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Accept Date: 16 August 2022          The purpose of this paper is to present an efficient numerical method 

for finding numerical solutions Fokker-Planck-Kolmogorov time-

fractional differential equations. The Haar Wave was the first to be 

introduced. The Fokker-Planck-Kolmogorov time-fractional differential 

equation is converted to the linear equation using the Haar wavelet 

operation matrix in this technique. This method has the advantage of 

being simple to solve. The simulation was carried out using MATLAB 

software. Finally, the proposed strategy was used to solve certain 

problems. The results revealed that the suggested numerical method is 

highly accurate and effective when used to Fokker-Planck-Kolmogorov 

time fraction differential equations. The results for some numerical 

examples are documented in table and graph form to elaborate on the 

efficiency and precision of the suggested method. Moreover, for the 

convergence of the proposed technique, inequality is derived in the 

context of error analysis. 
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INTRODUCTION   

     In recent decades, the use of fractional 

differential equations in physical systems has 

received a lot of attention. This type of equation 

can be used to simulate a variety of physical 

phenomena, such as damping laws and diffusion 

processes. Electromagnets, electrochemistry, 

arterial science, and fragment theory are some of 

the other uses. As a result, there has recently been 

a greater focus on the development of more 

effective and better solution methods for 

determining an approximate or exact, analytical 

or numerical answer to these types of equations 

(Momani and Odibat, 2006; Jafari and daftardar-

Gejji, 2006). Some strategies for solving 

fractional order partial differential equations have 

been proposed to attain this goal. The Adomian 

decomposition technique, the analysis method, 

the hematopoietic disorder, the Wardian 

repetition method, and the fractional partial 

differential conversion method are the most often 

used approaches (Yulita Molliq etal, 2009; 

Fadime Dal, 2009; Odibat and Momani, 2009; 

Kurulay etal, 2010) However, only a few 

approaches for numerically solving fractional 

partial differential equations have been proposed. 

These are as follows: By developing Riemann-

Liouville derivatives, Podlebani (1999) employed 

the Laplace transform method to solve fractional 

differential equations numerically. He also 

established a generalized definition of the Green 

function for partial differential equations of 

fractions with constant coefficients. Surprisingly, 

the wavelet method has gotten so little attention 

among the different methods of solution. The 

wavelet approach has only been used to solve 

fractional equations in a few articles. The wavelet 

approach has only been used to solve fractional 

order differential equations in a few 

studies(Yulian etal, 2011; Lepik, 2009 ; Wu, 

2009; Li and Zhao, 2010).Wave, Chebyshev, 

Haar, and sine wavelet fractional were employed 

for this purpose(Chen etal, 1997; Shih etal,1986; 

Paraskevopoulos etal,1985). To convert 

differential equations into a collection of 

algebraic equations, a variety of orthogonal 

fractional can be used. Its benefits include simple, 

computer-based calculations and a wide range of 

applications, as well as the ability to solve 

differential equations with integer and whole 

orders. The utilization of wavelet theory is the 

most recent advancement in applied 

mathematics(Meerschaert and Tadjeran, 2006; 

Jumarie, 2006;  Jumarie, 2007) For solving 

various practical problems in seismology, signal 

processing in systems, telecommunications, 

computer image and vision processing, 

elementary particles and quantum mechanics, 

approximation theory and locating, 

criminologists, genetics, and medicine, the new 

wavelet theory and wave approximation models 

have replaced classical theories, including the 

classical Fourier theory method. In reality, 

wavelet analysis as a numerical tool may 

substantially reduce the difficulty of large-scale 

computations, such as the Fourier transform, by 

compressing dense matrices into thin ones that 

can be calculated rapidly by gently altering the 

coefficient. Fractional differential equations are 

numerically solved using the Wavelet family. The 

orthogonally of the scale and wavelet fractional, 

the orthogonally of the subspaces formed by the 

scale and wavelet fractional, the compactness of 

the scale and wavelet fractional, and the 

symmetry of the scale function could all be 

grounds for selecting this wavelet. In statistical 

mechanics, the Fokker-Planck equation is a 

partial derivative differential equation that 

represents the temporal evolution of the density 

probability velocity function for a particle 

subjected to drag force and random forces. 

Brownian motion is described by this equation, 

which can be generalized to include observations 

other than velocity (Spencer etal, 1993; Floris, 

2013). Previous research has presented a method 

for solving two-dimensional Fokker-Planck 

equations for non-hybrid continuous systems 

using the finite difference approach, and the 

stability and accuracy of the proposed method 

have been investigated(Zorzano etal, 1999; Bect 
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etal,2006)  Ismail et al. (2020) in a study showed 

that obtained results by Green-Haar method is 

better than the conventional other method. The 

fractional derivative of Lagrange polynomial is a 

big hurdle in classical differential quadrature 

method. To overcome this problem, Saeed and 

Umair (2019) represent the Lagrange polynomial 

in terms of shifted Legendre polynomial. They 

construct a transformation matrix which 

transforms the Lagrange polynomial into shifted 

Legendre polynomial of arbitrary order. Then, 

they obtain the new weighting coefficients 

matrices for space fractional derivatives by 

shifted Legendre polynomials and use these in 

conversion of a non-linear fractional partial 

differential equation into a system of fractional 

ordinary differential equations. The Haar wavelet 

method is utilized in this study to solve the 

Fokker-Planck-Kolmogorov time-fractional 

differential equations in the following way(Hejazi 

etal, 2020):  

𝐷𝑡
𝛼𝑢 −

1

2
𝜎2𝑥2 𝜕2𝑢

𝜕𝑥2 + (𝛽 − 2𝜎2)𝑥
𝜕𝑢

𝜕𝑥
+ (𝛽 −

𝜎2)𝑢 = 𝑅(𝑥, 𝑡)                             (1) 

Initial conditions: 

u(0, x) = 𝑓0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑓1(𝑥),    0 ≤ 𝑥 ≤

1   ,   1 < 𝛼 < 2   

Boundary conditions:  

u(𝑡, 0) = 𝑔0(𝑡),    𝑢𝑡(𝑡, 1) = 𝑔0(𝑡),    0 ≤ 𝑡 ≤ 1 

𝑅(𝑥, 𝑡) is the right side function of the equation, 

which is given for each equation. 

