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New Optimized Model Identification in Time Series Model
and Its Difficulties

Department of Statistics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

Abstract
Model identification is an important and complicated step within

the autoregressive integrated moving average (ARIMA) methodology
framework. This step is especially difficult for integrated series. In
this article first investigate Box-Jenkins methodology and its faults
in detecting model, and hence have discussed the problem of outliers
in time series. By using this optimization method, we will overcome
this problem. The method that used in this paper is better than the
Box-Jenkins in term of optimality time.
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INTRODUCTION
The increasing importance of forecasts of

macroeconomic variables and the lack of struc-
tural models for optimizing prediction, time se-
ries models have been created. Moreover,
identifying models in the shortest possible time
and time saving detect of suitable model caused
to apply optimizing factor in time series method.

A time series is a sequence of values ordered
by a time parameter. The basic goal of time series
analysis is to induce from a sample of data points
to the process that may have generated the sam-
ple. The terms process and time series are equiv-
alent to the concepts of population and sample in
classical statistics. A process under study consist
of deterministic and stochastic components. De-
terministic components are trends and stochastic
process is a collection of random variables or-
dered in time. In the majority of cases , time or-
dered variables cannot be assume independent ,
which results in the problem of correlated data ,
so dependency is expressed by means of the au-
tocorrelation and partial autocorrelation function
. Kendall and Buckland (1971) define autocorre-
lation as correlation between members of series
of observation ordered in time, this implies cor-
relation of a series with itself at different lags.
The lag k autocorrelation is calculated as:

t is length and y  ̅ is the means of the series. 
In addition of ACF, another function called the

partial correlation function (PACF) is employed
to describe the memory of a series process. Par-
tial autocorrelation is correlation between y  ̅ and
yt-k after removing the effects of intermediate y`s.
in general the autocorrelation and partial auto-
correlation function are used to define time series

model with dependency structure. 

ARIMA modeling
Each times series can be describe three types

of mathematical models: autoregressive (AR),
moving average (MA) and integrated. In AR
process, the value of current observation depend
on the previous observation: 

yt = ϕ1 yt-1+⋯ +ϕp yt-p+ut

(ut is white noise)
A moving average process is describe by: 

yt = ut-θ1 ut-1-…-θq ut-q

A process containing both autoregressive and
moving average components is called mixed. An
integrated process is represented by an equation:

yt =yt-1+at

at can be any ARMA process.
Integrated process are nonstationary. Stationary

requires that all moment of the series are constant
over time. Nonstationary time series must be
transformed to stabilize them. The transforma-
tion method is dependent on the cause of the non-
stationary. Series with a stochastic trends have to
be differenced. For those with deterministic
trend, polynomial deterending is the correct
transformation to achieve stationary. Ayat and
Burridge  (2000), Elder and Kennedy (2001) de-
scribe testing strategies allowing to distinguish
between types of nonstationary. Process that are
stable after their first differences (Δyt = yt-yt-1) are
called integrated of order 1. In general if a time
series has to be differenced d time to make it sta-
tionary, that series is called integrated of order d.
As a consequence an ARIMA (p,d,q) process is
identified as an ARMA(P,q) model with P=p+d.
this implies that different ARIMA processes such
as (1,1,1) and (2,0,0) represent the same ARMA
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Model ACF PACF

(0,0,0)
(p,0,0)
(0,0,q)
(p,0,q)
(0,d,0)

0
Decay exponentially or with damped sine wave or both

Significant spikes through lag q , 0 after q
Decline exponentially

Does not decay

0
Significant spikes through lag q , 0 after q

Decline exponentially
Decline exponentially

Does not decay

Table 1: Theoretical ACF and PACF patterns.



(2,1) model.  
Each ARIMA model can be define through its

ACF and PACF pattern.
According to the ACF and PACF (fig. 2.), Ma-

hammadi et al. (2006) consider ARMA (2,2) for
Monthly river flow data in shaloo bridge station
from 1933 to 2001. 

MODEL IDENTIFICATION
There exist a number of method for fitting suit-

able models to a given time series. One of the most
widespread techniques is the Box-Jenkins method-
ology which based on a three steps iterative cycle
of model identification, model estimation, and di-
agnostic checks in model accuracy. At the identi-
fication stage one chooses types and order of
model examining the behavior of the sample au-
tocorrelation and the sample partial autocorrela-
tion functions and comparing their shapes and
value with the theoretical ARIMA patterns. 

