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Abstract
This paper provides a novel meta-heuristic optimization algo-

rithm. The behaviors of flying squirrels in the nature are the main
inspiration of this research. These behaviors include flying from tree
to tree and walking on the ground or on a tree branch to find food.
They also contact each other with chirp or squeak. This algorithm
is named flying squirrel optimizer (FSO). Two main theories of mo-
tion were used for the simulation of flying and walking of the flying
squirrels and they are Lévy flight and normal random walk. FSO is
also benchmarked on twelve mathematical functions and the an-
swers are compared with MFO, PSO, GSA, BA, FPA, SMS, and
FA. The results show that FSO can provide good results when com-
pared with these well-known meta-heuristics approaches. Five clas-
sical engineering problems and a real issue in the field of dam
engineering were employed to challenge the FSO abilities in solving
engineering design problems. The results also show that the pro-
posed FSO algorithm can be used on a wide range of problems with
unknown search spaces.
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INTRODUCTION
The description of optimization is to detect a

feasible solution with the most affordable per-
formance considering the constraints by maxi-
mizing the desired variables and minimizing the
undesired ones. Optimization methods are made
to supply the ‘best’ values of system design and
operating policy variables, which will result in
the highest levels of efficiency (Yang and Press,
2010).

Meta-heuristics are usually an efficient ap-
proach to use trial and error to create acceptable
answers to a complex problem in a reasonably
practical time. The complexness in a problem
makes it impossible to find every possible solu-
tion or combination; the target is to discover
good and feasible solutions in an adequate
timescale (Mirjalili, Mirjalili and Hatamlou,
2016).

The principal aspects of any meta-heuristic al-
gorithm are intensification and diversification.
Intensification means focusing within the search

in a local region exploiting the content that a cur-
rent good-enough answer is discovered in this re-
gion (this can be in combination with selecting
the most beneficial solutions), while diversifica-
tion means generating different solutions, which
explore the variables domain on the global scale,
Diversification using randomization improves
the diversity of the solutions and keeps the solu-
tions from being trapped at local optima. The
great combination of these two major compo-
nents will often ensure that the global best re-
sponse is accessible (Kaveh and Ghazaan, 2017).

A general systematization of the optimization
algorithms is: Evolutionary Algorithms (EAs),
physics-based algorithm, and Swarm Intelligence
(SI) algorithms. Some of the important algo-
rithms in this category are listed on a timeline for
a deeper review as shown in Fig. 1. EAs are
shown in the red rectangles. The blue rectangles
are physic-based and the SI-based algorithms are
green rectangles.
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Fig. 1. History timeline of meta-heuristics

Evolutionary algorithms were the primary
meta-heuristic algorithms, in 1975 to 1994.
Physic-based meta-heuristics started to be highly
considered from 1995 to 2011, although the PSO
and a number of other SI-based algorithms were
conducted in these years. Optimization re-

searchers have made considerable progress on
Swarm Intelligence-based algorithms since 2012.

However, the only significant point is the fact
that meta-heuristic algorithms have found many
applications in numerous aspects of engineering,
applied mathematics, medicine, economics, and

Iranian Journal of Optimization, 11(2), 177-205, December 2019178



also other sciences.
Aside from this, recently various corrections

are proposed within the basic versions of existing
nature-inspired algorithms for solving complex
optimization problems. For example, slow con-
vergence rate of ABC algorithm is modified, de-
veloped and improved in the variant IABC
(improved ABC) (Nourani et al., 2008; Chong
and Zak, 2013) and tested on several reliability-
based design optimization (RBDO) problems.
Furthermore, the performance of basic Differen-
tial Evolution (DE) is improved for large scale
optimization problems by embedding an effec-
tive switching mechanism for two main control
parameters of DE (Liu, Cai and Wang, 2010).
The matter of low convergence efficiency of
basic cuckoo search algorithm is resolved by in-
tegrating chaos mechanism as well as the result-
ing improved cuckoo search (ICS) is successfully
put on to optimization problem of visible light
communications (VLC) in smart homes (Yang
and Deb, 2009; Gandomi, X. S. Yang and Alavi,
2013). 

All nature-inspired algorithms have some gen-
eral specification like: (i) they mimic some nat-
ural phenomenon (ii) they don't need gradient
information (iii) they use random variables (iv)
and contain various parameters which need to be
determined adequately to solve a problem
(Chong and Zak, 2013). Each algorithm proposes
specific advantages, in term of robustness, per-
formance in the existence of uncertainty and un-
known search spaces (Chong and Zak, 2013).

Regardless of the presence of many outstand-
ing optimization algorithms in literature, scien-
tific community continues to developing new
optimization methods for solving new and more

advanced optimization problems underneath ide-
ology of continuous improvement to get better
design. In addition, according to the “no free
lunch” (NFL) theorem, there isn't any single na-
ture-inspired optimization method, which can op-
timally solve all optimization problems (Chong
and Zak, 2013). Consequently, an optimization
algorithm is qualified for solving a particular
group of problems but ineffective on other class
of problems (Chong and Zak, 2013). The NFL
theorem, certainly, keeps this domain of research
open and allows the researchists to develop the
current algorithms or suggest new algorithms for
better optimization process. Hereupon, this paper
introduces a novel SI-based meta-heuristic algo-
rithm, named Flying Squirrels Optimizer (FSO)
and the concepts are inspired with the flying and
walking of flying squirrels to find chestnut
(food). The proposed algorithm is performed to
unconstrained test functions and constrained en-
gineering design issues with discrete and contin-
ues variables. Additionally, it can be used for the
dam engineering design, to express its applica-
tion to solve the real-world engineering prob-
lems.

The remaining paper is sectioned as follows:
Section 2 describes the inspiration behind this
work and presents the natural behaviors of flying
squirrels. Mathematical formulation of the be-
haviors of flying squirrels is described in section
3. The experimental setup, results, discussion,
and analysis are given in Section 4. This section
also evaluates the potency of the proposed FSO
algorithm in solving six constrained engineering
design problems. Finally, all the conclusions of
the paper are presented in section 5.
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Fig. 2. Two motion phase of flying squirrels to find food (a) Walking, and (b) Flying

Iranian Journal of Optimization, 11(2), 177-205, December 2019 179



FLYING SQUIRRELS
Flying squirrels optimizer is a new meta-

heuristic swarm-based optimization algorithm
and it has been performed to solve mathematic
and engineering problems. This section intro-
duces the flying squirrels apparent characteristics
and their natural behavior to find food and con-
tact each other.