PRELIMINARIES 

Riemann-Liouville Integral and fractional 

derivative  

Suppose that 𝑛 > 0 and fare continuous segments 

on the interval (𝛼, ∞) and are integrable on any 

finite sub-interval(𝛼, ∞). Then, the fractional 

Riemann-Liouville Integral f for t>a of order n is 

defined as  

a𝐷𝑡
−𝑛𝑓(𝑡) =  

1

(𝑛)
∫ (𝑡 − 𝑇)𝑛−1𝑡

𝛼
𝑓(𝑇)𝑑𝑇,     (2)                                                 

Which can also be displayed with the symbols Ia
n 

or𝐽a
n . In addition, if f is continuous on [𝑎, 𝑡] , then 

lim
𝑛→𝛼

Dt
−n 𝑓(𝑡) = 𝑓(𝑡) . Furthermore, the 

following equation can be true: 

a𝐷𝑡
0𝑓(𝑡) =  𝑓(𝑡)                                                       (3) 

When𝑛 − 𝑚 ∈ 𝑁 , the definition of (1-1) is 

compatible−𝑚 with -fold integral as follows: 

a𝐷𝑡
−𝑚𝑓(𝑡) = ∫ 𝑑𝑇1

𝑡

𝛼
∫ 𝑑𝑇2 … ∫ 𝑓(𝑇𝑚)𝑑𝑇𝑚

𝑇𝑚−1

𝛼
 

𝑇1

𝛼  

=
1

(𝑚−1)!
∫ (𝑡 − 𝑇)𝑚−1𝑓(𝑇)𝑑𝑇    𝑚 ∈

𝑡

𝛼

𝑁                                                            (4) 

Regarding 𝑚 ≥ 0 and 𝑣 > −1, the integral from 

the defined real order in Eq. 2 has the following 

properties: 

𝐼.𝛼 𝐷𝑡
−𝑛(𝑡 − 𝛼)𝑣 =

(𝑣+1)

(𝑛+𝑣+1)
(𝑡 − 𝛼)𝑛+𝑣  

𝐼𝐼.𝛼 𝐷𝑡
−𝑛𝑘 =

𝑘

(𝑛+1)
(𝑡 − 𝛼)𝑛,  

If 𝑓(𝑡) for 𝑡 ≥ 𝑎 is continuous, then: 

𝐼𝐼𝐼.𝛼 𝐷𝑡
−𝑛(𝛼𝐷𝑡

−𝑚𝑓(𝑡)) =𝛼 𝐷𝑡
−𝑚(𝛼𝐷𝑡

−𝑛f(t))

 =𝛼 𝐷𝑡
−𝑛−𝑚f(t). 

Caputo fractional derivative 

Caputo defined a derivative operator in 1976 that 

differs from previous derivatives in terms of 

characteristics. The symbol of this operator is as 

a𝐷∗
𝑛

  and is defined as: 

a𝐷∗
𝑛𝑓(𝑡) =

1

(𝑚−𝑛)
∫ (𝑡 −

𝑡

𝛼

𝑇)𝑚−𝑛−1𝑓(𝑚)(𝑇)𝑑𝑇       (𝑚 − 1 < 𝑛 ≤ 𝑚) (5)              

= 𝛼𝐷𝑡
−(𝑚−𝑛)

𝑓(𝑚)(𝑡),  
On the conditions that 𝑛 → 𝑚 are exercised on the 

f function, then the Caputo derivative transforms 

to the mth order derivative of the f(t) function. 

Suppose that  0 ≤ 𝑚 − 1 < 𝑛 < 𝑚 and function 

f(t) have m+1 continuous bounded derivative in 

the interval[𝑎, 𝑡], then by partial integration for 

each 𝑡 > 𝑎 per 𝑚 = 1,2, …, we have: 

lim
𝑛→𝑚

𝛼 𝐷∗
𝑛𝑓(𝑡) = lim

n→m
(

f(m)(𝛼)(t−𝛼)m−n

(m−n+1)
∫ (t −

t

𝛼

T)m−nf (m+1)(T)dT)  

= 𝑓(𝑚)(𝛼) + ∫ 𝑓(𝑚+1)(𝑇)𝑑𝑇 = 𝑓(𝑚)(𝑡).
𝑡

𝛼
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RESEARCH METHOD 

Orthogonal system of block-pulse and 

orthogonal system of Haar:  
A set m is a member of the block-pulse fractional 

on the interval [0.1) is defined as follows: 

𝑏𝑖(𝑡) = {
1           

𝑖

𝑚
≤ 𝑡 ≤

𝑖+1

𝑚
  

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
                (6)                                       

A set of m members of theℎ𝑖(𝑡) Haar function on 

the interval [0.1) is defined as follows: 

h0(t) =
1

√m
                                     (7)    

ℎ𝑖(𝑡) =
1

√𝑚
= {

2
𝑗

2              𝑥𝜖[𝜉1, 𝜉2)  

−2
𝑗

2             𝑥𝜖[𝜉2, 𝜉3]    
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

  (8) 

where𝜉1 =
𝑘−1

𝑚
  ، 𝜉2 =

𝑘−0.5

𝑚
  ، 𝜉3 =

𝑘

𝑚
  ،𝑚 = 2𝑗 

and j=0,1,2,3 are the wavelet surface index, 1 ≤
𝑘 ≤ 2𝑗 represents the transfer parameters and i 

index is obtained from the 𝑖 = 2𝑗 + 𝑘 formula. 

