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INTRODUCTION 

  Data envelopment analysis (DEA) is a 

powerful methodology for evaluating relative 

efficiency (RE) of a finite set of peer multi-

input and multi-output decision-making units 

(DMU). It was introduced by Charnes, Cooper 

et al. (1978) for the first time. Since the advent 

of DEA in 1978, there has been an impressive 

growth both in theoretical developments and 

applications of the ideas to practical situations 

(Cook and Seiford 2009). DEA has two well-

known weaknesses. First, its models run 

individually for each DMU under flexibility in 

selecting weights in the best advantage. This 

flexibility in choosing the weights, on the 

other hand, deters the comparison among 

DMUs on a common base (Zohrehbandian, 

Makui et al. 2010, Soltanifar and Shahghobadi 

2013, Soltanifar and Shahghobadi 2014, 

Shahghobadi 2020). Second, DEA can 

classify DMUs as efficient or inefficient. 

However, there is often more than one 

efficient unit, and, in other words, it has a 

weak discrimination power. Due to the high 

importance of these two problems, they have 

received considerable critical attention from 

researchers. Aldamak and Zolfaghari (2017) 

reviewed and classified the literature on the 

ranking of DEA include those approaches 

published up to 2016. 

  An innovative approach to solve these issues 

is using a common set of weights (CSW), 

which was proposed by  Roll, Cook et al. 

(1991). Chen, Larbani et al. (2009) outlines 

three essential features of this method; reduce 

computational complexity/time compared 

with the traditional model, strong theoretical 

background, and higher discrimination power. 

Another essential feature is to provide a 

common base for ranking the DMUs, both the 

efficient and inefficient ones (Kao and Hung 

2005). A mainstream of researches agreed to 

use 𝑝 -distance measure to derive a CSW in 

DEA (Lotfi, Ebrahimnejad et al. , Roll, Cook 

et al. 1991, Kao and Hung 2005, Chen, 

Larbani et al. 2009, Zohrehbandian, Makui et 

al. 2010, Hosseinzadeh Lotfi, Jahanshahloo et 

al. 2013, Hosseinzadeh Lotfi, Jahanshahloo et 

al. 2013, Sun, Wu et al. 2013, Pourhabib 

Yekta, Kordrostami et al. 2018, Izadikhah and 

Farzipoor Saen 2019). The idea behind these 

models is to find a CSW such that its 

corresponding efficiency vector is closet to a 

predefined target efficiency vector measured 

with 𝑝 -distance measure. This idea proposed 

by Kao and Hung (2005) for the first time and 

followed by Chen, Larbani et al. (2009), 

(Zohrehbandian, Makui et al. 2010). Here, we 

focus on these models and refer them as 𝑝 -

distance-based CSW models. 

  A CSW is used to approximate a target 

efficiency score. Since the generated 

efficiency score has an essential role in 

evaluating and ranking the DMUs, it is crucial 

to the generated efficiency score of a DMU as 

close as possible to its target efficiency score.  

Roll, Cook et al. (1991) also believed that a 

general requirement of such a set (CSW) is 

that it explains as high a portion as possible of 

DMU performance. As a summary, a CSW 

must be able to approximate the efficiency 

target of DMUs with the least individuals and 

overall deviations. 

  This study aims to examine 𝑝 -distance-

based CSW models from deviations aspect. 

The key question is, what the main factors are 

contributing to the reduction of individuals 

and overall deviations of generated efficiency 

scores from corresponding target efficiency 

targets? We found that parameter 𝑝 and the 

data set have a direct and significant impact 

on the variations. We have two simple 

suggestions for improving the performance of 

existing models to reduce deviations. 

Numerical examples and a simulation test 

revealed that our proposal was very effective 

in reducing deviations. 

  The remained of the paper is structured as 

follows. In section 2, we review the DEA and 

distance-based CSW models. In section 3, we 

describe our motivation by a simple numerical 

example. In section 4, the adjusted models are 

presented. In section 5, we compare the 

proposed models with the previous ones via 

two numerical examples. Also, it contains the 

result of the correlation test and simulation 

analysis. Finally, section 7 concludes the 

study and provides directions for further 

works. 

PRELIMINARIES 
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  First of all, we declare the notations used in 

this study. the 𝑛 -dimensional euclidean space 

is denoted by 𝑅𝑛 and non-negative orthant 

denoted by 𝑅+
𝑛. We symbolize the sets by 

capital letters, set members by lower-case 

letters, vectors, and matrices in bold letters: 

vectors in lower case and matrices in upper 

case. All vectors are column vectors and the 

transpose of vectors and matrices displayed by 

a superscript T. We also use 𝟎𝑛 and 𝟏𝑛 to 

show n-dimensional vectors with zero and one 

component, respectively. Also, the set of 

natural numbers from 1 to 𝑛 is displayed by 

[𝑛]. Furthermore, the superscript for a 

variable shows the optimal value of the 

variable. 

