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Abstract
In this paper, a multi-objective enhanced imperialist competitive al-

gorithm (MOEICA) is presented. The main structures of the original
ICA are employed while some novel approaches are also developed.
Other than the non-dominated sorting and crowding distance methods
which are used as the main tools for comparing and ranking solutions,
an auxiliary comparison approach called fuzzy possession is also in-
corporated. This new provision enables more countries to participate in
guiding the population towards different searching routs. Moreover the
computational burden of the algorithm is abated by carrying out the
hefty sorting process not at each iteration but at some predefined inter-
vals. The frequency of which is controlled by on optional parameter.
Furthermore, the recreation of empires and imperialists several times
during the optimization progress, encourages better exploration and less
chance to get trapped in local optima. The eligibility of the algorithm
is tested on fifteen benchmark functions in terms of different perform-
ance metrics. The results through the comparison with NSGA-II and
MOPSO shows that the MOEICA is a more effective and reliable multi-
objective solver with being able to largely cover the true Pareto fronts
(PFs) for the test functions applied in this article.
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INTRODUCTION 
In many scientific researches and engineering

applications, optimization is an essential part (Lin
et al., 2015, Fattahi et al., 2014). If an optimiza-
tion problem comprises M objective functions,
Ndim variables, Ne equality and Ni inequality con-
straints, it can be formulated according to follow-
ing terms: 

Minimize/Maximize F(X)
F(X)=F(f1(X),f2(X),…,fM(X))       (1)

Where  X={x1,x2,..,xNDim} (2)

(3)

In the general form, if the goal is to optimize
only one objective then the problem is catego-
rized into the single objective problems (SOPs).
In contrast, multi-objective problems (MOPs)
aim at optimizing two or more objectives simul-
taneously. In a MOP, rather than locating a global
optimal value, a set of optimal solutions are de-
termined. Generally these points are non-domi-
nated solutions, meaning that, no other point in
the discovered space can be found to improve the
quality of any objective without degrading the
performance of at least another one (Xiang,
2015). The set of all non-dominated parameter
vectors is called the Pareto optimal set and the
corresponding set of objective vectors is the
Pareto optimal front or the PF. The Pareto opti-
mal set is a subset of the search space, whereas
the PF is a subset of the objective space. The PF
forms a curve or surface presenting all possible
trade-offs between the objectives. Hence it is up
to the decision maker to choose between inter-
mediate or extreme points as the final solution to
the problem. Traditional deterministic ap-
proaches have a hard time to travel the entire so-
lution space and find a satisfactory result without
a huge computational effort. Therefore many sci-
entific researches incorporate meta-heuristics for
exploring multi-dimensional search space. A
specification of these approaches is that there is
no guaranty to find the true PF if it is not already
available as in the case of real world problems.
Non-dominated solutions are claimed to be opti-

mal only compared to the solutions discovered
so far. Thus seeking the true PF is an infinite
process in which the solutions are improved
through time progress. Multi-objective evolu-
tionary algorithms (MOEAs) are the most com-
monplace meta-heuristic tools for dealing with
MOPs (Durillo et al., 2010 ؛Coello et al., 2007).
They are suitable for complex problems which
include a large number of variables and objec-
tives (Fan, 2015). Moreover, when the number of
required Pareto solutions is increased, a MOEA
can perform better than a classical optimization
method (Ghiasi et al., 2011). Genetic algorithm
(GA) has been utilized in many MOEAs includ-
ing non-dominated sorting genetic algorithm
(NSGA) (Srinivas & Deb, 1994) and fast elitist
non-dominated sorting genetic algorithm
(NSGA-II) (Deb et al., 2002). Particle swarm op-
timization (PSO) has also attracted attention due
its simplicity and flexibility. Its basic multi-ob-
jective variant, MOPSO (Coello & Lechuga,
2002) has been implemented successfully on
many engineering applications (Sivasubramani
& Swarup, 2009؛ Chandrasekaran et al., 2007).
A relatively new evolutionary algorithm called
imperialist competition algorithm (ICA), has
been proposed by Atashpaz and Lucas in 2007.
The algorithm benefits from the capability to es-
cape local minima by creating several search
spaces thanks to the idea of empires. In contrast
with the PSO, the individuals in the population
do not move toward a single global optima, but
rather a number of elites called imperialists. This
approach removes the concentration on a specific
region of the search space and helps for a better
exploration. ICA has been widely implemented
and improved in single objective optimizations
(Khabbazi et al., 2009؛ Shokrollahpour et al.,
2011) , but few attempts have been made to uti-
lize it in multi-objective optimization area. Enay-
atifar et al. (2013), developed a MOEA based on
the ICA and demonstrated its effectiveness on
several benchmark functions. The results were
compared with those of the NSGA-II and
MOPSO and proved to be better or at least on
par. The authors did not use any external archive
and only relied on the non-dominated solutions
from the population. Idoumghar et al. (2013),
proposed a hybrid ICA-PSO algorithm by incor-