Then, the matrices of Haar wavelets coefficients 

for different J are defined. 

 

 
                   

Fig. 1. Haar wavelet diagrams for j=2 in the interval [0,1] 

Approximation of fractional using Haar 

wavelet: 

The function 𝑓 (𝑥) ∈  𝐿2 [0,1] in the interval 

[0,1] using the Haar wavelet can be as 

follows(Razzaghi etal,2000): 

𝑓 (𝑡 ) = ∑ 𝑐𝑖
∞
𝑖=0 ℎ𝑖(𝑡)        ,      𝑐𝑖 =

∫ 𝑓(𝑡)
1

0
ℎ𝑖(𝑡)𝑑𝑡                                   (9) 

𝑓 (𝑡 ) = ∑ 𝑐𝑖
𝑚−1
𝑖=0 ℎ𝑖(𝑡) = 𝐶𝑚

𝑇 ℎ𝑚(𝑡      (10)                                                  

𝐶𝑚 = [𝑐0, 𝑐1, … , 𝑐𝑚−1]𝑇               (11)                                                              

ℎ𝑚(𝑡) = [ℎ0(𝑡), ℎ1(𝑡), … , ℎ𝑚−1]𝑇  (12) 

Where the vector 𝐶𝑚is the coefficient and ℎ𝑚(𝑡)s 

the vector of the Haar function.  In the following, 

the form of the matrix of wavelet coefficients for 

different J is introduced. For this purpose, the 

interval [0,1] is divided as follows: 

t𝑙 =
2𝑙−1

2𝑀
      ,         𝑙 = 1,2,3, … , 𝑀        (13) 

Now we write equation (10) in the following 

form: 

𝑓 = 𝑐0ℎ0
⃗⃗⃗⃗⃗ + 𝑐1ℎ1

⃗⃗⃗⃗⃗ + ⋯ + 𝑐𝑚−1ℎ𝑚−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗                (14)            

And the discrete form of the continuous function 

f(t) is as follows: 

𝑓 
⃗⃗⃗

𝑇
= [f0, f1, … , fm−1]                        (15)           

Discrete values of 𝑓𝑖 are obtained by means of 

continuous curves f(t) at intervals of 
1

𝑚
 . 
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Similarly, the discrete form of Haar wave bases is 

as follows: 

ℎ0 
⃗⃗⃗⃗⃗⃗

𝑇
= [h0,0, h0,1, … , h0,m−1]   (16)                               

ℎ1 
⃗⃗⃗⃗⃗⃗

𝑇
= [h1,0, h1,1, … , h1,m−1]               

(17)                                

                     ⋮    

ℎ𝑚−1 
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑇
= [ℎ𝑚−1,0, ℎ𝑚−1,1, … , ℎ𝑚−1,𝑚−1]    (18)           

Therefore, the Haar wavelet matrix with 

dimension m is defined as follows: 

𝐻𝑚×𝑚 = [

h0,0 ⋯ h0,m−1

⋮ ⋱ ⋮
hm−1,0 ⋯ hm−1,m−1

]      (19) 

𝐻𝑚×𝑚 = [ℎ𝑚 (
1

2𝑚
) , ℎ𝑚 (

3

2𝑚
) , … , ℎ𝑚 (

2𝑚−1

2𝑚
)]     

(20) 

The function f (x,t) on the interval [0,1] × [0,1] 

can be written using the Haar wavelet as follows 

(wu,2009): 

𝑓(𝑥, 𝑡 ) = ∑ ∑ 𝑐𝑖,𝑗
𝑚−1
𝑗=0 ℎ𝑖(𝑥)𝑚−1

𝑖=0 ℎ𝑗(𝑡)    (21)     

𝑐𝑖,𝑗 =< ℎ𝑖(𝑥), < 𝑓(𝑥, 𝑡), ℎ(𝑡)𝑗 >> =

∫ 𝑓(𝑥, 𝑡)
1

0
ℎ𝑖(𝑥)𝑑𝑥. ∫ 𝑓(𝑥, 𝑡)

1

0
ℎ𝑗(𝑡)dt     (22) 

𝐹 (𝑥, 𝑡 ) = 𝐻𝑚×𝑚
𝑇 𝐶𝑚×𝑚

 𝐻𝑚×𝑚(𝑡)  (23) 

𝐶𝑚×𝑚 =

[

𝑐0,0 ⋯ 𝑐0,𝑚−1

⋮ ⋱ ⋮
𝑐𝑚−1,0 ⋯ 𝑐𝑚−1,𝑚−1

]       (24)                                 

                                

Operational matrix of integral fraction of 

Haar wavelet: 

 The Haar fractional are fragmentary, fixed, they 

can be extended into m sentences of block-pulse 

fractional (Li and Zhao, 2010) and so we have: 

ℎ𝑚(𝑡) =
𝐻𝑚×𝑚𝐵𝑚

 (𝑡)    (25)                                                        
                                           

Where: 

𝐵𝑚(𝑡) =
[𝑏0(𝑡), 𝑏1(𝑡), … , 𝑏𝑚−1(𝑡)]𝑇    (26)                                
                       

𝐻𝑚×𝑚 =

[ℎ𝑚 (
1

2𝑚
) , ℎ𝑚 (

3

2𝑚
) , … , ℎ𝑚 (

2m−1

2m
)]   (27)                   

                       

The fractional integral operating matrix of a block 

box is as follows(Razzaghi etal, 2000): 

(𝐼𝛼𝐵𝑚)(𝑡) = 𝐹𝛼
𝑚×𝑚𝐵𝑚

 (𝑡)        (28) 

 

𝐹𝛼 =
1

𝑚𝛼Γ(𝛼 + 2)
= 

 

                    

                                                        