DEA 

  Consider 𝑛 DMUs with 𝑚 inputs and 𝑠 
outputs. Let 𝑥𝑗 = (𝑥1𝑗 , . . . , 𝑥𝑚𝑗)

𝑇 and 𝑦𝑗 =

(𝑦1𝑗, . . . , 𝑦𝑠𝑗)
𝑇 denote the input and the output 

vectors of DMU𝑗 for 𝑗 ∈ [𝑛]. One version of 

the CCR model is a two-phase CCR model 

which is as follows (Charnes, Cooper et al. 

1978) : 

Phase I  
   Solve the envelopment form of the CCR 

model : 

 

 

𝑒𝑜
∗ = 𝑀𝑖𝑛  𝑒 

𝑠. 𝑡: 

∑

𝑗∈[𝑛]

𝜆𝑗𝑥𝑗 + 𝑠
− = 𝑒𝑥𝑜 𝑖 ∈ [𝑚] 

∑

𝑗∈[𝑛]

𝜆𝑗𝑦𝑗 − 𝑠𝑟
+ = 𝑦𝑟 𝑟 ∈ [𝑠] 

𝜆𝑗 ≥ 0, 𝑗 ∈ [𝑛] 

(1) 

 

where 𝑠+ ∈ 𝑅𝑠 and 𝑠− ∈ 𝑅𝑚 are the output 

shortfalls and the input excesses, respectively. 

Phase II  

  Use 𝑒𝑜
∗ and solve the following model:  

 

 

𝑤𝑜
∗ = 𝑀𝑎𝑥(𝟏𝑚

𝑡 𝒔− + 𝟏𝑠
𝑡𝒔+) 

𝑠. 𝑡: 

∑

𝑗∈[𝑛]

𝜆𝑗𝑥𝑗 + 𝑠
− = 𝑒𝑜

∗𝑥𝑜 𝑖 ∈ [𝑚] 

∑

𝑗∈[𝑛]

𝜆𝑗𝑦𝑗 − 𝑠𝑟
+ = 𝑦𝑟 𝑟 ∈ [𝑠] 

𝜆𝑗 ≥ 0, 𝑗 ∈ [𝑛] 

(2) 

 

Definition 2.1 (Cooper, Seiford et al. 2007)       

Let eo
∗  and wo

∗  are optimal values models (1) 

and (2), respectively.   

    • DMUo is CCR efficient if and only if 

eo
∗ = 1 and wo

∗ = 0.  

    • DMUo is radial CCR efficient if eo
∗ = 1.  

    • Otherwise, the DMUo is called CCR-

inefficient.  

  

Let (eo
∗ , s−∗, s+∗) is an optimal solution of the 

model (1). The radial projection and the CCR 

projection of (𝐱o, 𝐲o) are defined equations 

(3) and (4), respectively as follows : 

  

 (
�̄�𝑗 = 𝑒𝑜

∗𝒙𝑜
�̄�𝑜 = 𝒚𝑜 𝑗 ∈ [𝑛]

 (3) 

 

 
(
𝒙𝑗 = 𝑒𝑜

∗𝒙𝑜 − 𝒔
+∗

�̂�𝑜 = 𝒚𝑜 − 𝒔
−∗ 𝑗 ∈ [𝑛]

 (4) 

 

CSW  

  Charnes, Cooper et al. (1978) defined the 

efficiency function as 𝑒𝑗: 𝑅+
𝑚 × 𝑅+

𝑠 → 𝑅+ and 

𝑒𝑗(𝑢, 𝑣) =
𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
, for DMU𝑗. It has showed that 

DMU𝑜 is CCR efficient if and only if the 

optimal value of the following fractional form 

of the CCR model equals to 1. See (Charnes, 

Cooper et al. 1978) for details.  

 

 

𝑒𝑘
∗ = 𝑀𝑎𝑥

𝑢𝑡𝑦𝑘
𝑣𝑡𝑥𝑘

 

𝑆. 𝑡: 
𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
≤ 1            𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑠, 𝑣 ≥ 𝜀1𝑚 

(5) 

 

  Where 𝑢 and 𝒗 can be interpreted as the 

virtual cost and price vectors of inputs and 

outputs, respectively, and 𝜀 is a small non-

Archimedes quantity. See (Amin and Toloo 

2004) for more details. 