Flying squirrels (Glaucomys sabrinus) range
from the tree line in Alaska and Canada south-
ward in the western world to Northern California
and Colorado, in the middle of the continent to
Central Michigan and Wisconsin, and through
the east to northern North Carolina and Ten-
nessee. Flying squirrels are clumsy on the
ground, but they are able to glide gracefully from
tree to tree.  Their motion on the ground is mod-
eled as a random walk with normal distribution
steps and the flying phase is simulated based on
Lévy flight theory. Flying squirrels emit a soft
low chirp, thus, they squeak when distressed. In
addition, they prefer scent and touch to commu-
nicate with one another. The communication
foundation of search agents in FSO is also
formed on the basis of the mentioned future of
flying squirrels (Holloway and Malcolm, 2007;
Weigl, 2007; Wilson, 2010).

There are two advantage of moving search
agents in FSO, as stated earlier: random walk and
Lévy flight. Mathematical modeling of these mo-
tions is explained in the following.

MATHEMATICAL IMPLEMENTATION
This section contains two subheadings. The

theoretical bases of the two main motions, in-
cluding random walk and Lévy flights, are de-
scribed in these subsections. The computational
complexity of SFO is also described in these sub-
sections.

Random walk
A random walk can be a random process which

features is taking a number of consecutive ran-
dom step. Random walks have many applications
in physics, economics, statistics, computer sci-
ences, environmental science, and engineering.
Consider a scenario where a drunkard walks on
a street, at each step, he can randomly go forward
or backward, this forms a random walk in one di-

mensional. If this drunkard walks on a football
pitch, he can walk in any direction randomly; this
becomes a 2D random walk. Mathematically
speaking, let SN denotes the sum of each consec-
utive random step Xi, then SN forms a random
walk in N dimensions (Rao, 2009):

SN=∑i=1 N X i =X1+...+XN (1)

where Xi is a random step drawn from a random
distribution. This relationship can also be written
as a recursive formula:

SN= ∑i=1 N-1 Xi + XN=SN-1 + XN (2)

which means the next state SN will only depend
on the current existing state SN-1 and the motion
or transition XN from the existing state to the next
state. Here, the step size or length in a random
walk can be fixed or varied. In addition, there is
no reason why each step length should be fixed.
In fact, the step size can also vary according to a
known distribution. If the step length obeys the
Gaussian distribution, the random walk becomes
the Brownian motion. In this theory, as the num-
ber of steps N increases, the central limit theorem
implies that the random walk should approach a
Gaussian (Normal) distribution. The probability
density of the normal distribution is shown in Eq.
(3) (Rao, 2009).

(3)

where  μ is the mean or expectation of the dis-
tribution (and also its median and mode) that
shows the position of flying squirrels in the cur-
rent iteration. σ is the standard deviation and σ2

is the variance. Fig. 3 shows two examples of
random walk in 2 and 3 dimensions.

A semi sigmoid function can also be applied in
the standard deviation of walking steps. It is
named Sigma Reduction Factor (SRF), which
helps to increase the search accuracy in random
walk phase. Sigmoid function is a mathematical
function having a characteristic S-shaped curve
or sigmoid curve. It is defined by the formula in
Eq. 4 (Mirjalili and Lewis, 2013; Kaveh, 2014;
Mirjalili, Mirjalili and Yang, 2014).

Azizyan et al./ Flying Squirrel Optimizer...
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(4)
Often, sigmoid function refers to the special

case of the logistic function as shown in Fig. 4.
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Fig. 3. Random Walk: a) a Flying Squirrel motion in 2D and 500 steps b) three Flying Squirrels (black and bold cir-
cles) in 3D and 1000 steps

Fig. 4. S-shaped sigmoid function

SRF is a semi sigmoid function as stated ear-
lier. It is considered as a factor of standard devi-
ations of movement steps. It causes a decrease in
the standard deviation of flying squirrels motion
per each iteration. The inverse of sigmoid func-
tion was used to achieve this goal. Inverted sig-
moid function is written as follows.

(5)

SRF per iteration and the effects of SRF on the
steps size are as shown in Fig. 5.
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Lévy flight
Lévy flights were observed among foraging

patterns of albatrosses and fruit flies, and spider
monkeys. Even when humans like the Ju/’hoansi
hunter-gatherers can trace paths of Lévy-flight
patterns. In addition, Lévy flights have many
uses. Many physical phenomena such as the dif-
fusion of fluorescent molecules, cooling behav-
ior, and noise could show Lévy-flight
characteristics under the right conditions. So, this
can be applied on the flying phase of flying squir-
rels motion.

Mathematically speaking, a simple version of
Lévy distribution can be defined as (Yang and
Deb, 2009; Yang and Press, 2010):

(6)

where μ>0 is a minimum step and γ is a scale
parameter. Clearly, as s→∞, we have:

(7)

This is a special case of generalized Lévy dis-
tribution. In general, Lévy distribution should be
defined in terms of Fourier transform as follows:

F(k)=exp[-α|k|β ] ,    0<β≤2 (8)

where α is a scale parameter. The inverse of this
integral is not easy, since it does not have analyt-
ical form, it is not expected for a few special
cases. In the case where β=2, we have:

F(k)=exp[-αk2 ] (9)

whose inverse Fourier transform corresponds
to a Gaussian distribution. Another special case
is β=1, and we have:

(k)=exp[-α|k|] (10)

which correspond to a Cauchy distribution:

(11)

where μ is the location parameter, while γ con-
trols the scale of this distribution. For the general
case, the inverse integral:

(12)
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Fig. 5. (a) SFR per iteration and (b) the effects of SRF on the Brownian motion in 2D with 200 steps
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can be estimated only when s is large. We have:

(13)

Here, Γ(z) is the Gamma function:

(14)

In the case when z=n is an integer, we have
Γ(n)=(n-1)!.

Lévy flights are more efficient than Brownian
random walks in exploring unknown large-scale
search space. There are many reasons to explain

this efficiency and one of them is due to the fact
that the variance of Lévy flights:

σ2 (t)~t3-β ,   1≤β≤2  (15)

increases much faster than the linear equation
(that is, σ2 (t)~t) of Brownian random walks. Fig.
6 shows the path of Lévy flights of 1000 steps
starting from (0, 0) with β=1.5. It is good to point
out that a power-law distribution is often linked
to some scale-free characteristics and Lévy
flights can thus show self-similarity and fractal
behavior in the flight patterns.

Azizyan et al./ Flying Squirrel Optimizer...

