
On the Picard-Mann approach for hybridizing the double
direction method for solving a system of nonlinear equations

Aliyu Ibrahim Kiri1, Mohammed Yusuf Waziri2, and Abubakar Sani Halilu3

1,2Department of Mathematical Sciences, Bayero University, Kano, Nigeria.
3Department of Mathematics, Sule Lamido University, Kafin Hausa, Nigeria.
2,3Numerical Optimization research Group, Bayero University, Kano, Nigeria.

Corresponding Author E-mail address: abubakars.halilu@slu.edu.ng

Abstract

In this article, the improvement of the numerical performance of the iterative
scheme presented by Halilu and Waziri in [5] is considered. This is made possible
by hybridizing it with Picard-Mann hybrid iterative process. In addition, the step
length is calculated using the inexact line search technique. Under the preliminary
conditions, the proposed method’s global convergence is established. The numerical
experiment shown in this paper depicts the efficiency of the proposed method, which
improved the results than the double direction method [5], existing in the literature.
2010 Mathematics Subject Classification: Primary 65K05; Secondary 90C30, 90C53
Keywords: Acceleration parameter, , Jacobian matrix, Double direction method,
Picard-Mann process.

1. Introduction

Systems of nonlinear equations usually arise in the areas of human endeavor such as
sciences and engineering. Researchers are tasked with developing efficient and robust
iterative methods to solve them. Typically, a system of nonlinear equations is represented
as

F(x) = 0, (1)

where F : Rn → Rn is nonlinear map. Throughout this paper, the space Rn denote the
n−dimensional real space, ∥ · ∥ is the Euclidean norm and Fk = F(xk).

Some iterative approaches for solving these problems include derivative-free meth-
ods [5–9], Newton and quasi-Newton methods [2–4]. However, Newton’s method is
prominent due to its attractive features, such as easy implementation and rapid conver-
gence. However, the method requires the computation as well as storage of Jacobian
matrix at each iteration and generates a sequence of points using the recursive formula:

xk+1 = xk + sk, sk = αkdk, k = 0,1, ..., (2)

1

where, sk = xk+1 − xk and αk is a step length. The Newton’s search direction dk is deter-
mined by solving the following linear system of equations,

Fk + F′
kdk = 0, (3)

where, F′
k is the Jacobian matrix of F at xk. However, in Newton’s method, the derivative

F′ is computed at each iteration, which may be unavailable or could not be obtained
precisely. In this case, Newton’s method cannot be applied directly. For this reason,
quasi-Newton’s methods were developed to replace the Jacobian matrix or its inverse
with an approximation which can be updated at each iteration [4, 11], and its search
direction is given by

dk = −B−1
k Fk, (4)

where Bk is n × n matrix that approximate the Jacobian of F at xk.
Moreover, (1) can be obtained from an unconstrained optimization problem [11]. Sup-

pose f be a merit function defined by

f (x) =
1
2
∥F(x)∥2. (5)

Then the problem of nonlinear equations (1) is analogous to the following problem of
global optimization

min f (x), x ∈ Rn, f : Rn → R.

Newton and quasi-Newton’s methods require the computation of the Jacobian ma-
trix or its approximation at each iteration, despite the attractive characteristics of these
methods. Therefore, they are not ideal for solving large-scale problems because they re-
quire massive matrix storage at each iteration which is costly in numerical experiments.
Matrix-free methods are proposed to overcome these problems. The double direction
method is among the successful matrix-free methods [13], that generates a sequence of
iterates via

xk+1 = xk + αkdk + α2
kbk, (6)

where xk+1 is the current iterate, xk is the previous iterate, while bk and dk are search
directions respectively. The rationale behind double direction method is that, there are
two corrections in the scheme (6), if one correction fails during iterative process then the
second one will correct the system.