Iranian Journal of Optimization, 9(1): 21-37, 201722



23

porating important aspects of both algorithms.
They used a fixed-size external archive to store
non-dominated solutions in multi-objective real-
ization of their algorithm. In their proposed struc-
ture, the crowding distance method was used to
keep the number of archive members constant.
Though two former studies are proper enough to
be implemented in any practical optimization
area, for the development of the ICA as a MOEA,
further ideas and improvements seem to be wel-
come. Hence the main concern of this paper is to
present a multi-objective version of the ICA,
named MOEICA and validate its advantageous
in comparison with other MOEAs. In order to en-
hance its performance in exploration, exploita-
tion and speed, some strategies are offered within
the main structure and others are devised as to-
tally new extensions.  The rest of the paper is di-
vided into the following parts. In Section 2 the
very original ICA is described. In sections 3, the
proposed MOEICA is presented. The benchmark
functions and performance metrics which are
used for the assessment of the algorithms are ex-
plained in Section 4. The numerical results are
presented and discussed in section 5 and finally
the conclusions are made in section 6.

ORJINAL ICA 
ICA is an example of population based algo-

rithms. The algorithm has been inspired by the
idea of dividing countries into imperialists and
colonies. Individuals in ICA are called countries.
Countries are within different parts of the prob-

lem space which are called empires. Strongest
country in an empire is called the imperialist and
other countries within that empire are named
colonies. Iterations are called decades. Imperial-
ists tend to attract colonies towards themselves
in every decade. The procedure of the original
ICA is shown in Algorithm 1.

Creating empires
After the initialization, according to the proce-

dure of Algorithm 1, the NImp best countries are
chosen as imperialists. Thereafter other countries
must be allocated to empires in the name of
colonies. It is necessary for an empire whose im-
perialist has a better fitness value to collect more
colonies. In the original ICA, the power of each
empire is calculated by the following equations:

(4)

Ci=ci-max(ck) (5)

Where ci is the ith imperialist cost and Ci is its
normalized cost. Having the power of all em-
pires, the number of allocated colonies to each
empire is calculated by 

Eq .6
NCol,i=round[(nPop-NImp)×Pi]         (6)

Assimilation
In the assimilation stage, colonies move to-
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Algorithm 1. The original ICA

1- Initializing a population consisting of all the countries
2- Evaluating costs of all countries
3- Choosing the NImp better countries as imperialists
4- Allocating colonies to empires based on empires’ powers. 
5- While an ending criterion is not satisfied  
6-     Moving colonies towards their corresponding imperialists (assimilation)
7-     Evaluating costs of all colonies in empires
8-     If a colony has a better objective function than its corresponding imperialist
9-         the positions of the colony and the imperialist are exchanged (possession)
10-   End If
11-   Replacing certain percent of colonies in each empire by random points (revolution)
12-   Taking one colony from the weakest empire and giving it a stronger one (imperialistic competition)
13-   If an empire has no colonies
14-      Eliminate that empire
15-   End If
16-   End While



wards their corresponding imperialists as shown in
Fig. 1. The length of the movement is equal to x
which is a random number between 0 and β×d. The
quantity of β which is the movement coefficient is
arbitrary but values greater than 1, causes the
colonies to get closer to the imperialists from all
sides (dimensions) (Atashpaz-Gargari & Lucas,
2007, Idoumghar et al., 2013) . The θ parameter also
acts as a deviation angle. In that way the colony is
able search different points around the imperialist.

Possession
After the assimilation stage, colonies acquire

new positions in the problem space. Hence their
cost functions must be evaluated again. Then if
a colony is proved to have a lower cost than its
relevant imperialist, their positions must be ex-
changed. Thus in the next decade, algorithm will
continue by the new imperialist and then colonies
start moving toward its position.