Fig. 6. Lévy flight (a) 2D space with 500 steps and (b) three Flying Squirrels (black and bold circles) in
3D and 1000 steps

From the implementation point of view, the
generation of random numbers with Lévy flights
involves two steps: the choice of a random direc-
tion and the generation of steps which obey the
chosen Lévy distribution. The generation of a di-
rection should be drawn from a uniform distribu-
tion, while the generation of steps is quite tricky.
There are a few ways of achieving this, but one
of the most efficient and yet straightforward
ways is to use the so-called Mantegna algorithm
for a symmetric Lévy stable distribution. Here,
'symmetric' means that the steps can be positive

and negative. A random variable U and its prob-
ability distribution can be called stable if a linear
combination of its two identical copies (or U1 and
U2) obeys the same distribution. That is,
aU2+bU2 has the same distribution as cU2+d,
where a,b>0 and c,d∈R. If d=0, it is called
strictly stable. The step lengths can be calculated
by:

(16)

where u and v are drawn from normal distribu-
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tion. That is:

u~N(0,σu2 )  ,v~N (0,σv2 )  (17)

Where

(18)

This distribution (for s) obeys the expected
Lévy distribution for |s|≥|s0 | where s0 is the

smallest step. In principle, |s0 |≫0, but in reality,
it can be taken as a sensible value such as s0=0.1
to 1. Studies have shown that Lévy flights can
maximize the efficiency of resource searches in
uncertain environments. 

A linear function is proposed to increase β in
each iteration. It is called Beta Expansion Factor
(BEF). This causes an increase in β of the Lévy
flight of flying squirrels and an increase in steps
length of the Lévy flight phase. It is recom-
mended that a factor of 1.05 should be used for
BEF to obtain sustainable results.
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Fig. 7. (a) BEF per iteration and (b) the effects of BEF on the Lévy flight in 2D with 200 steps.

Broadly, all nature-inspired metaheuristics im-
itate two distinct features of nature i.e. adaptabil-
ity and choice of the fittest, which gives them a
similar appearance superficially. Most of the al-
gorithms utilize the concept of motion pattern,
which is constructed through randomly generated
solutions of optimization problem under consid-
eration (Yang, 2010b). Metaheuristic algorithms
are generally differentiated on the basis of their
solution updating strategy. The lenght and direc-
tion of each squirrel’s step is recursively updated
at each iteration through a suitable updating
mechanism. This mechanism injects new attrib-
utes or patterns in the algorithm while maintain-
ing diversity in solutions.

Consequently, the random walk searches more
accurately and Lévy flight has more randomiza-

tion in its steps. Therefore, half of the search op-
erators, which present better results, uses random
walk to the optima. This makes it possible to in-
crease the exploration trait of the FSO algorithm
near the optimal location. Others are moved with
Lévy flight in each iteration. It causes a more ran-
dom movement in zones with low probability of
optimal point. Therefore, a good balance is
achieved between exploration and exploitation
terms.

CASE STUDY AND DISCUSSION
This section presents the results of FSO. Meta-

heuristic algorithms have a random nature to find
optimum, so it is necessary to prove the absence
of luck in finding the optimal solution. Obtained
responses are carefully checked and compared
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with the results of existing algorithms. Firstly,
twelve well-known test functions are tested in a
space with100 dimensions and the results are
compared with the MFO (Mirjalili, 2015a), PSO
(Cagnina, Esquivel and Coello, 2008), GSA
(Mirjalili and Lewis, 2014), BA (Yang, 2010a),
FPA (Yang, 2012), SMS (Cuevas, Echavarría and
Ramírez-Ortegón, 2014), and FA (Fausto et al.,
2017) algorithms, to verify the results. FSO can
also be applied to these semi-real problems: ten-
sion-compression spring design, welded beam
design, pressure vessel design, multiple disk
clutch brake design, and gear train design. More-

over, this section provides one case of real appli-
cation of the proposed method in the field of con-
crete gravity dam engineering, including
SHAFAROUD dam design optimization.

Case study of unconstrained problems
Unimodal test functions are ideal means for

featuring the algorithm’s power throughout the
exploration. Multimodal benchmark functions
are also an effective criterion for the exploitation.
Functions that are used for the test are shown in
Tables 1 and 2.

Azizyan et al./ Flying Squirrel Optimizer...

Function Dim Range fmin

100 [-100,100] 0

100 [-10,10] 0

100 [-100,100] 0

100 [-100,100] 0

100 [-30,30] 0

100 [-100,100] 0

100 [-1.28,1.28] 0

Table 1: Unimodal benchmark functions.

Function Dim Range fmin

100 [-100,100] -1

100 [-5.12,5.12] 0

100 [-32,32] 0

100 [-600,600] 0

100 [-50,50] 0

Table 2:  Multimodal benchmark functions.
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These functions are assessed in 100 dimensions
and the obtained results are compared with the
responses of MFO, PSO, GSA, BA, FPA, SMS,
and FA algorithms, as earlier stated. The search
agents and number of iteration loops for all of
these algorithms are 50 and 1000, respectively,
to conduct a fair comparison.

Tables 1 and 2 provide the test functions, where
“Dim” is the states dimension of the function,

“Range” is the boundary of the function’s search
space, and fmin is the optimum.

Generally speaking, the benchmark functions
were employed to evaluate the ability of algo-
rithms to minimization optimization. All the al-
gorithms were run 30 times on each test
functions, independently. The statistical results
(Mean and Standard deviation, Std) are shown in
Tables 3 and 5.
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f FSO MFO PSO GSA
Mean Std Mean Std ave Std ave std

f1 4.37523E-39 3.97999E-40 0.000117 0.00015 1.321152 1.153887 608.2328 464.6545
f2 3.45283E-20 2.88152E-20 0.000639 0.000877 7.715564 4.132128 22.75268 3.365135
f3 2.06989E-38 1.07899E-39 696.7309 188.5279 736.3931 361.7818 135760.8 48652.63
f4 1.68764E-20 8.51808E-22 70.68646 5.275051 12.97281 2.634432 78.78198 2.814108
f5 98.84350505 0.80333959 139.1487 120.2607 77360.83 51156.15 741.003 781.2393
f6 20.46836981 0.383942567 0.000113 9.87E-05 286.6518 107.0796 3080.964 898.6345
f7 7.71527E-05 9.82268E-05 0.091155 0.04642 1.037316 0.310315 0.112975 0.037607

f BA FPA SMS FA
Mean Std Mean Std ave std ave std

f1 20792.44 5892.402 203.6389 78.39843 120 0 7480.746 894.8491
f2 89.78561 41.95771 11.1687 2.919591 0.020531 0.004718 39.32533 2.465865
f3 62481.35 29769.17 237.5681 136.6463 37820 0 17357.32 1740.111
f4 49.74324 10.14363 12.57284 2.29 69.17001 3.876667 33.95356 1.86966
f5 1995125 1252388 10974.95 12057.29 6382246 729967 3795009 759030.3
f6 17053.41 4917.567 175.3808 63.45257 41439.39 3295.23 7828.726 975.2106
f7 6.045055 3.045277 0.135944 0.061212 0.04952 0.024015 1.906313 0.460056

