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INTRODUCTION 
  

Fractional calculus is as old as the usual calculus. 

In the past several years, many of researchers 

have been trying to generalize the concept of the 

usual derivatives. Nowadays there are many 

definitions for the fractional derivative. Two the 

earliest of definitions are as follows(Capelas de 

Oliveira &et al, 2014; Figueiredo Camargo & et al, 

2015; Herrmann, 2011; Katugampola, 2016; Khalil & 

et al, 2014;  Kilbas & et al, 2006; Kilbas & et al, 2006; 

Podlubny, 1999). 

Definition 1. (Riemann-Liouville definition) If 𝑛 

is a positive integer and 𝛼 ∈ [𝑛 − 1,𝑛) the 𝛼th 

derivative of 𝑓 is given by 

𝐷𝑎
𝛼(𝑓)(𝑥) =

1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑥𝑛 ∫
𝑓(𝑡)

(𝑥−𝑡)𝛼−𝑛+1

𝑥

𝑎
𝑑𝑡.                                                                                              

(1) 

Definition 2.  (Caputo definition) If 𝑛 is a 

positive integer for 𝛼 ∈ [𝑛 − 1,𝑛) the 𝛼th 

derivative of 𝑓 is 

𝐷𝑎
𝛼(𝑓)(𝑥) =

1

Γ(𝑛−𝛼)
∫

𝑓𝑛(𝑡)

(𝑥−𝑡)𝛼−𝑛+1

𝑥

𝑎
𝑑𝑡.                                                                                                     

(2) 

The presented definitions are attempted to satisfy 

the usual properties of the standard derivative 

(Khalil & et al., 2014). The only property inherited 

by all definitions of fractional derivative is the 

linearity property, but there are some 

disadvantages that caused their application 

confront with difficulty (Khalil & et al., 2014). 

In 2014, Khalil et al. proposed the so-called 

conformable fractional derivative of order integer 

𝛼 to generalize the classical properties of 

calculus(Khalil & et al., 2014).One of the 

definitions that have been presented recently is 

conformable fractional derivative that removed 

some of drawbacks the presented definitions. 

More recently, in 2014, Katugampola has also 

proposed an alternative fractional derivative with 

classical properties, which refers to the Leibniz 

and Newton calculus, similar to the conformable 

fractional derivative (Katugampola, 2014). In 2017, 

Sousa and et al., introduced an M-fractional 

derivative involving a Mittag-Leffler function 

with one parameter that also satisfies the 

properties of integer-order calculus (Goreno, 2014; 

Vanterler et al., 2017). In this sense, Sousa and 

Oliveira introduced a truncated M-fractional 

derivative type that unifies four existing fractional 

derivative types mentioned above and which also 

satisfied the classical properties of integer-order 

calculus (Vanterler et al., 2018).  

Definition 3. (Truncated Mittag-Leffler 

function) With  𝛽 > 0, and 𝑧 ∈ ℂ, the truncated 

Mittag-Leffler function of one parameter is 

defined by [6] 

𝔼𝛽(𝑧) = ∑
𝑧𝑘

𝛤(𝑘𝛽+1)

𝑛
𝑘=0𝑛 .                                                                                                                                            

(3) 

 

Definition 4. (Truncated M-fractional 

derivative) Given a function 𝑓: [0 ,∞) → ℝ. Then 

the truncated M-fractional derivative of 𝑓 of order 

𝛼 is defined by  

𝒟𝑛 𝑀
𝛼,𝛽

𝑓(𝑥) = 𝑙𝑖𝑚
𝜀→0

𝑓(𝑥 𝔼𝑖 𝛽(𝜀𝑥−𝛼)−𝑓(𝑥)

𝜀
                                                                                                          

(4) 

for all 𝑥 > 0, 𝛼 ∈ (0 , 1), where 𝔼𝑛 𝛽(. ),  𝛽 > 0 

is the Mittag-Leffler function with one parameter 

as defined by in Eq. 1. Note that if  𝑓 is 𝛼- 

differentiable in some (0 ,  𝑎), 𝑎 > 0, and 

lim
𝑥→0+

𝒟𝑖 𝑀
𝛼,𝛽

𝑓(𝑥) exists, then one can 

define(Vanterler et al., 2017; Vanterler et al., 2018) 

     𝒟𝑛 𝑀
𝛼,𝛽

𝑓(0) = lim
𝑥→0+

𝒟𝑛 𝑀
𝛼,𝛽

𝑓(𝑥). 