  Kornbluth (1991) integrated all individual 

DEA models in one multi-objective linear 

fractional programming as follows. It is the 

basic model for generation CSWs. 
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𝑀𝑎𝑥𝑒(𝑢, 𝑣)

= (
𝑢𝑡𝑦1
𝑣𝑡𝑥1

, . . . ,
𝑢𝑡𝑦𝑛
𝑣𝑡𝑥𝑛

) 

𝑆. 𝑡: 
𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
≤ 1 𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑠, 𝑣 ≥ 𝜀1𝑚 
 

(6) 

  Kao and Hung (2005) considered the CCR 

efficiency vector, 𝑒∗ = (𝑒1
∗, . . . , 𝑒𝑛

∗), as the 

target efficiency vector and looked for a CSW 

such that its corresponding efficiency vector 

has the minimum 𝑝 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 from 𝑒∗ as 

follows: 

 

𝑀𝑖𝑛(∑

𝑗∈[𝑛]

𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
− 𝑒𝑗

∗)𝑝)
1
𝑝 

𝑆. 𝑡: 
𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
≤ 1 𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑠, 𝑣 ≥ 𝜀1𝑚 

(7) 

 

  Chen, Larbani et al. (2009)  defined 

𝑔𝑘(𝑢, 𝑣):= 𝑣𝑡𝑥𝑘 − 𝑢
𝑡𝑦𝑘 as a basis efficiency 

measure and 0𝑛 as the target efficiency vector 

and with the same strategy as Kao and Hung 

(2005) suggested the following model: 

 

 

𝑀𝑖𝑛(∑

𝑗∈[𝑛]

(𝑣𝑡𝑥𝑗 − 𝑢
𝑡𝑦𝑗)

𝑝)
1
𝑝 

𝑆. 𝑡: 
𝑣𝑡𝑥𝑗 − 𝑢

𝑡𝑦𝑗 ≥ 0 𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑛, 𝑣 ≥ 𝜀1𝑛 

 

(8) 

 

  Zohrehbandian, Makui et al. (2010) 

integrated the (Kao and Hung 2005) idea with 

another innovative idea that was using of 

radial projected data set instead of the original 

data set, and then proposed the following 

model: 

 

𝑀𝑖𝑛(∑

𝑗∈[𝑛]

(𝑣𝑡(𝒆𝒋
∗𝑥𝑗) − 𝑢

𝑡𝑦𝑗))
𝑝)
1
𝑝 

𝑆. 𝑡: 
𝑣𝑡(𝒆𝒋

∗𝑥𝑗) − 𝑢
𝑡𝑦𝑗 ≥ 0 𝑗 ∈ [𝑛] 

𝟏𝑠
𝑡𝒖 + 𝟏𝑚

𝑡 𝒗 = 1 

𝑢 ≥ 0𝑠 , 𝑣 ≥ 0𝑚 

(9) 

  We will see how much is effective in 

reducing deviations the idea of using the 

projected data set. We call each one of these 

models by the name of the first author of the 

corresponding paper. 

 

MOTIVATION 

  It is easy to verify that these models are 

specific states of the following more general 

model.  

 

 

𝑀𝑖𝑛(∑

𝑗∈[𝑛]

(𝑟𝑗)
𝑝)
1
𝑝 

𝑆. 𝑡: 
𝑡𝑗 − 𝑑𝑗(𝑢, 𝑣) = 𝑟𝑗  𝑗 ∈ [𝑛] 

(𝑢, 𝑣) ∈ 𝑊𝑟𝑗 ≥ 0, 𝑗 ∈ [𝑛] 

(10) 

 

 where: 

efficiency measure 𝑑𝑗: 𝑅
𝑠 × 𝑅𝑚 → 𝑅 : 

 

 

𝑑𝑗(𝑢, 𝑣):

=

{
 
 

 
 

𝑢𝑡𝑦𝑗

𝑣𝑡𝑥𝑗
,  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 (7)

𝑢𝑡𝑦𝑗 − 𝑣
𝑡𝑥𝑗 ,  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙  (8)

𝑢𝑡𝑦𝑗 − 𝑣
𝑡𝑥𝑗 ,     𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 (9)

 
 

 

  

target efficiency score 𝑡𝑗 ∈ 𝑅 

 𝑡𝑗(𝑢, 𝑣): = {

𝑒𝑗∗ ,  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 (7)

0,  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙  (8)
0,  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 (9)

 
 

 

 

 residual variable 𝐫𝐣  

𝑟𝑗(𝑢, 𝑣):= 𝑡𝑗 − 𝑒𝑓𝑗 

 

Weight restriction set  
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 𝑊:=

{
 

 
𝑤1 = {(𝑢, 𝑣): 𝑢 ≥ 𝜖1𝑠, 𝑣 ≥ 𝜖1𝑚}  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 (7)