Table 3: Results of unimodal benchmark functions.

f FSO MFO PSO GSA BA FPA SMS FA  

f1 N/A 1.83E-04 3.46E-02 3.46E-02 3.46E-02 3.46E-02 6.39E-05 3.22E-05

f2 N/A 1.83E-04 3.46E-02 3.46E-02 3.46E-02 1.83E-04 1.83E-04 2.76E-01

f3 N/A 5.83E-04 3.46E-02 3.46E-02 3.46E-02 3.46E-02 6.39E-05 4.85E-05

f4 N/A 1.83E-04 3.46E-02 3.46E-02 3.46E-02 3.46E-02 1.83E-04 7.28E-03

f5 N/A 1.83E-04 3.46E-02 5.10E-01 3.46E-02 1.83E-04 1.83E-04 1.48E-01

f6 3.46E-21 N/A 3.46E-02 3.46E-02 3.46E-02 1.83E-04 1.83E-04 8.90E-04

f7 N/A 1.83E-04 3.46E-02 4.31E-02 3.46E-02 1.83E-04 1.83E-04 4.15E-02

Table 4: Results of Wilcoxon rank sum test for uni-modal functions (P≥0.05 have been bolded).
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From Table 3, FSO algorithm gives appropriate
results when compared with other algorithms. It
is necessary to state that the unimodal functions
are proper for benchmarking exploitation phase.
Therefore, these results show the absolute best
performance of FSO when exploiting the opti-
mum. This is due to the good combination of ran-
dom walk and Lévy flights of search agents.

On the other hand, multimodal benchmark
functions have a lot of local optima; therefore,
they are suitable for benchmarking the explo-
ration capability of an algorithm. Also, this study
shows that FSO is also able to provide proper re-
sults for the multimodal benchmark functions,
according to the results shown in Table 5. 

Wilcoxon test is also applied at 5% significance
level and the p-values of the tests are shown in

Tables 4 and 6, to compare each of the run’s re-
sults and decide on the significance of the results
for each run. The best obtained results in each
test function are chosen and compared with the
results of other algorithms independently. Not
Applicable (N/A) has been written for the best
algorithm for each function, because the best al-
gorithm cannot be compared with itself. The p-
values are mostly N/A for FSO, which shows the
superiority of this algorithm is statistically sig-
nificant, except for the F6 function. So, the FSO
algorithm has the potential to solve problems that
cannot be solved efficiently by other algorithms,
according to the no free lunch (NFL) theorem.

The convergence behavior of the FSO algo-
rithm is as shown in Fig. 8. There should be sud-
den variations in the motion of particles over the
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f FSO MFO PSO GSA

Mean Std Mean Std ave std ave std

f8 -1 0.00 -3.22E-03 2.203E-03 -1.98E-03 3.420E-04 -1.62E-03 6.543E-04

f9 0.00 0.00 84.60009 16.16658 124.2973 14.25096 31.00014 13.66054

f10 8.8818E-16 0.00 1.260383 0.72956 9.167938 1.568982 3.740988 0.171265

f11 0.00 0.00 0.01908 0.021732 12.41865 4.165835 0.486826 0.049785

f12 2.085E-01 7.08E-03 0.894006 0.88127 13.87378 5.85373 0.46344 0.137598

f BA FPA SMS FA

Mean Std Mean Std ave std ave std

f8 -2.225E-03 1.1104E-03 -2.20E-03 4.525E-04 -2.01E-03 7.08E-04 -7.56E-04 2.58E-04

f9 96.21527 19.58755 92.69172 14.22398 152.8442 18.55352 214.8951 17.21912

f10 15.94609 0.774952 6.844839 1.249984 19.13259 0.238525 14.56769 0.467512

f11 220.2812 54.70668 2.716079 0.727717 420.5251 25.25612 69.65755 12.11393

f12 28934354 2178683 4.105339 1.043492 8742814 1405679 368400.8 172132.9

Table 5: Results of multimodal benchmark functions.

f FSO MFO PSO GSA BA FPA SMS FA  

f8 N/A 1.83E-04 3.46E-02 3.46E-02 N/A 0.161972 0.000183 5.17E-01

f9 N/A 1.83E-04 3.46E-02 1.72E-01 3.46E-02 0.000181 0.000181 3.74E-03

f10 N/A 1.83E-04 3.46E-02 3.46E-02 3.46E-02 0.000183 0.000183 7.69E-04

f11 N/A 1.83E-04 3.46E-02 3.46E-02 3.46E-02 0.000183 0.000183 9.32E-04

f12 N/A 0.472676 3.46E-02 3.46E-02 3.46E-02 0.000183 0.000182 6.72E-01

Table 6: Results of Wilcoxon rank sum test for muli-modal functions (p≥0.05 have been bolded).
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primary iterations, according to Van Den Bergh
and Engelbrecht. This helps a meta-heuristic to
explore the search space widely. These changes
should be decreased to underscore exploitation
at the end of optimization. The trajectory and the
fitness (some cases are in the logarithmic scale)
of the first flying squirrel are shown in the first
and second columns of Fig. 8. It is obvious that

there are sudden variations in the initial steps of
iterations which are reduced over the iterations.
The third column of Fig. 8 shows the average fit-
ness of all of the search agents. In addition, the
fourth column of Fig. 8 shows the convergence
of the FSO algorithm to the optimum. These re-
sults show that the FSO algorithm has significant
merit in terms of exploration and exploitation.

Azizyan et al./ Flying Squirrel Optimizer...
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Fig. 8. Trajectory in first dimension, fitness and average fitness of all flying squirrels, and convergence rate
The performance of FSO, facing the benchmark functions, is verified by the presented results. Five classical engi-
neering design problems and a real problem in dam engineering are used subsequently.