Fig. 3. illustrates that estimates of ACF and
PACF, receive from finite sample, can be rather

ambiguous, even under ideal condition. Further-
more, the quality of empirical ACF and PACF
strongly depends on the number of observation
in a series and sensitive to outliers. From fig. 3.
(E), the Box-Jenkins method is not very useful
for identifying mixed ARMA model if p and q
are non-zero. The reason for difficulty is that the
ACF and PACF of mixed models tail off to iden-
tify rather than cut off at a particular lag. There-
fore, model identification using the Box-Jenkins
approach is a complicated and problematic task
requiring many data points and a great deal of ex-
pertise from a researcher.  

Velicer and Harrop (1983) evaluated the per-
formance of Box-Jenkins model identification
technique employing 12 extensively trained sub-
jects and found a disappointing law overall accu-
racy rate of 28%. The length of a time series
(increase from 40 to 100 improved the percent of
correct identification from 20 to 36) is the factor
affecting the quality of identification and also
higher dependency was favorable. 
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Fig.1. Theoretical ACF and PACF: (A) AR(1) with ϕ=0.99, (B) MA(1)
with θ=-0.99

Fig.2. ACF and PACF for Karun river inflow at shaloo bridge station
due to Mahammadi et al.



Identifying integrated models turned out to be
the most complicated issue. Extensively trained
judges were only to correct identify ARIMA
(0,1,0) and (0,1,1) model 4% and 13% of the time
respectively. According to Algina and Swami-
nathan (1977) and Velicer and Mcdonald (1984),
alternative procedure for removal of dependency
from the data series have been proposed. 

Integrated series comprised a widespread
phenomenon among behavioral or psycholog-
ical series. Glass et al. (1975) reported that out
of 95 series taken from a wide range of appli-
cation in the social science, 44 were non-sta-
tionary. Integrated models are typical for
process with an infinite memory. For inte-
grated process, the identifying procedure con-
sists of two stage, the first step is to decide
whether differencing is necessary or not, and
the second stage is to infer the ARMA model
by inspecting ACF and PACF of either the
original or differenced series. 

As previously mentioned, sensitivity to outliers
and difficulty in identifying model by using ACF
and PACF in mixed models, are two major prob-
lem in the Box-Jenkins methodology. In the fol-
lowing, first we investigated ESACF, one the
identification method and second analyzed sen-
sitivity to the outliers in brief.

ESACF
The first step, also one of the key steps in build-

ing a time series model using ARIMA setting is
the order determination step, i.e., identifying p,d
and q in the literature, scheme for time series
models with identically independent distributed
(iid) innovations are as well studied. The Akaike
information criterion (AIC) by Akaike (1974)
and Bayesian information criteria (BIC) by
Schwarz (1978) are two goodness of fit measure
of an estimated model to facilitate the model se-
lection, which further extended into AICC, a bias
correlated version of AIC by Hurvich and Tsay
(1989) and Hannan Quinn information criteria
(HQIC) bye Hannan and Quinn (1979). Tsay and
Tiao (1984) proposed the extended autocorrela-
tion function (EACF) for order determination of
ARMA (p,q) model. On the other hand, Dicky
and Fuller (1979) studied the unit root behavior
and gave the asymptotic distribution of a unit
root test statistics. Standard order determination
combines those two techniques: taking the unit
root test to dicide the necessity of making difference
(s) (for example, set yt=xt-xt-1) and then using
ACF/PACF/ESACF procedure on differenced se-
ries yt to get AR and MA orders p and q respec-
tively. Other order determination scheme include
R and S array approach by Gray-kelly and McIn-
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Fig.3. ACF and PACF for simulated models with n=100



tire , corner method by beguin Gourieroux and
Monfort and smallest canonical correlation
(SCAN) by Tsay and Tiao (1985) and discussed in
Box-Jenkins and Reinsel. Choi (1992) provided
comprehensive reviews and descriptions of pat-
tern identification methods and algorithm. 

Although autocorrelation function and partial
autocorrelation function work perfectly for pure
moving average series and autoregressive respec-
tively, however, they do not show strong identi-
fication capability for ARMA (p,q) series. Tsay
and Tiao proposed the extended autocorrelation
function (EACF) technique which can tentatively
identify the orders of a stationary or nonstationary
ARMA process based on iterated least squares es-
timates of the autoregressive parameters. Basi-
cally, an iterative regression procedure is given to
produce consistent estimates of the autoregressive
parameters and based on these consistent esti-
mates we utilize the order determination scheme
such as ACF for series subtracting the autoregres-
sive term. More specially, the order determina-
tion scheme is arranged in the following manner:

1: For each candidate AR order p, we first get
the consistent estimates of ϕ ̂1,…,ϕ ̂p .

2: Denote yt=xt-ϕ1̂ yt-1+⋯+ϕp̂ yt-p. For each can-
didate autoregressive order p, given the consis-
tent estimate ϕ1̂,…,ϕp̂ we can get yt from yt,…,yt-p

and what remain should be a MA (q) model if we
get AR order correctly. 