In [13], Petrovic and Stanimirovic proposed a double direction method for solving
unconstrained optimization problems. In their work, an approximation to Hessian ma-
trix is obtained via acceleration parameter γk > 0, i.e.,

▽2 f (xk) ≈ γk I,

where I is an identity matrix. The sequence of iterates {xk} is generated using (6).
Petrovic further improves the performance of double direction in [14], where the double
step length scheme for the unconstrained optimization problem is presented as:

xk+1 = xk + αkdk + βkbk, (7)

2

where, αk and βk are two different step lengths. The Numerical results reported in [14]
have shown that the proposed method is quite effective compared to the double direc-
tion method in [13]. Because it has the number of iterations and CPU time than the
compared method [13]. Moreover, to improve the convergence properties and numerical
results of the double direction methods, Petrović et al. [15] hybridized the double direc-
tion method for unconstrained optimization problem in [13], with Picard-Mann hybrid
iterative process proposed by Khan in [1]. The Picard-Mann hybrid iterative process is
defined as three relations:

Definition 1.1 The Picard-Mann hybrid iterative process is defined as three relations:

x1 = x ∈ Rn, (8)

yk = (1 − ηk)xk + ηkTxk, (9)

xk+1 = Tyk, k ∈ N, (10)

where T : Ω −→ Ω is a mapping defined on nonempty convex subset Ω of a normed space E, yk
and xk are sequences determined by the iterations in (9) and (10), and {ηk} is the sequence of
positive numbers in (0,1).

In this paper, ηk denotes the correction parameter.
Since the research of derivative-free double direction methods for solving systems of

nonlinear equations is scarce in the literature, this motivated Halilu and Waziri [5] to use
the scheme in (6) and proposed a derivative-free method via double direction approach
for solving system of nonlinear equations. The method is proved to be globally con-
vergent by assuming that the Jacobian of F is bounded and positive definite. Abdullahi
et al. [9] further improved the performance of the double direction scheme where they
modified the idea in [5] based on conjugate gradient approach to solve symmetric non-
linear equations. The method converged globally using the derivative-free line search
proposed by Li and Fukushima in [11]. Recently, Halilu and Waziri [10] solved the sys-
tem of nonlinear equations by improving the double direction iteration approach in (6).
The global convergence of the method was established under some mild conditions, and
the numerical experiments demonstrated in the paper showed that the proposed method
is very efficient.

Motivated by the hybridization method presented in [15], This article is aimed at
hybridizing the double direction method in [5] with the Picard-Mann hybrid iterative
process proposed by Khan [1]. The paper is organized as follows. In the next section,
we will present the algorithm of the proposed method. Section 3 presents the proposed
algorithm’s convergence analysis. Section 4 lists some numerical experiments. The article
concluded in section 4.

2. Main result

Let us consider the derivative-free double direction method in [5]. The method devel-
oped a derivative-free method for solving systems of nonlinear equations via

F′
k ≈ γk I, (11)

3

where I is an identity matrix and γk > 0 is an acceleration parameter. The method in [5]
produces a sequence of iterates {xk} such that xk+1 = xk + sk, where sk + (αk + α2

kγk)dk
and the direction dk is given as

dk = −γ−1
k Fk. (12)

The acceleration parameter is obtained by using first-order Taylor’s expansion as

γk+1 =
yT

k yk

(αk + α2
kγk)yT

k dk
, (13)

where yk−1 = Fk − Fk−1.
Although the method [5] has strong convergence properties, its numerical perfor-

mance is weak when γk approaches or is equal to 1. For this reason, we are motivated
to propose a hybrid method with good numerical results. To define a hybrid form of
the method in [5], the mapping T in definition (1.1) is assumed to be defined by an im-
proved double direction method as Tyk = yk − (αk + α2

kγk)γ
−1
k Fk. By this assumption and

the definition (1.1) we have

x1 = x ∈ Rn,

yk = (1 − ηk)xk + ηkTxk = xk − (ηk + 1)(αk + α2
kγk)γ

−1
k Fk, (14)

xk+1 = Tyk = yk − (αk + α2
kγk)γ

−1
k Fk, k ∈ N. (15)

From (14) and (15) we obtain the iterative scheme,

xk+1 = xk − tk(αk + α2
kγk)γ

−1
k Fk, (16)

where, tk = (ηk + 1) ∈ (1,2) is a correction parameter. we can easily show that, the search
direction in (16) is defined as:

dk = −tkγ−1
k Fk. (17)

Next, the proposed method algorithm is specified as follows:

Algorithm 1: hybrid double direction method (HDDPM)