Case study of classical engineering problems
Here, the usability of FSO in dealing with five

constrained classical engineering design prob-
lems and a concrete gravity dam design problem
is investigated. A comprehensive comparison of

results with those available in the literature will
be presented. The provided benchmarks prob-
lems include objective functions and constraints
with various types and nature (quadratic, cubic,
polynomial, and nonlinear) and several numbers
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of design variables (continuous, discrete, and
mixed). The mathematical formulations of the
test problems are also provided. The obtained op-
timization results have been compared with other
well-known optimization algorithms. Also, re-
sults were compared in terms of statistical results
and NFEs. In this research, the computational
cost which is considered as the best NFEs corre-
sponding to the obtained best answer, is calcu-
lated using the product of the number of flying
squirrels and the maximum number of iterations
(that is, NFEsFSO=nSquirrels×Itmax). The pro-
posed algorithm was coded in MATLAB pro-
gramming software and the simulations and
numerical solutions were run on an Intel(R)
Core(TM) i7-4500U CPU @ 1.80 GHz with 4
GB Random Access Memory (RAM). 

The number of the flying squirrels is consid-
ered as 50 and the maximum number of iterations
(Itmax) depends on the complexity of the optimiza-
tion problems. The penalty function method is
also adopted in FSO to consider constraints vio-
lation. This method is easy to implementation
and has a simple principle, especially for contin-
uous constrained problems. Typically, a con-
strained optimization problem is identified as
follows:

minimize f(x)
Subject to: gk (x)≤0,k=1,…,m   (19)

where f(x) is the objective function and gk (x)
is the kth inequality constraint. Integration of
penalty functions into the objective function will
transform the mentioned constrained problem to
an unconstrained one. The penalized objective
function fp is then written as follows:

(20)

where λ>0 (e.g.λ=105) is a penalty factor and
δk=1 ifconstraintgk isviolated  � �
δk=0 ifconstraintgk issatisfied

(Rao, 2009).

Tension-compression spring design
The aim is to minimize the volume of a coil

spring under a constant tension/compression
load. The design variables are the wire diameter
(x1), the winding diameter (x2) and the number
of active coils of the spring (x3) specified in Fig.
9. The constraints of this problem include: shear
stress, surge frequency, and minimum deflection.
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Fig. 9. Tension-compression spring design problem

Current issue was discussed repeatedly using
precise mathematical methods and also meta-
heuristic optimization algorithms. Wang and Li
(Wang and Li, 2010) paid to solve this problem
using PSO algorithm. The other algorithms such

as Evolutionary Strategy, GA, Search Harmony
and Differential Evolution were employed to
solve this problem. The objective function and
the mechanical constraints are shown in Eq. (21).
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(21)

The optimum locations founded by different al-
gorithms and also the values of their constraints
and costs are shown in Table 7.

Table 8 shows the best and statistical values for

the design variables corresponding to the best so-
lutions which are all feasible.

Fig. 10 shows an impressive decrease in the
cost of tension/compression spring design.

Parameter DEDS HEAA NM–PSO DELC WCA LCA MBA APSO GWO IGMM FSO

x1 0.051689 0.051689 0.05162 0.051689 0.05168 0.051689 0.051656 0.052588 0.05169 0.051718 0.051685996

x2 0.356717 0.356729 0.355498 0.356717 0.356522 0.356718 0.35594 0.378343 0.356737 0.357415 0.356644

x3 11.288965 11.288293 11.333272 11.288965 11.30041 11.28896 11.344665 10.13886 11.28885 11.2482 11.2933

g1(x) 1.45E -09 3.96E -10 1.01E -03 -3.40E- 09 -1.65E -13 NA 0 -1.55E-04 -1.00E+04 −7.87E−08 -8.47E-7

g2(x) -1.19E -09 -3.59E-10 9.94E -04 2.44E -09 -7.9E- 14 NA 0 -8.33E-04 -1.34E-01 −3.77E−08 -1.45E-8

g3(x) -4.053785 -4.053808 -4.061859 -4.053785 -4.053399 NA -4.052248 -4.08917 -4.0533835 −4.05516 -4.053635

g4(x) -0.727728 -0.72772 -0.728588 -0.727728 -0.727864 NA -0.728268 -1.06907 -0.7277153 −1.09087 -0.7277800

f(x) 0.012665 0.012665 0.01263 0.012665 0.012665 0.0126652 0.012665 0.0127 0.012666 0.01266525 0.01266524

Table 7: Best results given by well-known optimization algorithm and FSO for the tension-compression spring design
problem.

Fig. 10. Convergence curve of tension-compression spring design problem
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This degradation shows the high ability of FSO
in dealing with constrained engineering prob-
lems. The obtained results cannot be found in any
of prior optimization algorithms.

Welded beam design
The aim of this problem design is to minimize

the construction cost of the beam and the con-

straints include: Shear stress (s), Bending stress
in the beam (h), Buckling load on the bar (Pc),
End deflection of the beam (d), and Side con-
straints. This problem has four variables: thick-
ness of weld (x1), length of attached bar (x2), the
height of the bar (x3), and thickness of the bar
(x4).
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Method Worst Mean Best Std NFEs
GA1 0.012822 0.012769 0.012704 3.94E-05 900,000
GA2 0.012973 0.012742 0.012681 5.90E-05 80,000
CAEP 0.015116 0.013568 0.012721 8.42E -04 50,020
CPSO 0.012924 0.01273 0.012674 5.20E-04 240,000
HPSO 0.012719 0.012707 0.012665 1.58E -05 81,000
NM–PSO 0.012633 0.012631 0.01263 8.47E-07 80,000
G-QPSO 0.017759 0.013524 0.012665 0.001268 2000
QPSO 0.018127 0.013854 0.012669 0.001341 2000
PSO 0.071802 0.019555 0.012857 0.011662 2000
DE 0.01279 0.012703 0.01267 2.7E -05 204,800
DELC 0.012665 0.012665 0.012665 1.3E-07 20,000
DEDS 0.012738 0.012669 0.012665 1.3E-05 24,000
HEAA 0.012665 0.012665 0.012665 1.4E-09 24,000
PSO–DE 0.012665 0.012665 0.012665 1.2E-08 24,950
SC 0.016717 0.012922 0.012669 5.9E -04 25,167
(µ + λ)-ES NA 0.013165 0.012689 3.9E-04 30,000
ABC NA 0.012709 0.012665 1.28E-02 30,000
LCA 0.01266667 0.0126654 0.01266523 3.88E-07 15,000
WCA 0.012952 0.012746 0.012665 8.06E-05 11,750
MBA 0.0129 0.012713 0.012665 6.30E−05 7650
APSO 0.014937 0.013297 0.0127 6.85E-04 120,000
IGMM 0.0135125 0.0128657 0.0126653 2.56E−04 4000
FSO 0.012675347 0.012680628 0.01266524 7.89E-04 1500

Table 8:  Statistical comparison of results for the tension-compression spring design problem.