𝑤2 = {(𝑢, 𝑣): 𝑢 ≥ 𝜖1𝑠, 𝑣 ≥ 𝜖1𝑚}  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙  (8)

𝑤3 = {(𝑢, 𝑣): 1𝑠
𝑡𝑢 + 1𝑚

𝑡 𝑣 = 1, 𝑢 ≥ 0𝑠, 𝑣 ≥ 0𝑚} 𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 (9)

 
 

 

   and 𝑟𝑗 
 

Note that we can consider 𝐷′ =

∑𝑛𝑘=1 (𝑟𝑗)
𝑝 instead of 𝐷 = (∑𝑛𝑘=1 𝑟𝑗)

𝑝)
1

𝑝 

which is more straightforward in its 

mathematical expression, and a solution 

(𝑢, 𝑣) minimizes 𝐷𝑝 if, and only if, it 

minimizes 𝐷𝑝
′  (Kao and Hung 2005). 

The ideal value for 𝑟𝑗 is zero, and model(10) 

uses the penalty function 𝑟𝑗
𝑝
 to achieve this 

goal. Regarding the strictly increasing 

property and the shape of these functions for 

𝑝 > 1, they impose a heavier penalty for 

residuals larger than one compared to 

residuals less than one, and the intensity of 

this operation increases, if 𝑝 increases. This 

leads to rotating the solution towards DMUs 

with large residuals and moving away from 

DMUs with small residuals. In short, 𝑟𝑗
𝑝
 with 

𝑝 > 1 will disrupt the balance and the 

principle of neutrality in favor of some units; 

hence, it can be said that these functions have 

a biased operation. This, together with the fact 

that the problem for 𝑝 = 1 will tend to have 

more zero and very small residuals, [4, Page 

311], gives us the expectation that the problem 

for 𝑝 = 1 generate more better solution. To 

clarify, we explain these cases by a numerical 

example. 

 

Example 3.1 In this example, at first, we 

compare the obtained result from the 

mentioned models for p = 1 and 2. Let we 

take six DMUs with two inputs and one output 

as follows: 

 

         𝑿𝟏 = (
1 2 2
4 1.75 3.5

   
4 10 2
1 3 4

) 

and  

𝒀𝟏 = (1 1     1 1     1 1) 
 

  The production possibility set (Cooper, 

Seiford et al. 2007) is depicted in Fig. 1. We 

employed Model Kao, Model Zohrebandian, 

and Model Chen with 𝑝 = 1 and 𝑝 = 2, and 

displayed obtained CSWs and efficiency 

vectors in   Table 2,respectively. 

 

 

 
 

            Fig. 1. Farrell frontier for data of example 3.1 

 
Table 1: Generated CSWs by different models 

 Chen Zohrehbandian Kao 

 𝑝 = 1 𝑝 = 2 𝑝 = 1 𝑝 = 2 p=1 p=2 

𝑣1 0.000000000001 0.000000000004 0.000000236842 0.000000175448 0.035397000000 3.200400000000 

𝑣2 0.000000000001 0.000000000008 0.000000105263 0.000000172239 0.015848000000 3.200400000000 

𝑢 0.000000000003 0.000000000013 0.000000657895 0.000000652313 0.098307000000 3.200400000000 
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Table 2: Generated efficiency scores by different models with p=1 and p=2 