Imperialistic competition
It is intended in the procedure of the original

ICA to gradually weaken the relatively powerless
empires in favor of more powerful ones. In each
decade, the weakest colony in the weakest empire
is removed and given to an empire which has the
most probability to possess it. To carry out the
competition, the two following vectors are created:

P=[P1,P2,…,PNimp] (7)

R=[r1,r2,…,rNimp] (8)

P is a vector including the powers of all em-

pires. R is a vector with the same size as P, cre-
ated by random numbers between 0 and 1. Finally
vector D is created by subtracting R from P.

D=[p1-r1,p2-r2,…,pNimp)-rNimp] (9)

The empire whose relevant index in D is maxi-
mum will win the colony in the competition. The
algorithm continues until all empires but one have
eliminated. Then the imperialist in the remaining
empire will be the founded global optimum.

MOEICA
The aim here is to present an MOEA based on

the single objective ICA. Some additional tech-
niques are required in this area to make the struc-
ture compatible with multi-objective problems.
The first challenge is to devise a method for creat-
ing the empires after the initialization. Rather than
finding the lowest cost associated individuals as in
the original algorithm, here the non-dominated so-
lutions are to be found. Then the non-dominated
sorting method, of which the procedure is illus-
trated in Algorithm 2 is employed here. This
method allocates a rank to every country in the
population. The countries within the first rank form
the non-dominated solutions. In order to discrimi-
nate between the countries within the same rank,
the crowding distance method is also incorporated.
Its implementation is described in Algorithm 3.
This method calculates the distance of a country
from its neighbors in the objective space. In this
approach, countries possessing higher crowding
distance values are more desirable, because it means
that they are located in a less crowded area. There-
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Fig. 1. Movement of a colony in the assimilation stage
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after similar to the original version of the algo-
rithm, the best NImp countries will be chosen as im-
perialists. It will include countries with lower ranks
and higher crowding distance values. The rank pa-
rameter has the prominent role in the sorting. In
other words, worst country of a lower rank, has the
priority over the best country in a higher rank (Al-
gorithm 2 and Algorithm 3).

Empires and external archive
In the next step, powers of all the empires

should be determined. Here we solely rely on the
imperialist place in the sorted population to cal-
culate the power of its corresponding empire. 

(10)

SPlacei is the ith imperialist place after sorting.
kpower is a coefficient determining the effect of the
rank and crowing distance of an imperialist on the
power of its corresponding empire. After calculating
the powers of all empires, allocation of colonies to
the empires is the same process as in section 2.1 and
is done by Eq.6. Since imperialists in all empires un-
dergo changes if been dominated by some colonies,
in order to preserve the elitism in the algorithm an
external archive is required. Hence an archive with
dynamic size is used to procure best solutions in the
whole optimization process. As Deb et al. (2002)
have discussed in their paper, the non-dominated
sorting process is the main computational effort in
algorithms which use it. This complexity is related
to the one by one dominance comparisons in the
sorting process. In NSGA-II the act of the sorting is
carried out twice in each iteration. Then it makes the
algorithm computationally expensive. To alleviate
this problem, in our proposed multi-objective algo-
rithm, there is this flexibility to do the sorting
process after each optional predefined number of
decades (NRC). This option lowers the runtime of the
algorithm drastically and does not disintegrate the non-
dominated solutions thanks to the presence of the ex-
ternal archive. But still increasing the NRC too much
can deteriorate the quality of solutions because the di-
versity of the imperialists is checked less frequently in
subsequent decades. Then an intermediate value
should be chosen for NRC to establish a trade-off be-
tween speed and accuracy of the algorithm. It must be
noted that by reaching each multiple of NRC, the exter-
nal archive is updated. The positions of all countries
within the archive are overridden by those countries
that are in the first rank after sorting. The empires are
also reset. Then the imperialistic competition stage is
an unnecessary effort to be implemented here. The
constituted structure so far, is able to evaluate solution
candidates in a multi-objective environment and store
non-dominated solutions in subsequent iterations.
Other stages of the original ICA can also be imported
here unchanged. But in this paper, some strategies are
also suggested to enhance the performance of the al-
gorithm relating to those specific stages.