Fig. 11. Welded beam design problem
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Coello and Deb (Deb, 1997; Coello and
Montes, 2002) used the GA to solve this prob-
lem. Lee and Geem (Lee and Geem, 2005) ap-
plied HS algorithm to this problem. Ragsdell and
Philips (Zahara and Kao, 2009) exerted Richard-

son random method, Simplex method, Davidon-
Fletcher-Powel method, and Griffith and Stewart
linear approach to be mathematical solving to
this problem. The objective function and the me-
chanical constraints are shown in Eq. (22).
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(22)

Optimum location and also the amount of con-
straints are shown in Table 9. A good balance be-
tween constrains can be observed, compared to
the others. This makes it possible for FSO to find

a better response in a feasible search space.
The best results obtained by different methods

are shown in Table 10.

Parameter GA2 CPSO CAEP HGA NM–PSO WCA MBA APSO GWO IGMM FSO

x1 0.205986 0.202369 0.2057 0.2057 0.20583 0.205728 0.205729 0.202701 0.205676 0.205729 0.20572964

x2 3.471328 3.544214 3.4705 3.4705 3.468338 3.470522 3.470493 3.574272 3.478377 3.470496 3. 25312005

x3 9.020224 9.04821 9.0366 9.0366 9.036624 9.03662 9.036626 9.040209 9.03681 9.036625 9.03662391

x4 0.20648 0.205723 0.2057 0.2057 0.20573 0.205729 0.205729 0.2059215 0.205778 0.205730 0.20572964

g1(x) -0.103049 -13.65554 1.988676 1.988676 -0.02525 -0.034128 -0.001614 -117.467062 -794.279 −0.00627 -4.888E-05

g2(x) -0.231747 -78.81407 4.481548 4.481548 -0.053122 -3.49E - 05 -0.016911 -51.712981 -8.2855887 −0.01478 -2.881E-05

g3(x) -0.0005 -0.00335 0 0 0.0001 -0.00000119 -0.0000002 -0.003221 -0.2283169 −3.19E−07 -0.2283104

g4(x) -3.430044 -3.424572 -3.433213 -3.433213 -3.433169 -3.43298 -3.432982 -3.421741 -1.02E-04 −3.43298 0

g5(x) -0.080986 -0.077369 -0.0807 -0.0807 -0.08083 -0.080728 -0.080729 -0.077701 -4.313487 −0.08073 -1.856E-05

g6(x) -0.235514 -0.235595 -0.235538 -0.235538 -0.23554 -0.23554 -0.23554 -0.235571 -0.0806 −0.23554 -0.08072964

g7(x) -58.64688 -4.472858 2.603347 2.603347 -0.031555 -0.013503 -0.001464 -18.367012 -3.389578 −0.00504 -3.4524255

f(x) 1.728226 1.728024 1.724852 1.724852 1.724717 1.724856 1.724853 1.736193 1.72624 1.724853 1.6952471

Table 9: Best results given by well-known optimization algorithm and FSO for the welded beam design problem.
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FSO offered better results using fewer NFEs as
compared to all other considered algorithms.
However, the best solution is obtained with a
standard deviation value (SD) greater than that

given by LCA. It should be noted that the best
result obtained by LCA violates some of the con-
straints and then cannot be compared to other
best results.The FSO algorithm approaches the
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Method Worst Mean Best Std NFEs
GA1 1.785835 1.771973 1.748309 0.0112 900000
GA2 1.993408 1.792654 1.728226 0.0747 80000
CAEP 3.179709 1.971809 1.724852 0.443 50020
CPSO 1.782143 1.748831 1.728024 0.0129 240000
HPSO 1.814295 1.74904 1.724852 0.0401 81000
PSO–DE 1.724852 1.724852 1.724852 6.7E-16 66600
NM–PSO 1.733393 1.726373 1.724717 0.0035 80000
SC 6.399678 3.002588 2.385434 0.96 33095
DE 1.824105 1.768158 1.733461 0.0221 204800
WCA 1.744697 1.726427 1.724856 0.00429 46450
LCA 1.7248523 1.7248523 1.7248523 7.11E-15 15000
MBA 1.724853 1.724853 1.724853 6.94E-19 47340
APSO 1.993999 1.877851 1.736193 0.076118 50000
IGMM 1.74769 1.732152 1.724853 0.00714 8000
FSO 1.70139213 1.696729 1.6952471 7.24E-04 4500

Table 10: Statistical comparison of results for the welded beam design problem.

Fig. 12. Convergence curve of welded beam design problem

optimized solution at approximately the middle of
iterations. The performances of the algorithms are
also summarized in terms of NFEs and SD of re-
sponses in Table 10. Each of the algorithms is an-
alyzed 20 times to obtain the statistical results in
Table 10. FSO provides a sufficient amount of an-
swers in welded beam design optimization prob-
lem and the results are so better than the others.

Pressure vessel design
This problem corresponds to the weight mini-

mization of a cylindrical pressure vessel with two
spherical heads. There are four design variables
(in inches): the thickness of the pressure vessel
(x1), the thickness of the head (x2), the inner ra-
dius of the vessel (x3) and the length of the cylin-
drical component (x4). It becomes a nonlinearly
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This problem was also assessed several times
by researchers (Mirjalili, Mirjalili and Lewis,
2014; Mirjalili and Lewis, 2016; MiarNaeimi,
Azizyan and Rashki, 2018). Meta-heuristic algo-
rithms used to solve this problem include: PSO,
GA, ES, DE, and ACO. Mathematical methods

also used to solve this problem include: Aug-
mented Lagrangian-Multiplier and branch-and-
bound method.

Results of the pressure vessel design by differ-
ent algorithms are shown in Tables 11 and 12.
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constrained mixed discrete-continuous optimiza-
tion problem, since there are two discrete vari-
ables (x1 and x2) and two continuous variables

(x3 and x4).
The objective function, constraints, and the do-

main of decision variables are given as Eq. (23).

Fig. 13. Pressure vessel design problem

(23)

Fig. 14. Convergence curve of pressure vessel design problem
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Clearly, the fabrication costs of pressure vessel
are significantly reduced as compared to the val-
ues obtained from the other algorithms. The
power and accuracy of the FSO algorithm are
clearly shown to find the optimal responses.
There is need to mention some constraints that
cannot be satisfied in a number of algorithms that
include NM-PSO, WCA, and MBA.