If the M-fractional derivative of 𝑓 of order 𝛼 

exists, then we simply say that 𝑓 is 𝛼- 

differentiable. One can easily show that truncated 

M-fractional derivative satisfies all the following 

properties (Vanterler et al., 2017; Vanterler et al., 

2018). 
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Let 𝛼 ∈ (0 , 1) and 𝑓, 𝑔 be functions 𝛼-

differentiable at a point 𝑥 >  0, Then 

       A. (Linearity Rule) For 𝑎, 𝑏𝜖ℝ  𝒟𝑛 𝑀
𝛼,𝛽(𝑎𝑓 +

𝑏𝑔) = 𝑎( 𝒟𝑛 𝑀
𝛼,𝛽

𝑓) + 𝑏 ( 𝒟𝑛 𝑀
𝛼,𝛽

𝑔) ,  

       B. For all 𝑝𝜖ℝ, 𝒟𝑛 𝑀
𝛼,𝛽

𝑥𝑝 =
𝑝

Γ(𝛽+1)
𝑥𝑝−𝛼, 

       C. For all constant functions 𝑓(𝑥) = 𝜆, 

𝒟𝑛 𝑀
𝛼,𝛽

𝜆 = 0, 

       D. (Product Rule) 𝒟𝑛 𝑀
𝛼,𝛽(𝑓. 𝑔) =

𝑔. ( 𝒟𝑛 𝑀
𝛼,𝛽

𝑓) + 𝑓 . ( 𝒟𝑛 𝑀
𝛼,𝛽

𝑔), 

       E. (Quotient Rule) 𝒟𝑛 𝑀
𝛼,𝛽

(
𝑓

𝑔
) =

𝑔.( 𝒟𝑛 𝑀
𝛼,𝛽

𝑓)−𝑓 .( 𝒟𝑛 𝑀
𝛼,𝛽

𝑔)

𝑔2 , 

       F. (Chain Rule) If function 𝑓, ordinary 

differentiable at 𝑔(𝑥), then 𝒟𝑛 𝑀
𝛼,𝛽(𝑓𝑜𝑔) =

𝑓′(𝑔(𝑥). ( 𝒟𝑛 𝑀
𝛼,𝛽

𝑔),  

       G. 𝒟𝑛 𝑀
𝛼,𝛽

𝑓(𝑥) =
𝑥1−𝛼

Γ(𝛽+1)

𝑑𝑓

𝑑𝑥
. 

Definition 5. Let   𝛽 > 0 , 𝛼 ∈ (𝑚 , 𝑚 + 1], for 

some 𝑚 ∈ ℕ, and 𝑓,  𝑚, times differentiable (in 

the classical of sense) for 𝑥 > 0. Then the local 

M-derivative of order 𝑛, of function  𝑓 is defined 

by 

𝒟𝑛 𝑀
𝛼,𝛽,𝑚

𝑓(𝑥) = lim
𝜀→0

𝑓(𝑚)(𝑥 𝔼𝑛 𝛽(𝜀𝑥−𝛼))−𝑓(𝑚)(𝑥)

𝜀
,                                                                                               

(5) 

if and only if the limit exists (Vanterler et al., 2017; 

Vanterler et al., 2018). 

The study of fractional differential equations has 

demonstrated very valuable over time. Solving 

fractional differential equations is very important, 

due to this fact, finding an exact solution and an 

approximate solution of fractional differential 

equations is clearly an important task. The 

purpose of this paper is studied the resonant 

soliton solutions of nonlinear Schrödinger's 

equation, is assumed by 

 

𝑖 𝒟𝑛
𝑡

𝑀
𝛼,𝛽

𝜓 + 𝜂𝜓𝑥𝑥 + 𝛿𝐹(|𝜓|2)𝜓 +

𝛾 {
|𝜓|𝑥𝑥

|𝜓|
} 𝜓 = 0,               (6)                                                                                          