  Chen  Zohrehbandian  Kao CCR 

  𝑝 = 1   𝑝 = 2   𝑝 = 1   𝑝 = 2   p=1   p=2  

𝐷𝑀𝑈1  0.55   0.3575   1   0.7546   0.9951   0.9297 1  

𝐷𝑀𝑈2  0.7333   0.6128   1   1   0.9978   0.6658 1  

𝐷𝑀𝑈3  0.5   0.3648   0.7812   0.684   0.7786   0.5939 0.781  

𝐷𝑀𝑈4  0.55   0.5957   0.625   0.7463   0.6244   0.3644  1 

𝐷𝑀𝑈5  0.2115   0.2215   0.2451   0.2872   0.2448   0.1447 0.370  

𝐷𝑀𝑈6  0.4583   0.327   0.7353   0.6273   0.7326   0.5761  0.735 

 
Table 3: Deviations of generated efficiency scores from CCR efficiency scores 

  Chen  Zohrehbandian  Kao 

  𝑝 = 1   𝑝 = 2   𝑝 = 1   𝑝 = 2   p=1   p=2  

 𝑒1
∗ − 𝑒1

𝐶𝑆𝑊  0.45   0.6425   0   0.2454   0.0049   0.2371  

𝑒2
∗ − 𝑒2

𝐶𝑆𝑊   0.2667   0.3872   0   0   0.0022   0.0042  

𝑒3
∗ − 𝑒3

𝐶𝑆𝑊   0.2812   0.4165   0   0.0973   0.0026   0.095  

𝑒4
∗ − 𝑒4

𝐶𝑆𝑊   0.45   0.4043   0.375   0.2537   0.3756   0.2655  

𝑒5
∗ − 𝑒5

𝐶𝑆𝑊   0.1588   0.1488   0.1253   0.0832   0.1255   0.0873  

𝑒6
∗ − 𝑒6

𝐶𝑆𝑊   0.277   0.4083   0   0.108   0.0027   0.105  

overall deviation  1.8837   2.4076   0.5003   0.7875   0.5135   0.7941  

 

 

 

  The deviation of each obtained efficiency 

score from the corresponding CCR efficiency 

score is displayed in Table  3. 

Regarding Table 2, the results of each model 

were more desirable with 𝑝 = 1 than 𝑝 = 2. 

Now, we consider models Zohrebandian and 

Chen with 𝑝 = 1. However, these models use 

the same objective function and efficiency 

measure; the Zohrebandian model produced a 

more desirable solution. To find out the cause 

of this superiority, we focus on their 

differences; weight restriction set and the data 

set. It is easy to see that 𝑊2 ⊆ 𝑊3 Moreover, 

this is effective in improving the optimal 

value. Hence, only one factor remains. For 

this reason, we have 𝑒𝑗
∗𝑣𝑥𝑗 − 𝑢𝑦𝑗 ≤ 𝑣𝑥𝑗 −

𝑢𝑦𝑗 for an arbitrary feasible (𝑢, 𝑣) and any 𝑗 ∈

[𝑛]. Equivalently, the residual variables have 

smaller values in the Zohrebandian model 

compared with the Chen model, and this 

reduces the leverage effect of 𝑟𝑗
𝑝
. Besides, the 

projected data is more homogeneous than the 

original data, and it seems more reasonable to 

fit them an efficient frontier. Therefore, using 

a projected data set can be the most effective 

factor for this superiority. 

  To see how much-projected data is effective 

in reducing deviation, imagine a case that 

there is a weak efficient DMU among 

observed units. Let we change the input vector 

of DMU5 changes to (
10
1
) in 𝑿𝟏, and 𝑌1 

remains unchanged. The new point is 

displayed by 5∗ in Fig. 1. It is on the weak 

efficient frontier, and when it coincides with 

its radial projection. Also, the new input 

matrix is denoted by 𝑋2 and we have:  

𝑿𝟏 = (
1 2 2
4 1.75 3.5

   
4 10 2
1 3 4

) 

 

   By reusing again of the Zohrebandian 

model, the generated CSW changes from 

(0.2368,0.1052,0.6578)𝑇 to 

(0.0968,0.2581,0.6452), the efficiency 
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vector changes from 

(1,1,0.781,0.625,0.245,0.733)𝑡 to 

(0.571,1,0.581,1,0.526,0.526)𝑡, the 

individual deviation vector changes from 

(0,0,0,0.375,0.1253,0) 
to(0.4286,0,0.193,0,0.4737,0.209) and 

subsequently the overall deviation changes 

from 0.5 to 1.3042. Briefly, this change leads 

to rotate the common efficient frontier from 

1 − 2 line toward the dash line as displayed in 

Fig. 1. 

AN IMPROVEMENT 

  As we saw, using 𝑝 = 1 and radial projected 

data set are effective strategies to produce 

efficiency scores with a small deviation from 

CCR efficiency scores. To more reduce 

residuals, we proposed to use CCR projected 

data instead of radial projected data in Chen 

and Zohrebandian models with 𝑝 = 1. By 

taking 𝑝 = 1 and using (𝑥𝑗 , 𝑦𝑗), these models 

are as follows, respectively: 

 

 

𝑀𝑖𝑛∑

𝑗

𝑟𝑗 

𝑆. 𝑡: 
𝑣𝑡�̂�𝑗 − 𝑢

𝑡�̂�𝑗 − 𝑟𝑗 = 0 𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑛, 𝑣 ≥ 𝜀1𝑛 

(11) 

 

 

𝑀𝑖𝑛∑

𝑗

𝑟𝑗 

𝑆. 𝑡: 
𝑣𝑡�̂�𝑗 − 𝑢

𝑡�̂�𝑗 − 𝑟𝑗 = 0 𝑗

∈ [𝑛] 
1𝑠
𝑡𝑢 + 1𝑚

𝑡 𝑣 = 1, 𝑢 ≥ 0𝑠, 𝑣
≥ 0𝑚 

(12) 

 

 

  Because 𝑊2 ⊆ 𝑊3 for each 𝜀, so model (11) 

has fewer residuals than the model 13. In spit 

of this priority of 𝑊3, it doesn’t guaranty the 

generated CSW to be positive. 

