (2062, 1) = ¥ (. A 1))
< 2(1 = 12)?1100k, 4, 1) — KulI?
+ 2031190, A, 1)
— W(icn, A ) II? (17)

Similarly,
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1WA 1 k) = Anall

<2(1 = )? YA 1, ) — Al

+ 21z 1P (4, 1, 1)

- H(/lnr Un, Kn)llz (18)

and

T, 16, 2) = pyga II?

< 2(1 = )2, 1, A) — pll?

+ 204 1IM(w, k, A)

— o x, DI? (19)

Hence, using condition 1, (17), (18) and (19) in (16)
yields;
192G, 4, 1) — xll? + 1WA 1 6) — A2

+ I, 1, 2) = pl|?

< 2lkpe1 — klI? + 2| 241 — A2

+ 2| i1 — ull?

+4(1 — 1,219k, A, ) — KpI?

+ 4031100k, A, 1) — W (ip, A, tn) 12
+4(1 =) P, 1K) — A2

+ 477%||qJ(,1’M’ K) - H(An'ﬂn"cn)llz
+4(1 = )2, k, A) — pl|?

+ 4nz N, x, 2)

— Q@ 1, DI? (20)

< 2Ky — klI? + 201241 — All?

+ 2|pun+1 — ull?
+4(1 — 1) %211k, A, 1) — kI

+ 2l — Kpl?]
+4(1 —n)?[21¥ (4 1, ) — A2
+2[14 = 2,1°]
+4(1 — 1?1211, 1, 1) — pll?
+ 2l — pnll?]

+ 4'77121(”9(’(’ A, .u) - lp(Kn' /171: #n)”z

+ ”Lp(/l, K, K) - H(/lnf HUn, Kn)llz

+ M, k, 1)

— ¥ 1, D) (21)
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< 2llknsr — kll? + 204041 — A% + 2l eg — pll?
+8(1 — )21, A, 1) — kll?

+ WA w ) — AP + I, 6, 4) — pll?

+ e = 1 ll? + 2 = 2112 + e — pnll?]

+ 43 [B (Il — rall® + 112 = 2,117 + ll = pall®)
+ Bo{(llren, — Q(xcp, An, ﬂn)”z

+ |Mn - lIJ(/171' HUn, Kn)llz

+ it = Mtn, e, ADNP (A + e — Qx, 4, 112
+IA =¥ oll? + [l — T x, HIH(A

+ |l — Qe Ay 1 + 14 — W (A, i, 1)1

+ i — M, 10, A1)} (22)
nce,
e, — Q(rcn, An, .un)llz
1
= — |lien, = 14417 (23)
Nn
”/1n - lp(/lnrl"nr Kn)llz
1
=—l1
nao "
— Al (24)
Il ptn, — Ty, 16, An)llz
1
=—|lp
nao"
- .Un+1||2 (25)

Using (23), (24), (25) in (22), we have;

Taking n — oo. In (26) by (3), we have;

100k, 4, 10) — > + 1P (4, 1, 1) — |2

+ 10w, 1, 1) — pll?

< 8(1 = 8)?[llQlx, A, 1) — xll?

+ WA 1) — A1+ 1T, 1, A) — pll?]
+48%B{lle — QG 4, II? + 14 — P (4, u, 1)I?
+ |l = T, 16, DI}

= 4(2(1 - 6)* + £,6) (1A, 4, 1) — xlI?

+ WA 1 1) — A7

+ 1T, 1, 1)
—ull® (27)

. 1 7 .
Since £, < " and 2 —FD) < § <1, we obtain
2(1—8)? + B,6% <5 (28)

From (270 and (28), we have;
190G, 4,10 — k2 + 1WA, 1) = All?
+ 1T, 16, 2) — > = 0
Then,

”.Q(K',A,‘Ll) - KHZ =0, ”lp(/l,llx K) - /1”2 =0
and [ITI(y, &, 2) — pll* = 0.
Therefore,
Q(re, Apw) =k, Y4y k) =2 and I(u, k,A) =
Uu.
Then, by Conditions | and Il, (x,A,u) is a
common tripled fixed point of IT, ¥ and . Hence,
this completes the proof.
CONCLUSION

This work has shown that tripled Mann iterative
scheme can be applied to resolve the problem of
common tripled fixed points of certain mappings.
Hence, the work can further be extended to fixed
point theory via mixed monotone mappings.
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