 

where 𝜂 is the coefficient of group-velocity 

dispersion, 𝛿 is the coefficient of non-Kerr 

nonlinearity, and 𝛾 presents the coefficient of 

resonant nonlinearity, by Modified Kudryashov 

method and sine-Gordon expansion approach, 

which 𝒟𝑛
𝑡

𝑀
𝛼,𝛽

𝜓, means truncated M-fractional 

derivative with respect to time-variable t. The 

resonant nonlinear Schrodinger's equation is a 

special type of nonlinear Schrodinger equations 

that is used to describe the dynamic of solitons 

and Madelung fluids in various nonlinear systems 

(Biswas, 2012; Ekici  et al., 2017; Eslami  et al, 2013; 

Hosseini  et al., 2017; Hosseini  et al., 2017; Ilie  et al, 

2018; Ilie  et al., 2018; Ilie et al., 2018; Inc  et al., 2017; 

Inc et al., 2018;  Kudryashov, 2005; Kudryashov, 

2013; Kudryashov, 2012; Mirzazadeh  et al., 2014; 

Mirzazadeh  et al., 2014; Podlubny, 1999; Triki  et al., 

2012; Triki  et al., 2012; Triki  et al., 2018; Zhou  et 

al., 2016; Zhou  et al., 2015).  

MODIFIED KUDRYASHOV METHOD FOR 

TIME M-FRACTIONAL DIFFERENTIAL 

EQUATIONS 

Consider the time M-fractional differential 

equation (Hosseini  et al., 2017; Ilie  et al., 2018)          

𝐹(𝜓,𝑖 𝒟𝑛
𝑡

𝑀
𝛼,𝛽

𝜓,𝜓𝑥,𝜓𝑥𝑥,𝜓𝑥𝑥𝑥, … ) = 0,                                                                                                               

(7) 

where 𝐹 is a polynomial and 𝒟𝑛
𝑡

𝑀
𝛼,𝛽

𝜓, means 

truncated M-fractional derivative with respect to 

time-variable t. The main steps of modified 

Kudryashov method are as the following form 

(Hosseini  et al., 2017; Hosseini  et al., 2017; Ilie  et 
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al., 2018; Kudryashov, 2005; Kudryashov, 2013; 

Kudryashov, 2012). 

Step 1. Under traveling wave transformation  

       ψ(x,t; α) =  U(ξ)eiμ,   ξ = ρx +
υΓ(β+1)

α
tα,  𝜇 = 𝜅𝑥 +

𝜔Γ(𝛽+1)

𝛼
𝑡𝛼 ,   

Eq. 7 can be reduced to nonlinear ordinary 

differential equation 

𝐺(𝑈(𝜉),𝑈′(𝜉),𝑈"(𝜉), … ) = 0.                                                                                                                       

(8) 

Step 2. Let us assume that the solution U(ξ) of 

nonlinear Eq. 8 can be presented as the following   

U(ξ) = a0 + ∑ aiQ
i(ξ),N

i=1      aN ≠ 0,    Q(ξ) =
1

1+daξ,                                                                                   

(9) 

where constant coefficients ai  will be determined 

latter, N is a positive integer that can be computed 

by means of balance principle. 

Step 3. By substituting Eq. 9 into Eq. 8, we obtain 

a system of algebraic equations.  

Step 4. Solving the generated system and setting 

obtained values in Eq. 9, finally produces 

resonant soliton solutions for the time M-

fractional Eq. 7. 

Resonant soliton solution of the time M-fractional 

resonant nonlinear Schrödinger equation via 

Kerr-law nonlinearity   

The Kerr law nonlinearity states 𝐹(𝑠) = 𝑠, which 

this kind of nonlinearity typically arises in the 

context of water waves or nonlinear fiber optics 

when the refractive index of the light is 

proportional to the intensity (Ekici  et al., 2017; Ilie 

et al., 2018). Consider the time M-fractional 

resonant nonlinear Schrödinger's equation with 

nonlinear Kerr law as follows  

𝑖 𝒟𝑛
𝑡

𝑀
𝛼,𝛽

𝜓 + 𝜂𝜓𝑥𝑥 + 𝛿|𝜓|2𝜓 + 𝛾 {
|𝜓|𝑥𝑥

|𝜓|
} 𝜓 = 0,                                                                          

      (10) 

which 𝒟𝑛
𝑡

𝑀
𝛼,𝛽

𝜓, means truncated M-fractional 

derivative with respect to time-variable t. Under 

traveling wave transformation  

     𝜓(𝑥,𝑡; 𝛼) = 𝑈(𝜉)𝑒𝑖𝜇,   𝜉 = 𝑥 +
2𝜂𝜅Γ(β+1)