 

Theorem 4.1 let (u, v, r) is an optimal 

solution for (11). If ro = 0 for some o ∈ [n], 
then  

 
𝑢𝑡𝑦𝑜

𝑣𝑡𝑥𝑜
= 𝜃𝑜

∗ − 𝜀(1𝑠
𝑡𝑠−∗ + 1𝑚

𝑡 𝑠+∗) 

where (𝜃∗, 𝑠−∗, 𝑠+∗) is an optimal solution.  

 

Proof. First, we have  

𝑢𝑡𝑦𝑜 − 𝑣
𝑡𝑥𝑜 = 0 

Next, consider the dual problem. 

 

 

𝑀𝑎𝑥 𝑢𝑡𝑦𝑜 

𝑣𝑡𝑥𝑜 = 1 

𝑆. 𝑡:  
𝑣𝑡𝑥𝑗 − 𝑢

𝑡𝑦𝑗 − 𝑟𝑗 = 0 𝑗 ∈ [𝑛] 

𝑢 ≥ 𝜀1𝑛, 𝑣 ≥ 𝜀1𝑛 

(13) 

  

 

It is easy to see that the vector (𝑢 =
𝑢

𝑣𝑥𝑜
, 𝑣 =

𝑣

𝑣𝑥𝑜
), is an optimal solution to this problem. If 

(𝜆∗, 𝑠−∗, 𝑠+∗) , is also an optimal solution for 

(11), then we have from Complementary 

Slackness Theorem [3, Section 6] (Cooper, 

Seiford et al. 2007) that:  

 

 

(𝑢 − 𝜀1𝑠 )
𝑡𝑠−∗ = 0 

(𝑣 − 𝜀1𝑚 )
𝑡𝑠+∗ = 0 (14) 

 

 

or  

 

𝑢𝑡𝑠−∗ = 𝜀1𝑠
𝑡𝑠−∗

𝑣𝑡𝑠+∗ = 𝜀1𝑚
𝑡 𝑠+∗ (15) 

 

 

Then  

 𝑢𝑡(𝑦𝑜 + 𝑠𝑠
−∗) − 𝑣𝑡(�̂�𝑜

∗𝑥𝑜 + 𝑠𝑠
−∗) = 0 

and  

 
𝑢𝑡𝑦𝑜

𝑣𝑡𝑥𝑜
= �̂�𝑜

∗ −
𝑢𝑡𝑠𝑠

−∗+𝑣𝑡𝑠𝑠
+∗

𝑣𝑡𝑥𝑜
 

This together (15) give  

 
𝑢𝑡𝑦𝑜

𝑣𝑡𝑥𝑜
= 𝜃𝑜

∗ − 𝜀(1𝑠
𝑡𝑠−∗ + 1𝑚

𝑡 𝑠+∗) 

 

 

  The above Theorem states that DMU𝑜 is 

CCR efficient, if �̄�𝑜 = 0 in an optimal 

solution, (𝑢, 𝑣, 𝑟), of the model 12. 

 

NUMERICAL EXAMPLE 

  This section contains two numerical 

examples that are brought to compare the 

proposed models with other mentioned 

distance-based CSW models.  
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Example 5.1 This example compares the 

proposed models to the former ones based on 

the numerical example we had at the 

Motivation section. Consider again X1 and Y1 

as they were. At first, we projected data 

according to the four equations, and then 

employed the proposed models, and they are 

prior once. The obtained CSWs and their 

efficiency scores are displayed in Table 4 and 

Table 6, respectively. By comparing columns 

1 and 3 with the CCR column in Table 5, we 

can see that model (11)  has succeeded in 

reducing the individuals and overall 

deviations compared to the Chen model. 

Next, we consider the case of the example that 

the Zohrebandian model got into trouble with 

it; X2 and Y1. After projecting data and 

employing the proposed models, the obtained 

CSWs and efficiency scores are shown in 

Table 6 and Table 7 Interestingly, the adjusted 

Zohrehbandian model, model, could prevent 

of rotation answer toward to DMU5∗ and 

could reduce deviations again. 