Input: Given x0, γ0 = 1, ϵ = 10−5, ω1 > 0, ω2 > 0 and r ∈ (0,1), t ∈ (1,2), set k = 0.
Step 1: Compute Fk.
Step 2: If ∥Fk∥ ≤ ϵ then stop; otherwise, proceed to Step 3.
Step 3: Compute search direction dk = −tγ−1

k Fk.
Step 4: Set xk+1 = xk + (αk + α2

kγk)dk, where, αk = rmk with mk being the smallest
nonnegative integer m such that

f (xk + (αk + α2
kγk)dk)− f (xk) ≤ −ω1∥αkFk∥2 − ω2∥αkdk∥2 + ηk f (xk). (18)

Let {ηk} be a given positive sequence such that

∞

∑
k=0

ηk < η < ∞. (19)

Step 5: Compute Fk+1.

Step 6: Determine γk+1 =
yT

k yk

(αk+α2
kγk)yT

k dk
.

Step 7: Consider k = k + 1 and go to Step 2.

4

3. Convergence Analysis

We present how the proposed Algorithm 1 (HDDPM) converges globally in this section.
To begin, let’s define the level set.

Ω = {x|∥F(x)∥ ≤ ∥F(x0)∥}. (20)

Assumption 3.1 However, we state the following assumptions:

1. There exists x∗ ∈ Rn such that F(x∗) = 0.

2. F is continuously differentiable in some neighborhood say Q of x∗ containing Ω.

3. The Jacobian of F is bounded and positive definite on Q. i.e., there exist positive constants
H > h > 0 such that

∥F′(x)∥ ≤ H ∀x ∈ Q, (21)

and
h∥d∥2 ≤ dT F′(x)d ∀x ∈ Q,d ∈ Rn. (22)

Remark 3.2 We make the following remark:
Assumption 3.1 implies that there exist constants H > h > 0 such that

h∥d∥ ≤ ∥F′(x)d∥ ≤ H∥d∥ ∀x ∈ Q,d ∈ Rn. (23)

h∥x − y∥ ≤ ∥F(x)− F(y)∥ ≤ H∥x − y∥ ∀x,y ∈ Q. (24)

Since t−1γk I approximates F′
k along sk, the following assumption can be made.

Assumption 3.3 t−1γk I is a good approximation to F′
k, i.e.,

∥(F′
k − t−1γk I)dk∥ ≤ ϵ∥Fk∥, (25)

where, ε ∈ (0,1) is a small quantity [4].

Lemma 3.4 Suppose Assumption 3.3 holds, and let {xk} be generated by Algorithm 1. Then dk
is a sufficient descent direction for f (xk) at xk i.e.,

▽ f (xk)
Tdk < c∥Fk∥2, c > 0. (26)

Proof From (5), (12), and (25), we have

▽ f (xk)
Tdk = FT

k F′
kdk

= FT
k [(F′

k − t−1γk I)dk − Fk]

= FT
k (F′

k − t−1γk I)dk − ∥Fk∥2,

(27)

by Chauchy-Schwarz we have,

▽ f (xk)
Tdk ≤ ∥Fk∥∥(F′

k − t−1γk I)dk∥ − ∥Fk∥2

≤ −(1 − ϵ)∥Fk∥2.
(28)

5

Since ϵ ∈ (0,1), taking c = 1 − ϵ, this lemma is true.
We can conclude from Lemma 3.4 that the norm function f (xk) is a descent along dk,
which means that ∥Fk+1∥ ≤ ∥Fk∥ is true.

Lemma 3.5 Suppose that Assumption 3.1 holds and let {xk} be generated by Algorithm 1. Then
{xk} ⊂ Ω.

Proof From Lemma 3.4, we have ∥Fk+1∥ ≤ ∥Fk∥. Furthermore, for all k,

∥Fk+1∥ ≤ ∥Fk∥ ≤ ∥Fk−1∥ ≤ . . . ≤ ∥F0∥.

This means that {xk} ⊂ Ω.