𝛼
𝑡𝛼 ,      𝜇 = −𝜅𝑥 +

𝜔Γ(β+1)

𝛼
𝑡𝛼 , 

the equation 10 can be reduced to a nonlinear 

ordinary differential equation as the following 

form [13] 

(𝜂 + 𝛾)𝑈′′ − (𝜔 + 𝜂𝜅2)𝑈 + 𝛿𝑈3 = 0.                                                                                                          

(11) 

According to modified Kudryashov method, let us 

assume that the solution 𝑈(𝜉) of nonlinear Eq. 11 

can be as follows (Ilie et al., 2018). 

      𝑈(𝜉) = 𝑎0 + ∑ 𝑎𝑖𝑄
𝑖(𝜉),𝑁

𝑖=1      𝑎𝑁 ≠ 0,                                                                                             

      𝑄(𝜉) =
1

1+𝑑𝑎𝜉 . 

By using the homogeneous balance principle, we 

find 𝑁 = 1, then the solution Eq. 11 is  

𝑈(𝜉) = 𝑎0 + 𝑎1𝑄(𝜉).                                                                                                                                      

(10) 

By substituting Eq. 12 along with its second order 

derivative into Eq. 11 and comparing the terms in 

the resulting equation, a nonlinear system will be 

gained (Ilie et al., 2018). By solving it, we find the 

soliton solution of Eq. 10, for different values of 

parameters 𝑎0, 𝑎1, as follows  

Case 1. 𝑎0 = ±√−
1

2

𝜂+𝛾

𝛿
ln 𝑎 , 𝑎1 =

∓2√−
1

2

𝜂+𝛾

𝛿
 ln 𝑎 ,  and the soliton solution of Eq. 

8 is 

      𝜓(𝑥,𝑡; 𝛼,𝛽) = √−
1

2

𝜂+𝛾

𝛿
ln 𝑎 [±1 +

∓1

1+𝑑𝑎
𝑥+

2𝜂𝜅Γ(𝛽+1)
𝛼

𝑡𝛼
] 𝑒

𝑖(−𝜅𝑥+
(−0.5(ln 𝑎)2(𝜂+𝛾)−𝜂𝜅2)Γ(𝛽+1)

𝛼
𝑡𝛼)

, 

     lim
𝛽→1

𝜓(𝑥,𝑡; 𝛼,𝛽) = 𝜓(𝑥,𝑡; 𝛼), 

where 𝜓(𝑥,𝑡; 𝛼) is a resonant soliton solution of 

resonant nonlinear Schrödinger's equation with 

nonlinear Kerr law, which is solved by Modified 

Kudryashov method (Ilie et al., 2018). The 3D 
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graph of 𝑅𝑒(𝜓(𝑥,𝑡; 𝛼,𝛽)), and 𝐼𝑚(𝜓(𝑥,𝑡; 𝛼,𝛽)), are 

illustrated in Figs. 1. 

 

 

 
 

 

 

 
 
Figs. 1. Plots of the 𝑅𝑒(𝜓(𝑥,𝑡; 𝛼,𝛽)) and 𝐼𝑚(𝜓(𝑥,𝑡; 𝛼,𝛽)) corresponding to the values (𝛼,𝛽) = (0.8,1.5), (1,1.5)  from left 

to right when 𝜂 = 1,𝛽 = 1, 𝜅 = 1,𝛾 = 1,𝑑 = 1,𝑎 = 2.7 respectively. 