𝜉𝑘 = (𝑘 + 1)𝛼+1 − 2𝑘𝛼+1 + (𝑘 − 1)𝛼+1 , 𝑘 =
1, .2, … , 𝑚 − 1   

ow suppose that: (𝐼𝛼ℎ𝑚)(𝑡) = 𝑃𝛼
𝑚×𝑚ℎ𝑚

 (𝑡), 

then the matrix 𝑃𝛼
𝑚×𝑚is the The fractional 

integral operating matrix of a Haar wavelet. From 

relations (25) and (28) we have: 

(𝐼𝛼ℎ𝑚)(𝑡) ≈ (𝐼𝛼𝐻𝑚×𝑚𝐵𝑚
 )(𝑡) =

𝐻𝑚×𝑚(𝐼𝛼𝐵𝑚×𝑚)(𝑡) = 𝐻𝑚×𝑚𝐹𝛼𝐵𝑚(𝑡)       (29) 

𝑃𝑚×𝑚
𝛼 ℎ𝑚(𝑡) = 𝑃𝑚×𝑚

𝛼 𝐻𝑚×𝑚𝐵𝑚
 (𝑡)

= 𝐻𝑚×𝑚𝐹 
𝛼𝐵𝑚

 (𝑡) 

Finally, the fractional integral operating matrix of 

a Haar wavelet will be as follows: 

Pm×m
α

 
= Hm×mF 

αHm×m
−1     (30) 

THE WAVELETS METHOD FOR 

SOLVING DIFFERENTIONAL 

EQUATIONS OF FPKKER-PLANCK-

KOLMOGROV FRACTIONAL ORDER 

   For the approximate solution of the Fokker-

Planck-Kolmogorov fractional differential 

equation, the Haar wavelet method is explained as 

follows: 

Dt
αu −

1

2
σ2x2 ∂2u

∂x2 + (β − 2σ2)x
∂u

∂x
+ (β −

σ2)u = R(x, t)                    (31) 

Initial conditions:  

u(0, x) = 𝑓0(𝑥),

𝑢𝑡(0, 𝑥) = 𝑓1(𝑥),    0 ≤ 𝑥 ≤ 1 
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Boundary conditions:  

u(𝑡, 0) = 𝑔0(𝑡),    𝑢𝑡(𝑡, 1) = 𝑔0(𝑡),    0 ≤ 𝑡 ≤ 1 
 𝑅(𝑥, 𝑡) Is the right-side function of the equation 

given for each equation. 

Consider: 
∂4u(x,t)

∂x2 ∂t2 ≈

Hm×m
T (x)Cm×m

 Hm×m(t)   (32)                             
       

By twice integrating with t from both sides of Eq. 

32 we have: 

   
∂2u(x,t)

∂x2
≈ f0

″(x) + tf1
″(x) +

Hm×m
T (x)Cm×m

 (I2Hm×m(t))                      (33) 

 

By twice integrating with x from both sides of 

equation (33) we have: 

 
∂ u(t,x)

∂x =
∂ u(t,x)

∂x |x=0 + f0
′(x) + f0

′(0) +

t(f1
′(x)−f1

′(0)) +  

(IHm×m
T (x))TCm×m

 (I2Hm×m(t))                                   

                                  (34) u(t, x) ≈ u(t, 0) +

x
∂ u(t,x)

∂x |x=0 + (f0(x) − f0(0) − xf0
′(0)) +

t(f1(x) − f1(0) − xf1
′(0)) +

(I2Hm×m
 (x))

T
Cm×m

 (I2Hm×m(t))     (35)                    

                        
Now by applying the boundary conditions and 

putting x = 1, we will have: 

 

u(t, 1) ≈ u(t, 0) + x
∂ u(t,x)

∂x |x=0 + (f0(1) −

f0(0) − xf0
′(0)) + t(f1(1) − f1(0) − f1

′(0)) +

(I2Hm×m
 (1))

T
Cm×m

 (I2Hm×m(t))  (36)                      

                        
Therefor: 

 
∂ u(t,x)

∂x 
|x=0 ≈ g1(t) − g0(t) − (f0(1) − f0(0) −

f0
′(0)) − t(f1(1) − f1(0) − f1

′(0)) −

(I2Hm×m
 (1))

T
Cm×m

 (I2Hm×m(t)) =
K(t)                                              (37) 

 

Now by placing K(t) in Eq. 35 we have: 

 

u(t, x) ≈ g0(t) + xK(t) + (f0(x) − f0(0) −

xf0
′(0)) + t(f1(x) − f1(0) − xf1

′(0)) +

(I2Hm×m
 (x))

T
Cm×m

 (I2Hm×m(t))                                

                        (38) 

Now we need the fraction derivative u (t, x) 

according to Equation (31). From Equation (37) 

we derive the order fraction α with respect to t: 

Dt
αu(t, x) ≈ Dt

αg0(t) + xDt
αK(t) +

(I2Hm×m
 (x))

T
Cm×m

 (I2−αHm×m(t))           (39) 

And we will have: 

Dt
αK(t) = Dt

αg1(t)−Dt
αg0(t) −

(I2Hm×m
 (1))

T
Cm×m

 (I2−αHm×m(t))      (40)      

         
Now convert all approximations (≈) to equals (=), 

and place Eq. (33), (34), (38) and (39) in Eq. 31, 

the following linear equation is obtained: 

 

Dt
αg0(tj) + xiDt

α
 
K(tj) +

(I2Hm×m
 (xi))

T
Cm×m

 (I2−αHm×m(t)) −
1

2
σ2xi

2(f0
″(xi) + tjf1

″(xi) +

HT
m×m
 

(xi)Cm×m
 (H2

m×m
(tj))) + (β −

2σ2)xi(K(tj) + f0
′(xi) − f0

′(0) +

tj(f1
′(xi)−f1

′(0)) +

(IH 
m×m
 (xi))TCm×m

 (H2
m×m

(tj))) + (β −

σ2)(g0(tj) + xiK(tj) + (f0(xi) − f0(0) −

xif0
′(0)) + tj(f1(xi) − f1(0) − xif1

′(0)) +

(I2Hm×m
 (xi))

T
Cm×m

 (I2Hm×m(tj)) =

R(xi, tj)                    (41) 

CONVERGENCE ANALYSIS 

   In this part, we derive inequality in the context 

of upper bound, which shows the convergence of 

Haar Wavelet for Fokker-Planck-Kolmogorov 

Time Fractional Differential Equations. 

