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Abstract
In this paper, a new model based on differential-algebraic equa-

tions(DAEs) for solving convex quadratic programming(CQP) prob-
lems is proposed. It is proved that the new approach is guaranteed to
generate optimal solutions for this class of optimization problems. This
paper also shows that the conventional interior point methods for solv-
ing (CQP) problems can be viewed as a special case of the new DAEs
methods. Numerical results show the efficiency of the proposed model.
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INTRODUCTION
Differential-Algebraic Equations can be found

in a wide variety of scientific and engineering ap-
plications, including circuit analysis, computer-
aided design and real-time simulation of
mechanical systems, power systems, chemical
process simulation, and optimal control. Many
important mathematical models can be expressed
in terms of DAEs (Riaza, 2008). In this paper a
DAE system of index 1 is applied which is the
following form

x=̇f(x,z,t)
g(x,z,t)=0

where x and z are called differential variables
and algebraic variables respectively (Riaza,
2008). In this paper, a DAEs approach is used to
the solve convex quadratic problem. First, the
logarithmic barrier function method is applied to
combined the objective function and nonnegativ-
ity variables constrained into a composite func-
tion that called the barrier function. In the barrier
function method, a family of problems in terms
of parameter that usually indicate by µ must
solve. For a fixed µ, KKT conditions of corre-
sponding barrier problems are nonlinear alge-
braic equations that solutions of these equations
equivalent to the corresponding barrier problems.
Interior point methods can be applied to solve
these algebraic equations that in these methods
the most commonly used updating scheme for
the barrier parameter µ is (Potra & Wright, 2000)

μk+1=(1-α)μ^k,        0<α<1

In this paper for updating barrier parameter, a
differential equation is used, this differential
equation coupled with algebraic equations pro-
vide a DAE. The rest of the paper is organized
into four sections. In Section 2, differential-alge-
braic equations will be derived to solve convex
quadratic programming problems. In Section 3,
the convergence of the approach will be ana-
lyzed. In Section 4, illustrative examples will be
given to demonstrate the performance of the pro-
posed approach. Finally, Section 5 gives the con-
clusion of this paper.

DIFFERENTIAL-ALGEBRAIC
EQUATIONS PROBLEM FORMULATION

Consider the following quadratic convex pro-
gramming: 

Minimize    cT x+1/2 xT Ax
subject Dx=b

x≥0& (1)

where xℝn, Dℝm�n, bℝm, cℝn,
rank(D)=m�n and Aℝn�n is symmetric positive
semi definite.

The following problem ensue by the applica-
tion of the logarithmic barrier function technique
for the above problem (Fiacco & McCormick,
1990):

(2)

where µ>0 is the barrier penalty parameter.
Theorem 2.1: If feasible set of 1 (its dual) has

a nonempty interior and is bounded, then for each
µ>0 there exists a unique solution (xµ , yµ , zµ)
for barrier problem of 1. 
Proof: see (Vanderbei, 2015)
For a fixed µ the K.K.T conditions for 2 has the

following parametric form(Bai et al.,2002; Bai
et al., 2004): 

Dx=b
DT y-AT x+z=c

XZe=μe (3)

where 
X=diag(x1,⋯,xn), Z=diag(z1,⋯,zn),e=[1,⋯,1]n×1

In (3), The first equation is the equality con-
straint that appears in 1, while the second equa-
tion is the equality constraint for the dual of 1
(Bazaraa et al., 2013). Furthermore, component-
wise of the third equation as follows: 

xj zj=μ      j=1,2,...,n

As can be seen, xj zj=μ (j=1,2,…,n) are closely
related to complementarity. In fact, if μ=0, then
they are exactly the usual complementarity con-
ditions that must be satisfied at K.K.T optimality
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conditions. For this reason, these last equations
called the μ- complementarity conditions. So if
(x*, y*, z*) satisfy in two first equations of 3 and 

xj*.zj*=0      j=1,2,...,n

then (x*, y*, z*)  satisfies in the kuhn-tucker con-
ditions for 1 and therefor is optimal solution for
1. Define

(4)

which is a convex program because both the
objective function and the constraints are convex.
By theorem 2.1 for any fixed μ>0, Ѳ(μ) has a
unique solution and hence, Ѳ(μ) is differentiable
with respect to μ . The derivative of the function
is found as follows: 

(5)

It is well known from classical optimization
theory (Bazaraa et al., 2013) that:

(6)

i.e., the optimal solution to 1 can be obtained
by minimizing Ѳ(μ). Using the steepest-descent
method, the following differential equation for
minimizing Ѳ(μ) obtained:

(7)

where x=[x1, x2, …, xn ] and z=[z1,zx2, …, zn]
satisfy 3.