 
Table 4: Data for example 5.1 

 Chen,p=1 Zohrehbandian,p=1 Model (11) Model (12) 

𝑣1 0.0001 0.236842 0.0001 0.236842 

𝑣2 0.0001 0.105263 0.0001 0.105263 

𝑢 0.000275 0.657895 0.000375 0.657895 

 
Table 5. Efficiency scores of the proposed models and their prior ones for X1 and Y1 

 Chen, p=1 Zohrehbandian, p=1  Model (11)   Mode (12) CCR 

DMU1  0.55 1  0.75   1 1 

DMU2  0.733 1  1   1  1 

DMU3  0.5 0.781  0.682   0.781  0.781 

DMU4  0.55 0.625  0.75   0.625  1 

DMU5  0.212 0.245  0.288   0.245  0.3704 

DMU6  0.458 0.735  0.625   0.735  0.7353 

Overall deviation  1.88371 0.50027  0.79163   0.50027  

 
Table 6: Generated CSWs by different models 

 Chen,p=1 Zohrehbandian,p=1 Model (11) Model (12) 

𝑣1 0.0001 0.096774  0.0001   0.236842  

𝑣2 0.0001 0.258065  0.0001   0.105263  

𝑢 0.000275 0.645161  0.000375   0.657895  

 
Table 7: Efficiency scores of the proposed models and their prior one for X2 and Y1 

 Chen,p=1 Zohrehbandian,p=1 Model (11)  Mode (12)  CCR 

DMU1 0.55 0.571 0.750  1  1 

DMU2 0.733 1 1  1  1 

DMU3 0.5 0.588 0.682  0.781 0.781 

DMU4 0.55 1 0.75  0.625 1 
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DMU5 0.25 0.526 0.341  0.245 1 

DMU6 0.458 0.526 0.625  0.735 0.735 

Overall deviation 2.47488 1.30425 1.36822  1.10844  

 

Example 5.2 In this example, we examine a 

numerical example that came in (Kao and 

Hung 2005). It contains seventeen DMUs 

with four inputs and three outputs. Data and 

attained results are exhibited from Table 8 to 

Table 10. 

  This example revealed two points. First, the 

proposed models, model 13 and model 12(11), 

could obtain the first and the second places, 

respectively, among all CSW models from 

generating the most similar approximation for 

CCR efficiency scores point of view. In 

addition, their efficiency vectors have the 

highest number of zero residuals. Second, 

model 13 as expected generated a zero input 

weight; however, all components of the CSW 

derived from model 12 were positive.  

 
Table 8: Efficiency scores of the proposed models and their prior one for X2 and Y1 

  Inputs   Outputs 

DMUs  𝑖1   𝑖2   𝑖3   𝑖4  𝑜1   𝑜2   𝑜3  

DMU1  51.62   11.23   49.22   33.52   40.49   14.89   166.71  

DMU2  85.78   123.98   55.13   108.46   43.51   173.93   6.45  

DMU3  66.65   104.18   257.09   13.65   139.74   115.96   0  

DMU4  27.87   107.6   14   146.43   25.47   131.79   0  

DMU5  51.28   117.51   32.07   84.5   46.2   144.99   0  

DMU6  36.05   193.32   59.52   8.23   46.88   190.77   822.92  

DMU7  25.83   105.8   9.51   227.2   19.4   120.09   0  

DMU8  123.02   82.44   87.35   98.8   43.33   125.84   404.69  

DMU9  61.95   99.77   33   86.37   45.43   79.6   52.62  

DMU10  80.33   104.65   53.3   79.06   27.28   132.49   42.67  

DMU11  205.92   183.49   144.16   59.66   14.09   196.29   16.15  

DMU12  82.09   104.94   46.51   127.28   44.87   108.53   0  

DMU13  202.21   187.74   149.39   93.65   44.97   184.77   0  

DMU14  67.55   82.83   44.37   60.85   26.04   85   23.95  

DMU15  72.6   132.73   44.67   173.48   5.55   135.65   24.13  

DMU16  84.83   104.28   159.12   171.11   11.53   110.22   49.09  

DMU17  71.77   88.16   69.19   123.14   44.83   74.54   6.14  

 

    

 
Table 9: Generated CSWs by different models 

 Chen,p=1  Zohrebandian, p=1    Model (11)   Mode (12)  Kao,p=1  Wang 1   Wang 2  

𝑣1   0.0001  0.097976   0.006946   0.200409  959.4586  1591.678   0.000657  

𝑣2 0.0001  0.372243   0.011358   0.346254  2313.361  4931.297   0.003527  

𝑣3 0.006333  0   0.0001   0  0.001505  3807.445   0.000225  

𝑣4 0.000828  0.125069   0.001511   0.03428  0.00168  1939.971   0.000516  

𝑢1 0.0001  0.01455   0.001061   0.066351  531.8955  3551.854   0.000321  

𝑢2 0.001675  0.38793   0.012227   0.350344  1988.85  7044.92   0.003639  
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𝑢3 0.0001  0.002231   0.0001   0.002362  7.691254  56.7372   2.38E-05  