Theorem5.1:Suppose that the function 
𝜕 𝑢(𝑥,𝑡)

𝜕𝑥   is 

continuous and bounded on (0,1) × (0,1) then:  

∃𝑀 > 0,   ∀𝑥, 𝑡𝜖(0,1) × (0,1), |
𝜕 𝑢(𝑥,𝑡)

𝜕𝑥  
| ≤ 𝑀                                    

(42) 

And also assume that 𝑢𝑚(𝑥, 𝑡) is an 

approximation of u(x,t), then we 

have(Wang,2014): 

𝑢(𝑥, 𝑡 ) = ∑ ∑ 𝑐𝑛𝑙
∞
𝑙=0 ℎ𝑛(𝑥)∞

𝑛=0 ℎ𝑙(𝑡) (43)                                                    
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Therefore, we have: 

𝑢(𝑥, 𝑡 ) − 𝑢𝑚(𝑥, 𝑡)  =
∑ ∑ 𝑐𝑛𝑙

∞
𝑙=𝑚 ℎ𝑛(𝑥)∞

𝑛=𝑚 ℎ𝑙(𝑡) =
∑ ∑ 𝑐𝑛𝑙

∞
𝑙=2𝑝+1 ℎ𝑛(𝑥)∞

𝑛=2𝑝+1 ℎ𝑙(𝑡)  (44) 

Theorem5.2: Assume that 𝑢𝑚(𝑥, 𝑡) is an 

approximation of u(x,t) Then we have: 

‖𝑢(𝑥, 𝑡 ) − 𝑢𝑚(𝑥, 𝑡)‖𝐸 ≤
𝑀

√3𝑚3   
  (45)                                                       

Where:   

‖𝑢(𝑥, 𝑡 )‖𝐸 = (∫ ∫ 𝑢2(𝑥, 𝑡)𝑑𝑥𝑑𝑡
1

0

1

0
)

1

2   (46) 

Proof. Consider:       

∫ ℎ𝑛(𝑥)ℎ𝑛.(𝑥) = {
1

𝑚
,      𝑛 = 𝑛.

0,        𝑛 ≠ 𝑛.

1

0
    (47)                                                                              

Therefore: 

‖𝑢(𝑥, 𝑡 ) − 𝑢𝑚(𝑥, 𝑡)‖𝐸 = (∫ ∫ (𝑢(𝑥, 𝑡 ) −
1

0

1

0

𝑢𝑚(𝑥, 𝑡))2𝑑𝑥𝑑𝑡 =

∑ ∑ 𝑐𝑛𝑙
∞
𝑙=2𝑝+1 ∑ ∑ 𝑐𝑛𝑙

∞
𝑙.=2𝑝+1 𝑐𝑛.𝑙. (∫ ℎ𝑛(𝑥)ℎ𝑛.(𝑥)𝑑𝑥

1

0
) (∫ ℎ𝑛(𝑡)ℎ𝑛.(𝑡)𝑑𝑡

1

0
) =∞

𝑛.=2𝑝+1
∞
𝑛=2𝑝+1

1

𝑚
 
2

∑ ∑  ∞
𝑙=2𝑝+1 𝑐𝑛𝑙

2∞
𝑛=2𝑝+1         (48)                                                                                               

Where: 

𝑐𝑛𝑙 =< ℎ𝑛(𝑥), < 𝑢(𝑥, 𝑡), ℎ𝑙(𝑡) >>  (49)      

𝑢(𝑥, 𝑡), ℎ𝑙(𝑡) >= ∫ 𝑢(𝑥, 𝑡), ℎ𝑙(𝑡)𝑑𝑡 =
1

0

2
𝑗
2

√𝑚
(∫ 𝑢(𝑥, 𝑡)𝑑𝑡 − ∫ 𝑢(𝑥, 𝑡)𝑑𝑡

𝑘2−𝑗

(𝑘−
1

2
)2−𝑗

(𝑘−
1

2
)2−𝑗

(𝑘−1)2−𝑗 )                       

(50) 

Using the mean value theorem: 

∃𝑡1, 𝑡2 ∶  (𝑘 − 1)2−𝑗 ≤ 𝑡1 ≤ (𝑘 −
1

2
) 2−𝑗                           

(51) 

(𝑘 −
1

2
) 2−𝑗 ≤ 𝑡2 ≤ 𝑘2−𝑗        (52)                                 

< 𝑢(𝑥, 𝑡), ℎ𝑙(𝑡) >=
2

𝑗
2

√𝑚
{[(𝑘 − 1)2−𝑗 − (𝑘 −

1

2
) 2−𝑗] 𝑢(𝑥, 𝑡1) − [𝑘2−𝑗 − (𝑘 −

1

2
) 2−𝑗] 𝑢(𝑥, 𝑡2)} =

2
−𝑗
2

−1

√𝑚
(𝑢(𝑥, 𝑡1) − 𝑢(𝑥, 𝑡2))                 

(53) 

Therefore: 