Case 2. 𝑎0 , 𝑎1 are arbitrary real number and 𝛽 =

0, and 𝜂 = −𝛾 and the soliton solution of Eq. 8 is 

    

       𝜓(𝑥,𝑡; 𝛼,𝛽) = [𝑎0 +

𝑎1

1+𝑑𝑎
𝑥−

2𝛾𝜅Γ(𝛽+1)
𝛼 𝑡𝛼

] 𝑒
𝑖(−𝜅𝑥+

𝛾𝜅2Γ(𝛽+1)

𝛼
𝑡𝛼)

, 

      lim
𝛽→1

𝜓(𝑥,𝑡; 𝛼,𝛽) = 𝜓(𝑥,𝑡; 𝛼), 

where 𝜓(𝑥,𝑡; 𝛼) is a resonant soliton solution of 

resonant nonlinear Schrödinger’s equation with 

nonlinear Kerr law, which is solved by Modified 

Kudryashov method (Ilie et al., 2018). The 3D graph 

of 𝑅𝑒(𝜓(𝑥,𝑡; 𝛼,𝛽)), and 𝐼𝑚(𝜓(𝑥,𝑡; 𝛼,𝛽)), are showed 

in Figs. 2. 
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Figs. 2. Plot of the 𝑅𝑒(𝜓(𝑥,𝑡; 𝛼,𝛽)) and 𝐼𝑚(,(𝑥,𝑡; 𝛼,𝛽)) corresponding to the values (𝛼,𝛽) = (0.8,2.5), (1,1.5)  from left to 

right  when 𝑎0 = −2,𝑎1 = −1, 𝜅 = 1, 𝛾 = 1,𝑑 = 2,𝑎 = 2.7 respectively. 

Resonant soliton solution of the time M-fractional 

resonant nonlinear Schrödinger equation with 

Parabolic-law nonlinearity   

For parabolic-law nonlinearity, 𝐹(𝑠) = 𝛿𝑠 + 𝛾𝑠2 

where 𝛽 and 𝛾 are in general constants. This case 

appears in fiber optics (Ekici et al., 2017; Ilie et al., 

2018). Consider the time M-fractional resonant 

nonlinear Schrödinger's equation with parabolic law 

nonlinearity as follows  

𝑖 𝒟𝑛
𝑡

𝑀
𝛼,𝛽

𝜓 + +𝜂𝜓𝑥𝑥 + (𝛿|𝜓|2 + 𝛾|𝜓|4)𝜓 +

𝜆 {
|𝜓|𝑥𝑥

|𝜓|
} 𝜓 = 0,                                                                  

(13) 

which 𝒟𝑛
𝑡

𝑀
𝛼,𝛽

𝜓, means truncated M-fractional 

derivative with respect to time-variable t. Under 

traveling wave transformation  

      𝜓(𝑥,𝑡; 𝛼) = 𝑈(𝜉)𝑒𝑖𝜇 ,   𝜉 = 𝑥 +
2𝜂𝜅Γ(𝛽+1)

𝛼
𝑡𝛼 ,      𝜇 = −𝜅𝑥 +

𝜔Γ(𝛽+1)

𝛼
𝑡𝛼 , 

the equation 13 can be reduced to a nonlinear ordinary 

differential equation as the following form (Ilie & et 

al., 2018) 
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      (𝜂 + 𝜆)𝑈′′ − (𝜔 + 𝜂𝜅2)𝑈 + 𝛿𝑈3 + 𝛾𝑈5 = 0.                                                                                

Regarding to modified Kudryashov method and by 

using of transformation 

      𝑈(𝜉) = 𝑉
1

2(𝜉), 

Eq. 9 converts   

(𝜂 + 𝜆)(2𝑉𝑉" − (𝑉′)2) − 4(𝜔 + 𝜂𝜅2)𝑉2 + 4𝛿𝑉3 +

4𝛾𝑉4 = 0.                                                                 

(14) 

By means of the homogeneous balance principle, we 

obtain 𝑁 = 1, then the solution of Eq. 14 is 

𝑉(𝜉) = 𝑎0 + 𝑎1𝑄(𝜉),                                                                                                                                     

(15) 

𝑄(𝜉) =
1

1 + 𝑑𝑎𝜉
 . 