Lemma 3.6 Suppose Assumption 3.1 holds and {xk} be generated by Algorithm 1. Then there
exists a constant m > 0 such that for all k,

yT
k sk ≥ h∥sk∥2. (29)

Proof By mean-value theorem and (22),
yT

k sk = sT
k (F(xk+1)− F(xk)) = sT

k F′(ξ)sk ≥ h∥sk∥2.
Where ξ = xk + ζ(xk+1 − xk) , ζ ∈ (0,1).
Using yT

k sk ≥ h∥sk∥2 > 0, γk+1 is always generated by the update formula (??). Therefore,
γk+1 I inherits the positive definiteness of γk I. From Lemma 3 and (??), the following
inequality holds.

yT
k sk

∥sk∥2 ≥ h,
∥yk∥2

yT
k sk

≤ H2

h
. (30)

Lemma 3.7 Suppose that Assumption 3.1 holds and {xk} is generated by Algorithm 1. Then we
have

lim
k→∞

∥αkdk∥ = 0, (31)

and
lim
k→∞

∥αkFk∥ = 0. (32)

Proof From (18) for all k > 0

ω2∥αkdk∥2 ≤ ω1∥αkFk∥2 + ω2∥αkdk∥2

≤ ∥Fk∥2 − ∥Fk+1∥2 + ηk∥Fk∥2.
(33)

6

By summing the above inequality, we have

ω2

k

∑
i=0

∥αidi∥2 ≤
k

∑
i=0

(
∥Fi∥2 − ∥Fi+1∥2)+ k

∑
i=0

ηi∥Fi∥2,

= ∥F0∥2 − ∥Fk+1∥2 +
k

∑
i=0

ηi∥Fi∥2,

≤ ∥F0∥2 + ∥F0∥2
k

∑
i=0

ηi,

≤ ∥F0∥2 + ∥F0∥2
∞

∑
i=0

ηi.

(34)

From the level set and the fact that {ηk} satisfies (19), then the series
∞

∑
i=0

∥αidi∥2 converges.

This implies (31). Using the same logic as above, but this time with ω1∥αkFk∥2 on the
left, we obtain (32).

Lemma 3.8 Suppose Assumption 3.1 holds and let {xk} be generated by Algorithm 1. Then
there exists a constant M > 0 such that for all k > 0,

∥dk∥ ≤ M. (35)

Proof From (12) and (13) we have

∥dk∥ =
∥∥∥∥∥−t

(αk−1 + α2
k−1γk−1)yT

k dk

yT
k−1yk−1

∥∥∥∥∥
=

∥∥∥∥∥−θ
yT

k−1sk−1Fk

∥yk−1∥2

∥∥∥∥∥
≤ t∥Fk∥∥sk−1∥∥yk−1∥

h2∥sk−1∥2

≤ t∥Fk∥H∥sk−1∥
h2∥sk−1∥

≤ t∥Fk∥H
h2

≤ t∥F0∥H
h2 .

(36)

Taking M = t∥F0∥H
h2 , we have (35).

Theorem 3.9 Suppose that Assumption 3.1 holds and {xk} be generated by Algorithm 1. As-
sume further for all k > 0,

αk ≥ λ
|FT

k dk|
∥dk∥2 , (37)

where λ is some positive constant. Then

lim
k→∞

∥Fk∥ = 0. (38)

7

Proof From Lemma 3.8 we have (35). Also, from (31) and the boundedness of {∥dk∥},
we have

lim
k→∞

αk∥dk∥2 = 0, (39)

from (37) and (39) we have
lim
k→∞

|FT
k dk| = 0. (40)

Also, from (12) we have,
FT

k dk = −tγ−1
k ∥Fk∥2, (41)

∥Fk∥2 = | − FT
k dkt−1γk|

≤ t−1|γk||FT
k dk|.

(42)

Since

γ−1
k =

(αk−1 + α2
k−1γk−1)yT

k dk

yT
k−1yk−1

=
yT

k−1sk−1

∥yk−1∥2 ≥ h∥sk−1∥2

∥yk−1∥2 ≥ h∥sk−1∥2

H2∥sk−1∥2 =
h

H2 .

Then,

|γ−1
k | ≥ h

H2 .

Therefore from (42) we have,

∥Fk∥2 ≤ |FT
k dk|

(
H2

th

)
. (43)

As a result,

0 ≤ ∥Fk∥2 ≤ |FT
k dk|

(
H2

th

)
−→ 0. (44)

Hence,
lim
k→∞

∥Fk∥ = 0. (45)

The proof is completed.