𝑐𝑛𝑙 =< ℎ𝑛(𝑥),
2

−𝑗
2

−1

√𝑚
(𝑢(𝑥, 𝑡1) − 𝑢(𝑥, 𝑡2)) >=

2
−𝑗
2

−1

√𝑚
∫ ℎ𝑛(𝑡)(𝑢(𝑥, 𝑡1) − 𝑢(𝑥, 𝑡2))𝑑𝑡

1

0
  

=
2

−𝑗
2

−1

√𝑚
(∫ ℎ𝑛(𝑡)(𝑢(𝑥, 𝑡1) −

1

0

∫ ℎ𝑛(𝑡)𝑢(𝑥, 𝑡2))𝑑𝑡
1

0
  

=
1

2𝑚
(∫ 𝑢(𝑥, 𝑡1)𝑑𝑡 + ∫ 𝑢(𝑥, 𝑡1) −

𝑘2−𝑗

(𝑘−
1

2
)2−𝑗

(𝑘−
1

2
)2−𝑗

(𝑘−1)2−𝑗

∫ 𝑢(𝑥, 𝑡2)𝑑𝑡 − ∫ 𝑢(𝑥, 𝑡2)
𝑘2−𝑗

(𝑘−
1

2
)2−𝑗

(𝑘−
1

2
)2−𝑗

(𝑘−1)2−𝑗 𝑑𝑡)  

Using the mean value theorem: 

∃𝑥1, 𝑥2, 𝑥3, 𝑥4  ∶ (𝑘 − 1)2−𝑗 ≤ 𝑥1, 𝑥3 ≤ (𝑘 −

1

2
) 2−𝑗  

(𝑘 −
1

2
) 2−𝑗 ≤ 𝑥2, 𝑥4 ≤ 𝑘2−𝑗  

Where: 

𝑐𝑛𝑙 =
1

2𝑚
{[(𝑘 −

1

2
) 2−𝑗 − (𝑘 −

1)2−𝑗] 𝑢(𝑥1, 𝑡1) − [𝑘2−𝑗 − (𝑘 −

1

2
) 2−𝑗] 𝑢(𝑥2, 𝑡1) − [(𝑘 −

1

2
) 2−𝑗 − (𝑘 −

1)2−𝑗] 𝑢(𝑥3, 𝑡2) + [𝑘2−𝑗 − (𝑘 −

1

2
) 2−𝑗] 𝑢(𝑥4, 𝑡2)} =  

=
1

22𝑗+4𝑚2
[(𝑢(𝑥1, 𝑡1) − 𝑢(𝑥2, 𝑡1)) −

(𝑢(𝑥3, 𝑡2) − 𝑢(𝑥4, 𝑡2))]              (54) 

Therefore: 

𝑐𝑛𝑙
2 =

1

2𝑚
[(𝑢(𝑥1, 𝑡1) − 𝑢(𝑥2, 𝑡1)) −

(𝑢(𝑥3, 𝑡2) − 𝑢(𝑥4, 𝑡2))]2            (55) 

herefore, using the mean value theorem: 
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∃𝜉1, 𝜉2  ∶    𝑥1 ≤ 𝜉1 ≤ 𝑥2 , 𝑥3 ≤ 𝜉2 ≤ 𝑥3  

Where: 

𝑐𝑛𝑙
2 =

1

22𝑗+4𝑚2
[(𝑥1 − 𝑥2)

𝜕 𝑢(𝜉1,𝑡1)

𝜕𝑥 
− (𝑥4 −

𝑥3)
𝜕 𝑢(𝜉2,𝑡2)

𝜕𝑥 ]2 ≤  

1

22𝑗+4𝑚2 [(𝑥1 − 𝑥2)2 [
𝜕 𝑢(𝜉1,𝑡1)

𝜕𝑥 ]
2

+ (𝑥4 −

𝑥3)2 [
𝜕 𝑢(𝜉2,𝑡2)

𝜕𝑥 ]
2

]
2

+  

2(𝑥1 − 𝑥2)(𝑥4 − 𝑥3) |
𝜕 𝑢(𝜉1,𝑡1)

𝜕𝑥 | |
𝜕 𝑢(𝜉2,𝑡2)

𝜕𝑥 |   (56)                

Therefore: 

𝑢𝑛𝑙
2 =

4𝑀2

24𝑗+4𝑚2 =
𝑀2

24𝑗+4𝑚2  

Therefore: 

‖𝑢(𝑥, 𝑡 ) − 𝑢𝑚(𝑥, 𝑡)‖𝐸 =
1

𝑚2
∑ ∑ 𝑐𝑛𝑙

2 =∞
𝑙=2𝑝+1

∞
𝑛=2𝑝+1

1

𝑚2
∑ (∑ ∑  2𝑗+1−1

𝑙=2𝑗 𝑐𝑛𝑙

2

)2𝑗+1−1
𝑛=2𝑗

∞
𝑗=𝑝+1   

≤
1

𝑚2
∑ (∑ ∑

𝑀2

24𝑗+2𝑚2 2𝑗+1−1
𝑙=2𝑗

 

 

) =2𝑗+1−1
𝑛=2𝑗

∞
𝑗=𝑝+1

𝑀2

𝑚4
∑ (∑ ∑

1

24𝑗+2𝑚2 2𝑗+1−1
𝑙=2𝑗

 

 

)2𝑗+1−1
𝑛=2𝑗

∞
𝑗=𝑝+1   

𝑀2

3𝑚4

1

22(𝑝+1) =
𝑀2

3𝑚6   
      (57)                                                                

Therefor: 

‖𝑢(𝑥, 𝑡 ) − 𝑢𝑚(𝑥, 𝑡)‖𝐸 ≤
𝑀

√3𝑚3
 

 

SOLVING NUMERICAL EXAMPLES 

Numerical solutions and errors are calculated, 

evaluated, and provided in tables after evaluating 

certain numerical instances with conditions of 

varying initial values. The MATLAB software is 

used to solve all of the examples.  