By substituting Eq. 15 along with its second order 

derivative into Eq. 14 the resulting equation, a 

nonlinear system is expanded (Ilie  et al., 2018). From 

solving nonlinear algebraic equations system, we 

attain  

Case 1. 𝑎0 = 0 , 𝑎1 is arbitrary real number and 

      𝛿 = −
4

3
𝛾𝑎1,  𝜆 = −

3(ln 𝑎)2𝜂+4𝛾𝑎1
2

3(ln 𝑎)2
 , 𝜔 =

−
1

3
𝛾𝑎1

2 − 𝜂𝜅2 , then the soliton solution of Eq. 13 is 

      𝜓(𝑥,𝑡; 𝛼,𝛽) =

√
𝑎1

1+𝑑𝑎
𝑥+

2𝜂𝜅Γ(𝛽+1)
𝛼 𝑡𝛼

𝑒𝑖(−𝜅𝑥+
𝜔Γ(𝛽+1)

𝛼
𝑡𝛼), 

      lim
𝛽→1

𝜓(𝑥,𝑡; 𝛼,𝛽) = 𝜓(𝑥,𝑡; 𝛼), 

where 𝜓(𝑥,𝑡; 𝛼) is a resonant soliton solution of 

resonant nonlinear Schrödinger's equation with 

parabolic law nonlinearity, which is solved by 

Modified Kudryashov method  (Ilie  et al., 2018). 

The 3D plots of 𝑅𝑒(𝜓(𝑥,𝑡; 𝛼,𝛽)), and 

𝐼𝑚(𝜓(𝑥,𝑡; 𝛼,𝛽)), are exhibited in Figs. 3. 

 

 
 

 

 

 

Figs. 3. Plot of the 𝑅𝑒(𝜓(𝑥, 𝑡; 𝛼, 𝛽)) and 𝐼𝑚(𝜓(𝑥, 𝑡; 𝛼, 𝛽)) corresponding to the values (𝛼, 𝛽) = (0.8,1.2), (1,0.5)  from 

left to right when 𝑎1 = −3, 𝜂 = −2, 𝜅 = 1, 𝛾 = 2, 𝑑 = 4, 𝑎 = 2.7 respectively. 

Case 2. 𝑎0 = −𝑎1 , 𝑎1 is an arbitrary real number and 
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      𝛿 =
4

3
𝛾𝑎1,  𝜆 = −

3(ln 𝑎)2𝜂+4𝛾𝑎1
2

3(ln 𝑎)2  , 𝜔 =

−
1

3
𝛾𝑎1

2 − 𝜂𝜅2 , then the soliton solution of Eq. 13 is 

      𝜓(𝑥,𝑡; 𝛼,𝛽) =

√−𝑎1 +
𝑎1

1+𝑑𝑎
𝑥+

2𝜂𝜅Γ(𝛽+1)
𝛼

𝑡𝛼
𝑒𝑖(−𝜅𝑥+

𝜔Γ(𝛽+1)

𝛼
𝑡𝛼)

, 

     lim
𝛽→1

𝜓(𝑥,𝑡; 𝛼,𝛽) = 𝜓(𝑥,𝑡; 𝛼), 

where 𝜓(𝑥,𝑡; 𝛼) is a resonant soliton solution of 

resonant nonlinear Schrödinger's equation with 

parabolic law nonlinearity, which is solved by 

Modified Kudryashov method (Ilie  et al., 2018). 

The 3D graph of 𝑅𝑒(𝜓(𝑥,𝑡; 𝛼,𝛽)), and 

𝐼𝑚(𝜓(𝑥,𝑡; 𝛼,𝛽)), are revealed in Figs. 4. 

 

 
Figs. 4. Plot of the 𝑅𝑒(𝜓(𝑥, 𝑡; 𝛼, 𝛽)) and 𝐼𝑚(𝜓(𝑥, 𝑡; 𝛼, 𝛽)) corresponding to the values (𝛼, 𝛽) = (0.8,0.2), (1,0.5)  from 

left to right when 𝑎1 = −2, 𝜂 = 1, 𝜅 = 1, 𝛾 = −4, 𝑑 = 2, 𝑎 = 2.7 respectively. 