Multiple disk clutch brake design
This is to minimize the mass of a multiple disc

clutch brake. The decision variables x1, x2, x3,

x4, and x5 are respectively internal radius, exter-
nal radius, thickness of the disc, actuating force,
and number of friction surfaces.

All design variables are discrete. Objective
function, constraints, variables range, and addi-
tional parameters are listed in Eq. 24.

This issue was previously optimized using
NSGA-II, TLBO, WCA, and APSO. The com-
parison to discover the best solution and the sta-
tistical optimization results, given by such
algorithms are shown in Tables 13 and 14, re-
spectively.
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Parameter CDE GA1 CPSO HPSO NM–PSO G-QPSO WCA MBA APSO GWO IGMM FSO

x1 0.8125 0.8125 0.8125 0.8125 0.8036 0.8125 0.7781 0.7802 0.8125 0.8125 0.8125 0.8125

x2 0.4375 0.4375 0.4375 0.4375 0.3972 0.4375 0.3846 0.3856 0.4375 0.4345 0.4375 0.4375

x3 42.0984 42.0974 42.0913 42.0984 41.6392 42.0984 40.3196 40.4292 42.0984 42.089181 42.098445 42.09844558

x4 176.6376 176.654 176.7465 176.6366 182.412 176.6372 200 198.4964 176.6374 176.758731 176.63659 176.6365968

g1(x) - 6.67E- 07 -2.01E- 03 - 1.37E – 06 -8.80E -07 0.0000365 -8.79E- 07 6.828e-05 +8.356e-05 -8.799E-07 -0.00312505 −3.1764E−10 -3.059e-10

g2(x) -3.58E- 02 -3.58E- 02 -0.000359 -3.58E- 02 0.0000379 -0.0358 4.898e-05 +9.456e-05 -0.0359 -0.03296921 −0.03756 -0.03756476

g3(x) -3.705123 -24.7593 -118.7687 3.1226 -1.5914 -0.2179 1.33120 -86.3645 -1.3315386 -40.115408 −0.00012 -4.237E-03

g4(x) -63.3623 -63.346 -63.2535 -63.3634 -57.5879 -63.3628 -40 -41.5035 -63.362 -63.241269 −63.3634 -63.363403

f(x) 6059.734 6059.9463 6061.0777 6059.7143 5930.3137 6059.7208 5885.3327 5889.3216 6059.72418 6051.5639 6059.7143 6059.714337

Table 11: Best results given by well-known optimization algorithm and FSO for the pressure vessel design
problem.

Method Worst Mean Best Std NFEs
GA1 6308.497 6293.8432 6288.7445 7.4133 900000
GA2 6469.322 6177.2533 6059.9463 130.9297 80000
CPSO 6363.8041 6147.1332 6061.0777 86.45 240000
HPSO 6288.677 6099.9323 6059.7143 86.2 81000
NM–PSO 5960.0557 5946.7901 5930.3137 9.161 80000
G-QPSO 7544.4925 6440.3786 6059.7208 448.4711 8000
QPSO 8017.2816 6440.3786 6059.7209 479.2671 8000
PSO 14076.324 8756.6803 6693.7212 1492.567 8000
CDE 6371.0455 6085.2303 6059.734 43.013 204800
WCA 6590.2129 6198.6172 5885.3327 213.049 27500
LCA 6090.6114 6070.5884 6059.8553 11.37534 24000
MBA 6392.5062 6200.64765 5889.3216 160.34 70650
APSO 7544.49272 6470.71568 6059.7242 326.9688 200000
IGMM 6061.2868 6060.1598 6059.7143 0.5421 8000
FSO 6060.18427 6059.7166 6059.714337 0.2469 7500

Table 12. Statistical comparison of results for the pressure vessel design problem.
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Fig. 15. Multiple disk clutch brake design problem

Parameter NSGA-II TLBO WCA APSO FSO
x1 70 70 70 76 70
x2 90 90 90 96 90
x3 1.5 1 1 1 1
x4 1000 810 910 840 870
x5 3 3 3 3 3
g1(x) 0 0 0 0 0
g2(x) 22 24 24 24 24
g3(x) 0.9005 0.919427 0.909480 0.922273167327214 0.913459499693782
g4(x) 9.7906 9830.3710 9.809429 9.82421128537948 9.81780598958333
g5(x) 7.8947 7894.6965 7.894696 7.73837800183432 7.89469658978184
g6(x) 3.3527 0.702013 2.231421 1.3966105059236 0.875577140380633
g7(x) 60.625 37706.25 49.768749 48.8483720930233 44.9437499999999
g8(x) 11.6473 14.297986 12.768578 13.6033894940764 14.1244228596193
f(x) 0.4704 0.313657 0.313657 0.337181 0.313656610534405

Table 13: Best results given by well-known optimization algorithm and FSO for the multiple disk clutch brake design
problem.

(24)
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This is to minimize the cost of the gear ratio of
the gear train as shown in Fig. 17. This problem
has four decision variables: x1, x2, x3, and x4

which are the number of teeth for the gears. The
constraints are just limits on design variables
(side constraints).
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Method Worst Mean Best Std NFEs
NSGA-II 0.5069 0.4829 0.4704 0.002354 >900
TLBO 0.392071 0.327166 0.313657 NA >900
WCA 0.313656 0.313656 0.313657 1.69E-16 500
APSO 0.716313 0.506829 0.337181 0.09767 2000
FSO 0.333705 0.3139423 0.313656610534405 4.25E-6 400

Table 14: Statistical comparison of results for the multiple disk clutch brake design problem.

As shown in Table 13, FSO, TLBO, and WCA
methods converge at the same optimum answer.

FSO shows an advantage in comparison to

other optimization algorithms with regard to
computation endeavor (NFEs) and stability (SD).

Fig. 16. Convergence curve of multiple disk clutch brake
design problem

Fig. 17. Gear train design problem
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Design variables to be optimized are in integer
form since each gear requires an integer number
of teeth. It is well known that constrained prob-
lems with discrete variables may increase the

complexness of the problem. The lower and
upper bounds of integer design variables are 12
and 60, respectively. The mathematical formula-
tion of the problem is reported in Eq. (25).
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(25)

This problem was introduced by Sandgran
(1990). The best achieved cost for the current
issue is 2.7009e-12.

Optimum locations of x1, x2, x3, and x4 are 43,

16, 19, and 49, respectively.
However, the decisive factor in this problem is

to find the optimal solution with the minimal
function evaluation.