In the rest of paper, let 

S={(x,y,z)∈Rn×Rm×Rn:Dx=b,
DTy+Z=c,x>0,z>0}

is not empty, if (x0, y0, z0)S to be start point
in this approach then for each μ>0, the parame-
terized system 3 has a unique solution. This so-
lution is denoted as (x(),y(),z())and is called
-center. The set of -centers (with  running
through all positive real numbers) gives a homo-
topy path, which is called the central path. If
0 then the limit of the central path exists and
since the limit points satisfy in  , the limit yields
optimal solutions for 1 (Bai et al.,2002; Bai  et
al., 2004)

The differential equation 7 and the algebraic
equations 3 form the DAE for 1. The algebraic
equations 3 can be transformed into differential
equations as follows

(8)

(9)

(10)

Taking initial values for x, y, z satisfying the al-
gebraic equations 3, and hence in the interior of
the feasible region, and taking a small initial
value for μ hence, the differential equations 7 and
8-10 can be solved. In Section 3, it will be shown
that the equilibria of these differential equations
are the optimal solutions to 1. 

CONVERGENCE
In this section, the convergence of the trajecto-

ries of the DAE to solve 1 will be discussed
Theorem 3.1: Let (x0, y0, z0)S and 0. Sup-

pose x(t), y(t), z(t), (t) that denote the trajecto-
ries of the solution of 7 and 8-10 with initial
values(x0, y0, z0). Then, either (x(t), y(t), z(t))S
, and   0, or x(t) is an optimal solution to 1.

Proof: First, it will be shown that x, y, z deter-
mined by equations 3, are continuous functions
of . Let

F1 (x,y,z,μ)=XZe-μe,
F2 (x,y,z,μ)=Dx-b

F3 (x,y,z,μ)=DT y-AT x+z-c
F=[F1 (x,y,z,μ),F2 (x,y,z,μ),F3 (x,y,z,μ)].
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then equations (3) can be rewritten as 

F(x,y,z)=0. (11)

Let J(x, y, z) be the Jacobian of F(x, y, z). To
apply the implicit function theorem (Apos-
tol,1974; Xiong, 2002) to equation 11, calcula-
tion of the determinant of J is needed. Clearly,

thus

where 

But 

(12)

Clearly 

Thus 

(13)

by Combining (12) and (13) we have 

Because Z0-1=1/μ0 X0,μ0>0, x0>0, z0>0, and
since D has full row rank, |DDT|≠0, we have

So 
|J(x0,_0,z0)|≠0

The implicit function theorem implies that
there are unique, differentiable, and vector-val-
ued functions x(), y(), z() passing through
x0= x(0 ), y0= y(0), z0=z(0) Since the functions
∑j=1n log xj and ∑i=1n log zi are continuous in x
and z respectively, and the vector-valued func-
tions x are continuous in , according to the the-
orem of existence and uniqueness of solutions of
nonlinear differentiable equations, the function 
is continuous in t. Therefore, the vector-valued
functions x, y, z are also continuous in t. Now, it
is shown that the solutions of the system of equa-
tions 8-10 satisfy equations 3. By integrating
both sides of equation 8, we obtain:

(14)

It follows from equation (14) that 
D(x(t))-D(x(0))=0

But 
D(x(0))=b

Thus 
Dx(t)=b

Similarly, 
DT y(t)-AT x(t)+z(t)=c

X(t)Z(t)e=μ(t)e

We now show that the trajectory of the solution
is either in the interior of the feasible region or
at the optimal solution. Because 0>0 and (t) is
continuous in t, before (t) becomes negative, it
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must be (t*)=0  at some time t*, which implies
that

xj (t*)zj (t*)=0,   j=1,2,...,n (15)

Previously, it was shown that x(t*), y(t*), z(t*)
satisfy (3). Equations (3) and (15) are the opti-
mality conditions for (1). This shows that
xj(t*)(j=1,2,…,n) are the optimal solutions.

Because (t)=xj(t*)zj(t*)>0 implies that either
zj(t)>0 and xj(t)>0 or zj(t)<0 and xj(t)<0. zj(t)<0
and xj(t)<0 cannot take place, Otherwise, because
zj(0)>0, xj(0)>0 and are continuous in t, before
xj(t) and zj(t) become negative, there exists a time
t* such that xj(t*) zj(t*)=0(j=1,2,…n), which im-
plies that xj(t*) are the optimal solution to 1.