4. Numerical Experiments

In this section, we test the efficiency and robustness of our proposed method (HDDPM)
using the following existing methods in the literature:

• An improved derivative-free method via double direction approach for solving
systems of nonlinear equations (IDFDD) [5].

The computer codes utilized were written in Matlab 9.4.0 (R2018a) and run on a personal
computer equipped with a 1.80 GHz CPU processor and 8 GB RAM. The two algorithms
were implemented with the same line search (18) in the experiments, and the follow-

ing parameters are set: ω1 = ω2 = 10−4, r = 0.2, and ηk =
1

(k + 1)2 , as they are taken

in [5]. We, however, set t = 1.2 in our algorithm. The program execution is stopped if the

8

total number of iterations exceeds 1000 or ∥Fk∥ ≤ 10−5. To show the extensive numeri-
cal experiments of HDDPM and IDFDD methods, we have tried these methods on the
previous three Benchmark test problems with different initial points and dimensions (n
values) between 1000 and 100,000.

Problem 1 [7]
Fi(x) = (1 − x2

i) + xi(1 + xixn−2xn−1xn)− 2, i = 1,2, ...,n.

Problem 2 [5]
Fi(x) = xi − 3xi

(
sin xi

3 − 0.66
)
+ 2, i = 1,2, ...,n.

Problem 3 [8]
F1 = x1 − ecos(x1+x2

n+1),

Fi = xi − ecos
(xi−1+xi+xi+1

n+1

)
,

Fn = xn − ecos
(

xn−1+xn
n+1

)
, i = 2,3, ...,n − 1.

Table 1: Initial points

INITIAL POINTS (IP) VALUES

x1
(1

2 , 1
2 , ..., 1

2

)T

x2
(1

5 , 1
5 , ..., 1

5

)T

x3
(3

2 , 3
2 , ..., 3

2

)T

x4
(2

5 , 2
5 , ..., 2

5

)T

x5
(
0, 1

2 , 2
3 , ...,1 − 1

n

)T

x6
(

1
4 , −1

4 , ..., (−1)n

4

)T

x7
(
1, 1

2 , 1
3 , ..., 1

n

)T
.

9

Table 2: Numerical results of Problem 1

HDDPM IDFDD
Dimension IP ITER TIME ∥Fk∥ ITER TIME ∥Fk∥

1000 X1 25 0.030161 6.33E-06 28 0.025821 9.52E-06
X2 18 0.013831 9.53E-06 22 0.016813 7.51E-06
X3 26 0.008954 7.04E-06 32 0.014239 9.18E-06
X4 26 0.009624 9.48E-06 30 0.009129 7.91E-06
X5 35 0.014716 9.12E-06 71 0.025831 7.79E-06
X6 28 0.011728 7.73E-06 32 0.016323 9.85E-06
X7 43 0.021941 8.47E-06 43 0.012281 5.72E-06

10,000 X1 27 0.074013 6.45E-06 31 0.074321 7.89E-06
X2 20 0.054277 9.72E-06 24 0.055588 9.72E-06
X3 28 0.082364 7.18E-06 35 0.091056 7.61E-06
X4 28 0.065391 9.67E-06 33 0.075691 6.55E-06
X5 35 0.098831 8.85E-06 70 0.122021 8.45E-06
X6 30 0.069162 7.89E-06 35 0.079785 8.17E-06
X7 45 0.107822 7.78E-06 44 0.091102 8E-06

100,000 X1 29 0.610661 6.59E-06 34 0.733469 6.54E-06
X2 22 0.466959 9.92E-06 27 0.606211 8.06E-06
X3 30 0.634731 7.33E-06 37 0.834964 9.86E-06
X4 30 0.642824 9.87E-06 35 0.743687 8.49E-06
X5 35 0.773071 8.81E-06 72 1.379716 8.15E-06
X6 32 0.699817 8.05E-06 38 0.796549 6.77E-06
X7 46 0.992078 9.97E-06 46 0.962775 9.52E-06

10

Table 3: Numerical results of Problem 2

HDDPM IDFDD
Dimension IP ITER TIME ∥Fk∥ ITER TIME ∥Fk∥

1000 X1 27 0.013652 5.9E-06 35 0.012921 8.26E-06
X2 24 0.008641 8.37E-06 34 0.017416 7.33E-06
X3 29 0.012786 6.99E-06 37 0.022244 8.32E-06
X4 26 0.013085 7.56E-06 35 0.018312 7.01E-06
X5 28 0.010574 8.16E-06 36 0.017413 9.28E-06
X6 24 0.012878 6.97E-06 30 0.016861 9.54E-06
X7 23 0.010061 7.07E-06 33 0.012262 7.05E-06