3: By calculating the autocorrelation function
of series yt, we can have the significant test re-
sults on every moving average lag q. 

4: Marking significant levels on different mov-
ing average lags 1 for all candidate AR orders p,
we plot the EACF table and choose ARMA or-

ders by identifying the upper right zero triangle.
See following table 3.  For more details refer to
Tsay and Tiao (1984). 

Table 3 depicts the theoretical pattern associated
with an ARMA (1,2) series. For each pair of AR
and MA orders, we test the significance of t-sta-
tistics of the autocorrelation function and mark in-
significant points as 0, boundary significant points
as 1 and significant points as 2.the insignificant
points compose the upper right zero triangle and
the starting point of triangle `s coordinate is (2,3)
and thus we identify the model as ARMA(1,2). 

Since the most important usage of the EACF
table is to determine the tentative ARMA orders,
it is of great interest to have an effective auto-
matic algorithm to figure out the most suitable
ARMA orders from a given EACF table:

Algorithm: identify autoregressive (AR) and
moving average (MA) from a given EACF table.

Denote EACF (i,j) as the significance located
at the row and jth column of the EACF table
1≤ i ≤ n, 1≤ j≤ m.

Step1: ARMA (i-1, j-1) can be candidate model if:

We want the upper-right triangle leading by
EACF(i,j) to beat at least the triangle of 1 to qual-
ify ARMA (i-1, j-1) as a candidate model. 
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MA

AR 0 1 2 3 4 5 6 7

0
1
2
3
4

2
2
2
2
2

2
2
2
2
2

2
0
2
2
2

2
0
0
2
2

2
0
0
0
2

2
0
0
0
0

2
0
0
0
0

2
0
0
0
0

2= significant
1= boundary significant
0= insignificant

Table 1: The characteristics of unconstrained benchmark functions



Step 2: Best ARMA models among those qual-
ified candidate can be found. Set k=i+j and enu-
merate k from 2 to m+n.

Now, if there is only one qualified candidate
then this is the final model, and if more than one
qualified candidates, the one which has lower
Real/theory is the best model, and if no qualified
candidates set k≔k+1.

As a results from above, and due to Maham-
madi et.al, ESACF has correctly recognition the
model (ARMA (2,2)):

OUTLIERS
There are many informal definition of an out-

lier but only a few, recently published. According
to Barnnet and lewis (1994): "an outlier in a set
of data is an observation or a patch of observation
which appears to be inconsistent with the remain-
der of that set of data." Regression and time se-
ries models have their own types of outliers. Fox
(1972) define two types of outliers in the time se-
ries context, Type Ι and type ΙΙ which are known
as additive (AO) and innovational (IO) outliers.

A. Additive outlier (AO)
An additive outlier is an events that affects a

series for one time period only, its effect are in-
dependent of the ARIMA model. If we assume
that an outlier occurs at time = T, and yt be a time
series following an ARIMA model, we have the
AO model

z_t=y_t+o_A P_t^((T))
Where Pt(T)=1 when t=T, 0 otherwise, and oA is

the magnitude of the isolated, additive outlier.

B. Innovational outlier (IO)
An innovational outlier is an event whose effect

is propagated according to the structure of the

ARIMA model of yt. This model is

Where oI is the magnitude of a single innova-
tional outlier at time = T . 

Additive outlier are in practice more common
than innovational outliers. For statistical analysis,
the AOs are more dangerous and their influence
on parameter estimates can be very destructive
particularly a single large AO outlier many destroy
the information content of the sample autocorre-
lation function or sample partial autocorrelation
function. In modeling and analyzing time series
the researcher must decide how to handle poten-
tial and known outliers. There are three ways to
deal with outlying observation: 

1. deleting
2. accommodation (robust estimates of model)
3. detecting , modeling and interpretation 
Earlier, outlier were usually thrown out, but

nowadays this is not usually recommended. In
careful modeling, the outlying observation are re-
placed by some robust estimates. Robust estima-
tion method are used in the modelling process:
i.e. in the identification, estimation and diagnos-
tic checking phases. It is important to know that
one remarkable outlying observation can ruin
OLS estimates. Robust regression estimation
provides less biased parameter estimates and thus
leads to residuals that enhance the visibility of
possible outliers. (Kleiner et al., 1979) 

It is well known that in the regression analysis,
especially multivariate regression, the identifica-
tion and detection of outlier is troublesome. In
time series we encounter more difficulties due to
the serial correlation between adjacent observa-
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MA

AR 0 1 2 3 4 5 …

0
1
2
3
4
…

X
X
X
X
X
…

X
X
X
X
X
…

X
X
0
X
X
…

X
X
0
0
X
…

X
X
0
0
0
…

X
X
0
0
0
…

…
…
…
…
…
…

Table 3: The approximate ESACF table for monthly river
flow data in shaloo bridge station from 1933 to 2001.