Now, consider xj(t)>0 and zj(t)>0. Previously,
it was shown that

DT y(t)-Ax(t)+z(t)=c
Dx(t)=b

This means that the trajectory is in the set S.
This completes the proof of Theorem 3.1.  

We now show that the optimal solution to 1 is
an asymptotically stable solution to the DAE.
Theorem 3.2: The dynamic system defined by

the differential Eq. 7 and  8-10 is stable in the
sense of lyapunov and is globally asymptotically
convergent to the optimal solution of 1 . More-
over, the convergence rate of the DAE model in-
creases as α increases.

Proof. Let
V(μ)=θ(μ)-θ(μ*)

Where μ* minimizes θ(μ) for all μ≥0. It is ob-
vious that V(μ) is positive definite. By Theorem
3.1, it was proven that the solutions {xj, j=1,2,…
,n} to the differential equations with initial values
(x0, y0, z0)S are the solutions to the system of
nonlinear Eq. 3.Therefore, it follows from Eq. 5
and 7 that

(16)

This shows that V(μ) is a lyapunov function
and stable points of the differential Eq.7 and 8-
10 are the minimizers of θ(μ), but

(17)

So, the differential Eq. 7 and 8-10 is stable in
the sense of lyapunov and is globally asymptoti-
cally convergent to the optimal solution of 1. The
inequality in 16 implies that the faster the descent
rate of V(μ) is, the larger the α is. Therefore, the
convergence rate of DAE model increases as α
increases. The proof of Theorem 3.2 is complete.

ILLUSTRATIVE EAMLES
In this section, it is demonstrated the behavior

of the differential-algebraic approach for solving
convex quadratic programming using illustrative
examples. The simulation is conducted on Mat-
lab, the ordinary differential equation solver en-
gaged is ode15s.
Example 1: Consider the following convex

quadratic program: 

Minimize    -4x1+x1
2-2x1 x2+2x2

2

subject 2x1+x2≤6&
x1-4x2≤0&
x1≥0,x2≥0

The exact solution of this problem is (32/13,
14/13). The initial values for x0, y0, z0, μ, α are
chosen as follows:

μ0=0.4,
α=10,

x0=[1.8153,0.5312,1.8382,0.3093],
y0=[-2.2028,-0.1649],

z0=[3.1388,0.0374,2.2028,0.1649].

It is shown that proposed approach converges
to following point which is the solution of the
above problem.

x1=2.4615,x2=1.0769

The trajectories of the solution are shown in
Figs. 1(a) and 1(b). The transient behavior of the
differential-algebraic approach in terms of μ is
shown in Fig. 1(c). Let α=100, Fig. 1(d) shows
that under same initial points, the convergence
rate of DAE model increases as α increases.
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Fig.1. Transient behavior of the DAE model in example 1

Fig.2. Transient behavior of the DAE model in example 2
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Example 2: Consider the following bounded
convex quadratic program: 

Maximize    5x1-x1
2+x1 x2-2x2

2

subject 2x1+2x2≤10
1≤x1≤4

2≤x2≤5&

The exact solution of this problem is (3.125,
3.437). The initial values for x0, y0, z0, μ, α are
chosen as follows:

μ0=0.3,
α=5,

x0=[1.0779,1.3014,1.3193,1.9221,1.6986],
y0=[-2.0728,-2.3524,-0.2801],

z0=[0.2797,0.5533,2.0728,2.3524,0.2801].

It is shown that proposed approach converges
to following point which is the solution of the
above problem.

x1=3.125, x2=3.437

The trajectories of the solution are shown in
Figs. 2(a) and 2(b). The transient behavior of the
differential-algebraic approach in terms of α is
shown in Fig. 2(c). Let α=250, Fig. 2(d) shows
that under same initial points, the convergence
rate of DAE model increases as α increases.

CONCLUDING
In this paper, it was shown that a convex quad-

ratic programming can be convert to a differen-
tial-algebraic model where the optimal solution
of convex quadratic programming is the only
equilibrium point of the DAE. Two illustrative
examples have been given to demonstrate the
functional capability and operational character-
istics of the proposed model. These results show
that the differential algebraic approach a prom-
ising alternative for solving convex quadratic
programming problems.
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