10,000 X1 29 0.091644 6.02E-06 38 0.111675 6.85E-06
X2 26 0.082632 8.54E-06 36 0.108409 9.5E-06
X3 31 0.100012 7.14E-06 40 0.120401 6.9E-06
X4 28 0.100563 7.71E-06 37 0.116236 9.09E-06
X5 30 0.106658 8.38E-06 39 0.120113 7.73E-06
X6 26 0.082597 7.11E-06 33 0.103787 7.92E-06
X7 24 0.080271 7.28E-06 35 0.096995 8.76E-06

100,000 X1 31 0.716661 6.15E-06 40 0.856886 8.88E-06
X2 28 0.673629 8.72E-06 39 0.831083 7.88E-06
X3 33 0.713915 7.29E-06 42 0.915424 8.94E-06
X4 30 0.629491 7.87E-06 40 0.842118 7.54E-06
X5 32 0.689811 8.56E-06 42 0.883616 6.41E-06
X6 28 0.600796 7.26E-06 36 0.773243 6.56E-06
X7 26 0.576332 6.63E-06 38 0.814174 7.23E-06

11

Table 4: Numerical results of Problem 3

HDDPM IDFDD
Dimension IP ITER TIME ∥Fk∥ ITER TIME ∥Fk∥

1000 X1 47 0.022701 8.17E-06 96 0.043566 8.59E-06
X2 47 0.024558 9.28E-06 96 0.042647 9.76E-06
X3 45 0.025712 8.86E-06 94 0.049323 8.17E-06
X4 47 0.024715 8.54E-06 96 0.044737 8.98E-06
X5 46 0.023917 8.93E-06 95 0.044291 8.8E-06
X6 48 0.030872 7.79E-06 97 0.043297 8.74E-06
X7 47 0.022964 9.99E-06 97 0.045644 7.98E-06

10,000 X1 50 0.158942 9.33E-06 111 0.283166 9.05E-06
X2 51 0.157945 7.54E-06 112 0.302464 7.81E-06
X3 49 0.157441 7.2E-06 109 0.270956 8.6E-06
X4 50 0.155546 9.75E-06 111 0.286364 9.45E-06
X5 50 0.154582 7.23E-06 110 0.281598 9.23E-06
X6 51 0.157617 8.89E-06 112 0.290812 9.2E-06
X7 51 0.156528 8.14E-06 112 0.283862 8.42E-06

100,000 X1 54 1.545911 7.58E-06 115 2.875245 9.54E-06
X2 54 1.495309 8.61E-06 116 2.845327 8.23E-06
X3 52 1.448103 8.22E-06 113 2.723431 9.07E-06
X4 54 1.506604 7.93E-06 115 2.806242 9.97E-06
X5 53 1.492609 8.25E-06 114 2.792279 9.73E-06
X6 55 1.539513 7.23E-06 116 2.868197 9.71E-06
X7 54 1.493281 9.29E-06 116 2.871967 8.89E-06

Tables (2-4) above reported the numerical results of the two methods, where ’ITER’
and ’TIME’ stand for the number of iterations and the CPU time (in seconds), respec-
tively, while ∥Fk∥ is the norm of the residual at the stopping point. From the Tables,
HDDPM and IDFDD methods attempt to solve the problem (1), but it is clear that the
HDDPM method outperforms the IDFDD method. In particular, the HDDPM method
considerably outperforms the IDFDD for almost all the tested problems, as it has the least
iteration and CPU time than the IDFDD method. Due to the contribution of the compu-
tation of correction parameter at each iteration. Thus, the proposed method successfully
solves the large-scale system of nonlinear equations.