 

  
Table 10: Efficiency scores of the proposed models and their prior one 

  Chen,p=1 Zohrebandian,p=1 Model (11) Mode (12) Kao,p=1 Wang 1 Wang 2 

DMU1  0.999711 1 1 1 1 1.098501 1.398082 

DMU2  .644462 1 1 1 1 1.181471 1.151319 

DMU3  .125715 1 .925255 1 1 0.808081 0.980557 

DMU4  0.999552 0.842843 1 1 1 1.116814 1.023499 

DMU5  0.853745 0.95927 1 1 0.974747 1.251716 1.087137 

DMU6  0.999754 1 1 0.965676 0.852368 1.242465 1.007855 

DMU7  0.776811 0.666414 0.862937 0.874221 0.9244 0.879898 0.869819 

DMU8  0.389958 0.91384 0.833837 0.846816 0.895351 0.943903 1.088737 

DMU9  0.887039 0.635705 0.675601 0.678267 0.661897 0.897495 0.751314 

DMU10  0.543215 0.914929 0.883372 0.877981 0.872087 1.032459 1.036319 

DMU11  0.331456 0.796206 0.667748 0.652726 0.639835 0.755741 0.850491 

DMU12  0.445061 0.678381 0.701635 0.717405 0.745557 0.861775 0.818349 

DMU13  0.295552 0.713268 0.624594 0.622738 0.622927 0.731393 0.78322 

DMU14  0.425523 0.741348 0.709846 0.712437 0.713992 0.862642 0.84214 

DMU15  0.514996 0.674491 0.731578 0.721535 0.724498 0.765032 0.805901 

DMU16  0.16325 0.627977 0.666354 0.669722 0.699632 0.516827 0.741249 

DMU17  0.233724 0.535428 0.566832 0.592378 0.631 0.651293 0.653658 

Distance 5.8408 1.7703 1.3229 1.2917 1.5567 2.08808 1.51022 

 

 

CORRELATION ANALYSIS 

  Pearson’s correlation between each 

generated efficiency vector and CCR 

efficiency vectors have computed, and results 

have displayed in Table 11. 

  It concludes all efficiency vectors are 

positively correlated to their target efficiency 

vector. However, both efficiency vectors 

generated by the proposed models are 

correlated with �̂�∗ more robust than other 

efficiency vectors generated by other models. 

 
Table 11: Results of Pearson’s correlation 

 Chen Zohrehbandian Model (11) Mode (12) 

Rho 0.6181 0.7782 0.7709 0.7782 

Pval 0.0082 0.0002 0.0003 0.0002 

 

  It concludes all efficiency vectors are 

positively correlated to their target efficiency 

vector. However, both efficiency vectors 

generated by the proposed models are 

correlated with �̂�∗ more robust than other 

efficiency vectors generated by other models.  

 

  In the above examples, we saw that the 

proposed models performed better than prior 

models, correspondingly. We simulated to 

measure how much these events likely to 

happen. For this reason, we regenerated the 

data of Example 5.2 uniformly for 100 times. 

Each time that a data set generated, first 

models, Phase I, Phase II, Chen, 
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Zohrebandian, and Kao, for 𝑝 = 1, and then 

models 12 and 13 were employed. Next, we 

computed the overall deviation of each 

obtained efficiency vector from the CCR 

efficiency vector and identified the model, 

which has a small overall deviation. Finally, 

by comparing total results, it is revealed that 

first, 94 percent of the iteration model 12 

operated more efficiently than the Chen 

model. Second, model 13 in 39 percent of 

iterations and the Zohrebandian model in 24 

percent of iteration were successful. In the 

end, model 12, model Kao with p=1, and 

model Zohrebandian were able to gain the best 

overall deviation in 56, 24, and 20 times of 

iterations. 

CONCLUSION 

  In this paper, it has been shown that a 𝑝 

distance-based CSW model for 𝑝 = 1 

generates a solution with smaller individual 

and overall deviation than when 𝑝 > 1. Also, 

it has been shown that if the data set is 

projected on the strongly efficient frontier fist 

of all, then the deviations associated with the 

solution will reduce significantly. Since 

oftentimes, an efficiency vector derived from 

a CSW used as an alternative for CCR 

efficiency vector, it is very important to have 

the least individual and overall deviations as 

much possible. We suggested improvements 

for two prior 𝑝 distance-based CSW models 

based on those we found out. The proposed 

models were more successful then 

corresponding prior models in numerical 

examples and in a simulation analysis that we 

have conducted. 
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