Example 1: In equation 1, by placing, 𝛼 =

1.1  , 𝛽 = 1 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 , 

Initial conditions: 

u(0, x) = 0, 𝑢𝑡(0, 𝑥) = 0,      0 ≤ 𝑥 ≤ 1 

Boundary conditions: 

u(𝑡, 0) = 0,    𝑢𝑡(𝑡, 1) = 0,    0 ≤ 𝑡 ≤ 1 

The right-side fractional of the equation: 

𝑅(𝑡, 𝑥) = (
2𝑡2−𝛼

𝛤(3 − 𝛼)
+

1

2
(𝜎𝑥𝑡𝜋)2

+ (𝛽 − 𝜎2)𝑡2) 𝑠𝑖𝑛(𝜋𝑥) + (𝛽

− 2(𝜎)2)𝑡2𝑥𝜋 𝑐𝑜𝑠(𝜋𝑥) 

The accurate answer of this equation in example 

(1) is 𝑢(𝑡, 𝑥) = 𝑡2sin(𝜋𝑥). Example (1) is solved 

by the Haar wavelet method for , 𝛼 = 1.2  , 𝛽 =

1 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2and its error is 

presented in Table 1. 

Table 1: example 1 error,by placing, 𝛼 = 1.2  , 𝛽 = 1 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

α=1.9 α=1.7 α=1.5 α=1.3 α=1.2 (x,t) 

2.01*10−11 6.10*10−11 5.01*10−11 2.14*10−10 5.09*10−10 (1.13,1.13) 

4.19*10−8 5.33*10−8 2.19*10−8 1.77*10−8 4.12*10−8 (3.13,3.13) 

5.22*10−6 4.02*10−6 1.88*10−6 1.34*10−6 3.29*10−6 (5.13,5.13) 

3.11*10−5 2.78*10−5 3.11*10−5 2.02*10−5 2.64*10−5 (7.13,7.13) 

4.19*10−4 6.28*10−4 4.34*10−4 3.25*10−4 3.14*10−4 (9.13,9.13) 

2.01*10−7 3.44*10−7 2.19*10−7 1.00*10−7 1.43*10−7 (11.13,11.13) 
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Fig.1. Relation of β and error for example 1 for 𝛼 = 1.2  , 𝛽 = 1 , 𝜎 = 0.2, 𝑚 = 3 , 

 
 

Fig.2. Approximate and exact solution, respectively for example 1  for 𝛼 = 1.2  , 𝛽 = 1 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

The method of numerical solution for 𝛼 =

1.3  , 𝛽 = 1 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2is presented 

in Table 2. 

Table 2: the numerical solution of example 1 py placing , 𝛼 = 1.3  , 𝛽 = 1 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

α=1.9 α=1.7 α=1.5 α=1.4 α=1.3 (x,t) 

2.49*10−4 2.34*10−4 2.37*10−4 2.24*10−4 2.19*10−4 (1.13,1.13) 

3.55*10−3 3.47*10−3 3.58*10−3 3.26*10−3 3.22*10−3 (3.13,3.13) 

1.60*10−2 1.55*10−2 1.41*10−2 1.24*10−2 1.34*10−2 (5.13,5.13) 

1.24*10−2 1.64*10−2 1.62*10−2 1.63*10−2 1.47*10−2 (7.13,7.13) 

2.01*10−2 2.01*10−2 2.01*10−2 2.19*10−2 2.11*10−2 (9.13,9.13) 

3.25*10−2 3.11*10−2 3.02*10−2 3.02*10−2 3.10*10−2 (11.13,11.13) 

 

Example 2: the numerical solution of the 

following equation: 

In equation (1), by placing   𝜶 = 𝟏. 𝟑  , 𝜷 =
𝟎. 𝟓 , 𝝈 = 𝟎. 𝟐, 𝒎 = 𝟑 , 𝒌 = 𝟐, 
Initial conditions: 

u(0, 𝑥) = 0, 𝑢𝑡(0, 𝑥) = 0,      0 ≤ 𝑥 ≤ 1 

Boundary conditions: 

u(𝑡, 0) = t3,    𝑢𝑡(𝑡, 1) = 𝑒𝑡3,    0 ≤ 𝑡 ≤ 1 

The right-side fractional of the equation: 

𝑅(𝑡, 𝑥) = (
𝛤(4)

𝛤(4 − 𝛼)
𝑡3−𝛼 −

1

2
𝜎2𝑥2𝑡3 + (𝛽

− 2𝜎2)𝑥𝑡3 + (𝛽 − 𝜎2)𝑡3) 𝑒𝑥  

The accurate response to this equation in example 

(2) is𝑢(𝑡, 𝑥) = 𝑡3𝑒𝑥   . Example (2) is solved by 

the Haar wavelet method for 𝜶 = 𝟏. 𝟑  , 𝜷 =

𝟎. 𝟓 , 𝝈 = 𝟎. 𝟐, 𝒎 = 𝟑 , 𝒌 = 𝟐 and its error has 

been shown in Table 3.  

Table 3: The error of example 2, by placing 𝛼 = 1.3  , 𝛽 = 0.5 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

α=1.9 α=1.7 α=1.6 α=1.5 α=1.3 (x,t) 

5.45*10−8 4.85*10−8 5.24*10−8 5.34*10−8 4.21*10−8 (1.13,1.13) 

4.23*10−6 4.14*10−6 4.74*10−7 4.01*10−6 3.65*10−6 (3.13,3.13) 

3.01*10−8 3.24*10−8 5.22*10−8 3.19*10−9 2.85*10−9 (5.13,5.13) 

2.22*10−4 2.31*10−4 3.34*10−4 2.24*10−4 2.64*10−4 (7.13,7.13) 

4.10*10−4 4.10*10−4 4.02*10−4 3.00*10−4 3.10*10−4 (9.13,9.13) 

1.21*10−3 1.51*10−3 2.12*10−3 1.14*10−3 1.01*10−3 (11.13,11.13) 
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Fig.3. Relation of 𝛽 and error for example2 for, 𝛼 = 1.3  , 𝛽 = 0.5 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 
 

 

Fig.4. Approximate and exact solution, respectively example2 for, 𝛼 = 1.3  , 𝛽 = 0.5 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 
In Table (4), the numerical solution method for 

𝜶 = 𝟏. 𝟑  , 𝜷 = 𝟎. 𝟓 , 𝝈 = 𝟎. 𝟐, 𝒎 = 𝟑 , 𝒌 = 𝟐 
has been shown. 