12

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

p(
τ)

HDDPM
IDFDD

Figure 1: Performance profile with respect to the number of iterations

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

p(
τ)

HDDPM
IDFDD

Figure 2: Performance profile with respect to the CPU time (in second)

13

Using the performance profile of Dolan and More [12], we generate Figures 1 and 2
to show the performance and efficiency of each of the three methods. That is, for each
method, we plot the fraction P(τ) of the problems for which the method is within a factor
τ of the best time. Figures 1 and 2 show that the curves corresponding to the HDDPM
method stay above the other curve representing the IDFDD method. This indicates that
the proposed method outperforms the compared method in terms of fewer iterations
and CPU time (in second), and hence, it is the most efficient. Finally, it is clear from both
Figures that our method effectively solves the large-scale nonlinear system of equations.

5. Conclusion

Hybridization of double direction method for solving system of nonlinear equations via
Picard-Mann hybrid iterative process in [1] is presented in this work. This was achieved
by modifying the method in [5] using the correction parameter. The proposed method is
an entirely derivative-free iterative method, which is why it is more efficient in solving
large-scale problems. Numerical comparisons have been made using a set of large-scale
test problems. In addition, Table (2-4) and Figure (1-2) have shown that the proposed
method is very efficient because it has the least iteration and CPU time compared to the
IDFDD method. In future research, the idea proposed in this scheme will be applied to
solve the monotone nonlinear equations with application in compressive sensing.

Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this
paper.

References

[1] Safeer H.K. :A Picard-Mann hybrid iterative process, Fixed Point Theory and Ap-
plications. 2013; 69: 10 pages.

[2] Dennis J.E and Schnabel R.B.: Numerical Methods for Unconstrained Optimization
and NonLinear Equations. Prentice Hall, Englewood Cliffs, NJ, 1983.

[3] Waziri M.Y., Leong W.J., Hassan M.A. Jacobian-Free Diagonal Newton’s Method
for Solving Nonlinear Systems with Singular Jacobian. Malay. J. Mathl. Sci. 2011; 5:
241–255.

[4] Yuan G, Lu X.: A new backtracking inexact BFGS method for symmetric nonlinear
equations. Comp. Math. App. 2008; 55: 116–129.

[5] Halilu A.S. and Waziri M.Y.: An improved derivative-free method via double direc-
tion approach for solving systems of nonlinear equations, J of the Ramanujan Mathl.
Society, 2018; 33: 75–89.

[6] Halilu A.S. and Waziri M.Y.: Enhanced matrix-free method via double step length
approach for solving systems of nonlinear equations. Int J app Math Res. 2017; 6:
147–156.

14

[7] Halilu A.S., and Waziri M.Y.: Inexact Double Step Length Method for Solving Sys-
tems of Nonlinear Equations. Stat., Optim. Inf. Comput., 2020; 8: 165–174.

[8] Halilu A.S., and Waziri M.Y.: A transformed double step length method for solving
large-scale systems of nonlinear equations. J. Num Math Stoch. 2017; 9: 20–32.

[9] Abdullahi H., Halilu A. S. and Waziri M. Y.: A Modified Conjugate Gradient
Method via a Double Direction Approach for solving large-scale Symmetric Non-
linear Systems. J. Num Math Stoch. 2018; 10(1): 32–44.

[10] Halilu, A.S. and Waziri, M.Y.: Solving systems of nonlinear equations using im-
proved double direction method, J of the Nigerian Mathl. Soc. 2020; 32(2): 287–301.

[11] Li D., Fukushima M.: A global and superlinear convergent Gauss-Newton based
BFGS method for symmetric nonlinear equation. SIAM J Numer Anal 1999; 37: 152-
172.

[12] Dolan, E. and Moré, J.:Benchmarking opyimization software with performance pro-
files, Journal of Mathematical program, 2002; 91: 201–213.

[13] Petrovic, M.J. and Stanimirovic, P.S.: Accelerated double direction method for solv-
ing unconstrained optimization problems. Mathematical Problems in Engineering
2014; 2014: 1-8.

[14] Petrovic, M.J.: An accelerated double step size model in unconstrained optimiza-
tion, Applied mathematics and computation, 2015; 250: 309–319.

[15] Petrović, M.J., Stanimirović, P.S., Kontrec, N., Mladenović, J. Hybrid Modification of
accelerated double direction method. Math. Probl. Eng. 2018; Article D 1523267: 8
pages. doi.org/10.1155/2018/1523267.

15

	Introduction
	Main result
	Convergence Analysis
	Numerical Experiments
	Conclusion