 

SINE-GORDON EXPANSION METHOD FOR 

THE TIME M-FRACTIONAL DIFFERENTIAL 

EQUATIONS 

From previous section, assume that the solution of Eq. 

11 can be articulated as follows (Ekici et al., 2017; 

Hosseini et al., 2017; Hosseini et al., 2017; Ilie et al., 

2018) 

     𝑈(𝜉) = 𝐴0 + ∑ tanh𝑖−1(𝜉)𝑁
𝑖=1 [𝐵𝑖 sech(𝜉) +

𝐴𝑖 tanh(𝜉)],                                                         
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or                                                                                                                                                         

(16) 

     𝑈(𝑤(𝜉)) = 𝐴0 +

∑ cos𝑖−1(𝑤(𝜉))𝑁
𝑖=1 [𝐵𝑖 sin(𝑤(𝜉)) +

𝐴𝑖 cos(𝑤(𝜉))].                                                 

Calculating the positive integer N using the 

homogeneous balance technique, setting Eq. 16 

into Eq. 8, and                                                 

comparing the terms, produces a nonlinear 

algebraic system which by solving it, we achieve 

the resonant soliton solutions of the time M-

fractional Eq. 7 (Ekici et al., 2017; Hosseini et al., 

2017; Hosseini et al., 2017; Ilie et al., 2018). 

Resonant soliton solution of the time M-

fractional resonant nonlinear Schrödinger 

equation via Kerr-law nonlinearity   

As stated by previous section and sine-Gordon 

method, let us presume that the solution 𝑈(𝜉) of 

nonlinear ordinary differential equation 11 can be 

as follows Eq. 16. By using the homogeneous 

balance principle, we find 𝑁 = 1, then the 

solution (16) is the following form 

     𝑈(𝜉) = 𝐵1 sech(𝜉) + 𝐴1 tanh(𝜉) + 𝐴0, 

and therefore                                                                                                                                                      

(17) 

     𝑈(𝑤(𝜉)) = 𝐵1 sin(𝑤(𝜉)) + 𝐴1 cos(𝑤(𝜉)) +

𝐴0, 

where either 𝐴1or 𝐵1 may be zero, but both 𝐴1 or 

𝐵1cannot be zero simultaneously. By substituting 

Eq. 17 along with its second order derivative into 

Eq. 11 and comparing the terms in the resulting 

equation, a nonlinear system will be gained (Ekici 

et al., 2017; Hosseini et al., 2017; Hosseini et al., 2017; 

Ilie et al., 2018). By solving it, we obtain the soliton 

solutions of time fractional resonant nonlinear 

Schrödinger equation via Kerr law nonlinearity 

10, as  

Case 1. 𝜓(𝑥, 𝑡; 𝛼, 𝛽) =

±𝑒𝑖(−𝜅𝑥+
(−𝜂𝜅2−2𝜂−2𝛾)Γ(𝛽+1)

𝛼
𝑡𝛼)√−

2𝜂+2𝛾

𝛿
tanh (𝑥 +

2𝜂𝜅Γ(𝛽+1)

𝛼
𝑡𝛼), 

      lim
𝛽→1

𝜓(𝑥, 𝑡; 𝛼, 𝛽) = 𝜓(𝑥, 𝑡; 𝛼), 

where 𝜓(𝑥, 𝑡; 𝛼) is a resonant soliton solution of 

resonant nonlinear Schrödinger's equation with 

Kerr low nonlinearity, which is solved by way of 

sine-Gordon technique [13]. The 3D plots of 

𝑅𝑒(𝜓(𝑥, 𝑡; 𝛼, 𝛽)), and 𝐼𝑚(𝜓(𝑥, 𝑡; 𝛼, 𝛽)), are 

demonstrated in Figs. 5. 
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Figs. 5. Plot of the 𝑅𝑒(𝜓(𝑥, 𝑡; 𝛼, 𝛽)) and 𝐼𝑚(𝜓(𝑥, 𝑡; 𝛼, 𝛽)) corresponding to  

the values (𝛼, 𝛽) = (0.8,1.5), (1,0.5)  from left to right when 𝜂 = 1, 𝛽 = 1, 𝜅 = −1, 𝛾 = 1 respectively. 