Table 4: the numerical solution of example 2 by placing 𝛼 = 1.3  , 𝛽 = 0.5 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

α=1.9 α=1.7 α=1.5 α=1.4 α=1.3 (x,t) 

5.41*10−4 5.37*10−4 5.34*10−4 5.29*10−4 5.19*10−4 (1.13,1.13) 

2.77*10−3 2.67*10−3 2.21*10−3 2.80*10−3 2.74*10−3 (3.13,3.13) 

1.45*10−2 1.42*10−2 1.39*10−2 1.61*10−2 1.45*10−2 (5.13,5.13) 

3.19*10−2 3.14*10−2 3.18*10−2 3.12*10−2 3.21*10−2 (7.13,7.13) 

1.11*10−2 1.24*10−2 1.25*10−2 1.10*10−2 1.11*10−2 (9.13,9.13) 

3.19*10−2 3.14*10−2 7.07*10−2 7.02*10−2 7.10*10−2 (11.13,11.13) 

Example 3: the numerical solution of the 

following equation: 

In equation (1), by placing , 𝛼 = 1.1  , 𝛽 =
0.5 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

Initial conditions: 

u(0, 𝑥) = 0, 𝑢𝑡(0, 𝑥) = 0,      0 ≤ 𝑥 ≤ 1 

Boundary conditions: 

u(𝑡, 0) = 0,    𝑢𝑡(𝑡, 1) = 𝑡3𝑠𝑖𝑛2𝑥  ,    0 ≤ 𝑡 ≤ 1 

The right-side fractional of the equation: 

𝑅(𝑡, 𝑥) = (
𝛤(4)

𝛤(4−𝛼)
𝑡3−𝛼 + (𝛽 − 𝜎2)𝑡3)𝑠𝑖𝑛2𝑥 −

𝜎2𝑥2𝑡3𝑐𝑜𝑠 (2𝑥) + (𝛽 − 𝜎2)𝑥𝑡3𝑠𝑖𝑛 (2𝑥)  

The accurate response to this equation in example 

(3) is𝑢(𝑡, 𝑥) = 𝑡3𝑠𝑖𝑛2𝑥   . Example (3) is solved 

by the Haar wavelet method for 𝛼 = 1.1  , 𝛽 =

0.5 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 and its error has been 

shown in Table 5. 

Table5: The error of example 3, by placing 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

https://ijo.rasht.iau.ir/?_action=article&au=2778724&_au=shaban++mohammadi
https://ijo.rasht.iau.ir/?_action=article&au=2778725&_au=S.+Reza++Hejazi


Iranian Journal of Optimization, 14(2), 121-133, June 2022    

 

131  
    

 Mohammadi &  Hejazi / Numerical Solution of Fokker-Planck-Kolmogorov… 

 

α=1.9 α=1.7 α=1.5 α=1.3 α=1.1 (x,t) 

5.07*10−8 4.74*10−8 5.22*10−8 5.77*10−8 3.41*10−8 (1.13,1.13) 

4.32*10−6 4.24*10−6 4.44*10−7 4.31*10−6 3.24*10−6 (3.13,3.13) 

3.17*10−8 3.34*10−8 5.14*10−8 3.22*10−9 2.88*10−9 (5.13,5.13) 

2.45*10−4 2.33*10−4 3.37*10−4 2.31*10−4 2.84*10−4 (7.13,7.13) 

4.37*10−4 4.52*10−4 4.21*10−4 3.18*10−4 3.03*10−4 (9.13,9.13) 

1.22*10−3 1.67*10−3 2.41*10−3 1.64*10−3 1.64*10−3 (11.13,11.13) 

  

 

Fig.5. Relation of 𝛽 and error for example3 for, 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

 
Fig.6. Approximate and exact solution, respectively for example3 for, 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2, 𝑚 = 

3 , 𝑘 = 2 

 

In Table 6, the numerical solution method for 𝛼 =
1.1  , 𝛽 = 0.5 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2has been 

shown. 

 

 
Table 6: the numerical solution of example 3by placing 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

α=1.9 α=1.7 α=1.5 α=1.3 α=1.1 (x,t) 

5.31*10−4 5.65*10−4 5.55*10−4 5.27*10−4 5.75*10−4 (1.13,1.13) 

2.82*10−3 2.14*10−3 2.63*10−3 2.33*10−3 2.27*10−3 (3.13,3.13) 

1.34*10−2 1.66*10−2 1.37*10−2 1.64*10−2 1.55*10−2 (5.13,5.13) 

3.23*10−2 3.23*10−2 3.41*10−2 3.22*10−2 3.22*10−2 (7.13,7.13) 

1.21*10−2 1.31*10−2 1.12*10−2 1.14*10−2 1.21*10−2 (9.13,9.13) 

3.12*10−2 3.30*10−2 7.34*10−2 7.19*10−2 7.54*10−2 (11.13,11.13) 

 
DISCUSSION AND CONCLUSION 
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   These equations are difficult to solve but can be 

solved using a variety of numerical methods. The 

Fokker-Planck-Kolmogorov time-fractional 

differential equations are the focus of this 

research. The Haar wavelet technique is one of 

these methods. The highest order of the derivative 

in the equation is estimated in terms of Haar 

fractional for each of the variables using this 

procedure. Finally, the proposed method was used 

to solve certain numerical cases. The results 

revealed that the proposed approach for Fokker-

Planck-Kolmogorov time-fractional differential 

equations is numerically and practically very 

efficient. As a result, because many differential 

equations in various fields of research do not have 

approximate solutions, the wavelet approach is 

recommended as a valid and trustworthy method 

for solving such equations. Therefore, the present 

article can be used as a starting point for other 

wavelet-based applications. 
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