tions. In addition there are various types of out-
liers with different effects on observation. Ac-
cording to Durbin 1979 and Funke (1992), the
Box-Jenkins univariate ARIMA modelling has
been criticized for a lack of robustness. When the
data are anticipated to contain outliers, first it is
important to use robust methods. Thus if one is
doing ARIMA modelling, the robust identifica-
tion tools should be used first. The standard
ESACF seems to be robust to some degree. Tsay
(1986) remarked that the ESACF procedure may
be robust to some degree if the number of outliers
is small, the outliers are of moderate size and
sample size is relatively large. 

Due to common occurrence of outliers, the ro-
bustified EACF procedure is a reasonable tool for
identifying ARIMA models. If there are outliers
in the data and we use standard ESACF, we ob-
tain very biased OLS estimates of the autoregres-
sion coefficients also in recursion estimation.
Thus the ordinary OLS method in autoregression
and the sample ACF in calculating autocorrela-
tion of series must be replaced by their robust
matches. For robustifying the OLS method we
replace the minimizing function as following:

(.), the weight function is assumed to be con-
vex, non-monotone and particularly first deriva-
tive should be continuous and bounded. By use
this replacement, ESACF will be robustify. In ro-
bustifying the ESACF procedure we can first ro-
bustify the iterative AR(p) regression estimation
and second implement a robust autocorrelation
function for every iteration round. There are
common regression estimators which are increas-

ing degree of robustness, One of them is M-esti-
mator also there are different kinds of robust au-
tocorrelation function like weighted
autocorrelation function. 

For the linear regression model yi=xi' β+ui

the minimizing function for M-estimator of β
is ∑ ρ(yi-xi'β/σ) where ρ(.) function is defined on
R and σ2 is variance of u. (more detail, Huber
1964, 1973).

Wacf is a robustified autocorrelation function
in which each observation has its own weight, ωi:

Where 

And

(For more details Wang and Wei 1993).

Two additive outliers are located at t1=139,
ω1=-10 and t1=193 ,ω1=10. The contaminated
series is displayed in following figure, in identi-
fication, the standard ESACF breaks down and
indicate an ARMA (1,1) model (table 4.1), while
the robust version, the M-estimator and the com-
bination of OLS/Wacf indicate correctly an
ARIMA(1,1,1) process (table 4.2). 

CONCLUSION
As we mentioned earlier, there many different

methods to detect the order of time series model.
The Box-Jenkins methodology is not powerful to
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4.1 MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5

AR0
AR1
AR2
AR3

4.2
AR0
AR1
AR2
AR3

0.96
-0.20
0.28
-0.47

MA0
0.98
0.25
-0.44
-0.35

0.93
0.10
0.14
0.32

MA1
0.95
0.25
0.06
0.19

0.90
0.06
0.10
0.15

MA2
0.92
0.14
0.07
0.06

0.87
-0.02
0.02
-0.07

MA3
0.89
0.02
-0.08
-0.12

0.84
0.03
0.03
0.02

MA4
0.86
0.06
0.06
0.03

0.81
-0.01
0.03
0.03

MA5
0.83
-0.02
-0.05
0.00

AR0
AR1
AR2
AR3

AR0
AR1
AR2
AR3

X
X
X
X

MA0
X
X
X
X

X
0
0
0

MA1
X
X
0
0

X
0
0
0

MA2
X
0
0
0

X
0
0
0

MA3
X
0
0
0

X
0
0
0

MA4
X
0
0
0

X
0
0
0

MA5
X
0
0
0

Table 4 : ESACF table



identification the order of mixed models, because
the performance of ACF and PACF are highly de-
pendent to observation and there is a great sensi-
tivity to the outliers. Due to these defects, we
used the Tsay and Tiao (1984) method, with the
presence of outliers, this method is not efficient.
So with robust ESACF, We were able to identify
the correct orders of models. 

Stadnystska et al. (2008) compared the other
methods like MINIC (minimum information cri-
terion) and SCAN (smallest canonical correla-
tion) with ESACF. The best result were 79% of
correct identification for SCAN and 80% for
ESACF. For some models and parameterization,
the accuracy of SCAN and ESACF was disap-
pointing. For autoregressive structures, MINIC
achieved the best results, SCAN was superior to
the other procedure for mixed models. For mov-
ing average processes, ESACF obtained the most
correct selection. MINIC and SCAN had diffi-
culty identifying moving average models.
ESACF demonstrated low power in autoregres-
sive cases. The method that described in this
paper is better than the Box-Jenkins in term of
optimality time.
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