Case 2. 𝜓(𝑥, 𝑡; 𝛼, 𝛽) =

±𝑒𝑖(−𝜅𝑥+
(−𝜂𝜅2+2𝜂+2𝛾)Γ(𝛽+1)

𝛼
𝑡𝛼)√

2𝜂+2𝛾

𝛿
sech (𝑥 +

2𝜂𝜅Γ(𝛽+1)

𝛼
𝑡𝛼), 

      lim
𝛽→1

𝜓(𝑥, 𝑡; 𝛼, 𝛽) = 𝜓(𝑥, 𝑡; 𝛼), 

where 𝜓(𝑥, 𝑡; 𝛼) is a resonant soliton solution of 

resonant nonlinear Schrödinger's equation with 

Kerr low nonlinearity, which is solved by way of 

sine-Gordon technique (Ilie et al., 2018). The 3D 

plots of 𝑅𝑒(𝜓(𝑥, 𝑡; 𝛼, 𝛽)), and 𝐼𝑚(𝜓(𝑥, 𝑡; 𝛼, 𝛽)), 

are explained in Figs. 6. 
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Figs. 6. Plot of the 𝑅𝑒(𝜓(𝑥, 𝑡; 𝛼, 𝛽)) and 𝐼𝑚(𝜓(𝑥, 𝑡; 𝛼, 𝛽)) corresponding to 

 the values (𝛼, 𝛽) = (0.8,0.5), (1,0.5)  from left to right when 𝜂 = 1, 𝛽 = 1, 𝜅 = −1, 𝛾 = 1 respectively. 

Case 3. 𝜓(𝑥, 𝑡; 𝛼, 𝛽) =

±𝑒
𝑖(−𝜅𝑥−

(2𝜂𝜅2+𝜂+𝛾)Γ(𝛽+1)

2𝛼
𝑡𝛼)

√
𝜂+𝛾

−2𝛿
[tanh (𝑥 +

2𝜂𝜅Γ(𝛽+1)

𝛼
𝑡𝛼) ± sech (𝑥 +

2𝜂𝜅Γ(𝛽+1)

𝛼
𝑡𝛼)], 

      lim
𝛽→1

𝜓(𝑥, 𝑡; 𝛼, 𝛽) = 𝜓(𝑥, 𝑡; 𝛼), 

where 𝜓(𝑥, 𝑡; 𝛼) is a resonant soliton solution of 

resonant nonlinear Schrödinger's equation with 

Kerr low nonlinearity, which is solved by way of sine-

Gordon technique (Ilie et al., 2018). The 3D plots of 

𝑅𝑒(𝜓(𝑥, 𝑡; 𝛼, 𝛽)), and 𝐼𝑚(𝜓(𝑥, 𝑡; 𝛼, 𝛽)), are clarified 

in Figs. 7. 
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Figs. 7. Plot of the 𝑅𝑒(𝜓(𝑥, 𝑡; 𝛼, 𝛽)) and 𝐼𝑚(𝜓(𝑥, 𝑡; 𝛼, 𝛽)) corresponding to 

 the values (𝛼, 𝛽) = (0.8,1.5), (1,1.5) from left to right when 𝜂 = 1, 𝛽 = 1, 𝜅 = −1, 𝛾 = 1 respectively 

CANCLUSION 

As the wide application of fractional derivatives in 

applied sciences, in the present article, we have 

strained to detect resonant soliton solutions to the time 

M-fractional forms of resonant nonlinear Schrödinger 

equations with different nonlinearity. For this purpose, 

we have used modified Kudryashov method and sine-

Gordon expansion approach. The modified 

Kudryashov method and the sine-Gordon expansion 

approach were applied as an effectual procedure for 

solving the time M-fractional resonant nonlinear 

Schrödinger equations with Kerr law nonlinearity. The 

modified Kudryashov method was used as an effective 

arrangement to solve the time M-fractional resonant 

nonlinear Schrödinger equations via parabolic law 

nonlinearity. It would be stated the validity of the 

results reported in this article was investigated by 

putting each soliton solution back into its 

corresponding equation.  
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