Fig. 18. Convergence curve of gear train design problem

Method Worst Mean Best Std NFEs
CS 2.3576E-9 1.9841E-9 2.7009E-12 3.5546E-9 5000
MBA 2.06290E-8 2.471635E−09 2.700857E−12 3.94E−09 1120
APSO 7.0726E-06 4.781676E-07 2.700857E-12 1.44E-06 8000
IGMM 2.36E−09 6.25E−10 2.7009E−12 8.61E−10 480
FSO 3.8248E-9 2.72645E-08 2.700857E-12 3.27E-9 400

Table 15: Best results given by well-known optimization algorithm and FSO for the gear train design problem.

Real application of FSO in gravity dam design
engineering

Gravity dams are made by concrete or rock ma-
sonry and are intended to hold back water by
only using the weight of the concrete materials
to face up to the applied loads. This problem aims
to minimize the weight of a gravity dam. The

constraints are sliding and overturning safety fac-
tors, and also tensile and compressive stresses on
the upstream and downstream faces of the dam.
This paper presents an optimization of an impor-
tant concrete gravity dams, including SHA-
FAROUD dam. SHAFAROUD gravity dam
project is located in the North-Western of Iran

Iranian Journal of Optimization, 11(2), 177-205, December 2019 199



The objective function is a minimization of
concrete volume of the dam. Unusual loading on
the dam is considered, throughout these prac-
tices. The applied loads include dead load
(weight of the dam), hydrostatic load in the full
reservoir state, earthquake, sediment load and up-
lift. Researchers in the field of optimization of

concrete dams are Mahani et al. (Nourani et al.,
2008) Cai et al. (Liu, Cai and Wang, 2010), Gan-
domi et al. (Mirjalili et al., 2017), and Guan
(Shiqin, Jianjun and Guangxing, 2009).

Objective function, constraints, variables
range, equilibrium equations, and constant pa-
rameters of the problem are shown in Eq. (26).
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and it is used as a practical example. This prob-
lem includes nine decision variables (x1 to x9)

that are shown in Fig. 19.

Fig. 19. Concrete gravity dam design problem
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The optimal values of decision variables (x1 to
x9), summation of resistant and driving torques
(∑MR and ∑MO) and forces (∑FH and ∑FV), hor-
izontal hydrostatic loads (FhH), horizontal sedi-
ment loads (PSH), vertical resistant load of water

and sediment on the slopes (FhV and PSV), up-
stream and downstream stresses (σU and σD),
safety factors (SFS and SFO), constraints of
problems (g1 (x ⃗ ) to g6 (x ⃗)) and the amount of
objective functions (f(x ⃗))  are shown in Table 16.
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SHAFAROUD Existing Dam PSO GA FSO
x1 4 6.0323 5.1965 5.1678
x2 42 37.805 31.8972 25.1978
x3 4.2 2.0582 2.3238 4.9556
x4 50 73.2012 75.9014 55.7811
x5 12.5 11.5573 11.0781 16.0874
x6 58 39.02 42.2014 21.0009
x7 23.2 30.6433 28.9231 29.9036
x8 140 125.6454 132.025 120.169
x9 105 98.3741 101.713 85.382
∑MR  23979329.67 20778650.8 21584896.2 18520793
∑Mo 5056164.707 5055074.16 5055375.01 5051705.95
∑FH 103176.3093 103176.309 103176.309 103176.309
∑FV 262408.494 234946.624 242356.882 215538.616
FhH 103127.625 103127.625 103127.625 103127.625
FhV 32730.084 42455.6199 39249.451 53236.0323
PSH 48.6843168 48.6843168 48.6843168 48.6843168
PSV 918.75 468.382353 536.215499 258.090638
σU 406.6809 207.527923 262.034703 9.3743472
σD 3071.231545 2954.60698 2985.96602 3037.18705
SFS 6.899218925 6.63488199 6.70668075 6.26223367
SFO 4.742592669 4.11045419 4.26969238 3.66624526
g1 (x ⃗) -2.8992 -2.6349 -2.7067 -2.2622
g2 (x ⃗) -3.2426 -2.6105 -2.7697 -2.1662
g3 (x ⃗) -406.6809 -207.5279 -262.0347 -9.3743
g4 (x ⃗) -3.07E+03 -2.95E+03 -2.99E+03 -3.04E+03
g5 (x ⃗) -2.46E+04 -2.48E+04 -2.47E+04 -2.50E+04
g6 (x ⃗) -2.19E+04 -2.20E+04 -2.20E+04 -2.20E+04
f (x ⃗) 10502.1 8820.771 9303.5442 7448.7743

These quantities are shown for the existing dam
at the first column, and the other columns show
the comparison for the best solution of PSO, GA,
and FSO in terms of the value of design variables
and function value.

Table 16 shows that FSO has the best response
for the SHAFAROUD gravity dam design prob-
lem, with respect to the function value (Cost). It

should be noted that FSO is able to find the an-
swers with fewer NFEs and low SD as compared
to PSO and GA.

PSO, GA and FSO represent 15.9, 11.4 and
28.2% reduction in the concrete volume of the
SHAFAROUD dam, respectively. The FSO al-
gorithm has a better performance than the other
two algorithms. It shows the ability of FSO to

Table 16: Best results given by well-known optimization algorithm and FSO for the concrete gravity dam design problem.
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CONCLUSIONS
The new proposed FSO algorithm is inspired

by the flying squirrels behaviors in their natural
life. These behaviors including jumping from
branch to branch and walking on the ground or
trees to find food and also contact each other in
order to escape from enemies. The FSO algo-
rithm was benchmarked on twelve well-known
test functions in a 100 dimensions space and
found to be very efficient in terms of exploration
and exploitation. This algorithm is also employed
for solving structural optimization problems.
Five structural engineering problems of semi-real
world have been used to evaluate the perform-
ance of FSO. The results show the ability of FSO
to deal with these challenging problems with
continuous, discrete, and mixed decision vari-
ables. Finally, FSO has been applied to a real
problem in the field of concrete gravity dam en-
gineering and it provides a considerable devel-
opment of dam section design in comparison to
the existing solutions. It shows the applicability
of FSO in dealing with real-world engineering

problems. Flying squirrels are used as the search
agents. They should be sorted based on their per-
formance. Better half of the flying squirrels (that
are close to the food) are moved by a random
walk step (normal distribution) and the others fly
(Lévy flight). They have a great desire to random
search and finding the new possible global opti-
mum locations. Using these motion patterns
makes it possible to find the optima with a few
NFEs. For future study, the development of FSO
is in progress to solve the multi-objective opti-
mization problems.
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