Assigning membership functions
If the colonies in each empire are sorted ac-

cording to their objective values, it will be bene-
ficial in many areas of the algorithm. It is
intended here to give a single fitness value to
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Algorithm 2. The non-dominated sorting

1- For i ϵ N_Pop
2- Si=Ø
3- Ni=0
4- F1=Ø
5- For j ϵ NPop
6- If Countryi dominates Countryj

7- Si=Si∪ {j}
8- Else If Countryj dominates Countryi

9- Ni=Ni+1
10- End If
11- If Ni=0
12- Countryi.Rank=1
13- F1=F1∪ {i}
14- End If
15-     End For
16-  End For
17-  r=1
18-  While Fr≠0
19- Q=Ø
20- For i ϵ Fr
21- For j ϵ Si
22- Nj=Nj-1
23- If Nj==0
24- Countryj.Rank=r+1
25- Q=Q∪ {j}
26- End If
27- End For 
28- End For
29- r=r+1
30- Fr=Q
31-  End While



each colony in an empire. In this way the
colonies in empires can be sorted. Incorporating
the non-dominated sorting and crowding distance
methods in this area is a hefty procedure and is
not recommended. The considered approach is to
assign membership functions. For every objec-
tive of the problem, a membership function is de-
fined using the fuzzy membership function
concept. The membership function changes lin-
early from zero to one in a predefined interval.
The value of one implies that the specific objective
has been satisfied completely and the value of zero
means that the specific objective has not been sat-
isfied at all. Then to acquire these characteristic
points, the problem should be solved for every ob-
jective separately. When a solution point, satisfies
an objective to some extent, a membership function
between zero and one is dedicated to it by the fol-
lowing equation.

(11)

f(i)best and f(i)worst are respectively the best and
worst possible quantities for ith objective. μ(fi) is
then the membership value for the ith objective.
In order to merge two or more objective func-
tions, there are two possible ways. 1- Calculating
the minimum of all membership functions 2-
Calculating the mean of all membership func-
tions. The first approach emphasizes on diversity,
while the second focuses on convergence. In this
stage, one of these two methods is chosen ran-
domly. Then in each empire, to every colony (and
the imperialist), a total membership function
(TMF) is dedicated.

Enhanced assimilation
In this step, only a fraction of colonies in each

empire participate in the assimilation which is
controlled by the AssRate parameter. For the rest
of the colonies, another approach is intended, of
which the description is proposed later. As shown
in section 2.2, the β parameter plays an important
role in the assimilation process. The authors of
this papers believe that a single constant value
for β cannot yield a satisfying performance. Here
different movement coefficients are suggested
based on the progress of the algorithm and the
colony rank within its corresponding empire.
Note that the assigned ranks to colonies here are
valid only locally in each empire and must not be
confused with the ranks given to countries in the
creating empires stage. Considering the TMF val-
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Algorithm 3. The crowding distance

1-    Let R be the number of available ranks
2-    Let M be the number of objectives
3-    For r ϵ R
4-         Let Ar be the set of countries in rth rank 
5-         Let Cr be the objective array of the countries in rth rank 
6-         For m ϵ M
7-               Let SCost be the sorted mth objective values for countries in rth rank
8-               Let SInd be the sorted indexes regarding to SCost
9-               d(SInd(1),m)=inf
10-            d(SInd(end),m)=inf
11-              For k ϵ {2:size(Ar )-1}
12-                   d(SInd(k),m)=[SCost(k+1)-SCost(k-1)]/[SCost(end)-SCost(1)]
13-             End For
14-        End For
15-        For i ϵ Ar

16-             Countryi.CD=sum(d(i,:))
17-        End For
18-        End For
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ues assigned to colonies in section 3.2, they are
sorted in descending order. Let β(i,j) be the
movement coefficient of the ith colony in jth em-
pire. Then its value can be formulated by the fol-
lowing equation. 

(12)

(13)

(14)

Rank (i,j) is the rank of the ith colony in jth em-
pire. NCol (j) is the number of colonies in jth em-
pire. NDec is also the total number of decades in a
single run.

Creating trial vectors
The approach for those colonies which do not

participate in the assimilation process is to incor-
porate them in creating some trial vectors. The
goal here is to improve global search capability
of the algorithm. Assuming that the process is
being carried out for the ith colony in jth empire.
Two random colonies in the same empire are
chosen such that c1≠c2≠i. Then two new countries
are formed according to Eq.15 and 16.

XCou1=Xc1+Acc(Decade)×(-1+2r)×(Ximp (j)-Xc1)
(15)

XCou2= Xc2+Acc(Decade)×(-1+2r)×(Ximp (k)-Xc2) 
(16)

Acc(Decade)= Accfirst + (Acclast - Accfirst)×
Decade/NDec (17)

Ximp (k) is the position vector of an imperialist
in a random empire other than jth. Acc is the
acceleration coefficient. Low value of Acc en-

sures better local search, while by increasing
its value, better exploration is concluded.
Thereafter, the aim is to create two trial vectors
from these two countries to compare with the
target vector which is the XCol (i,j). To accom-
plish that, the crossover operator must be used.
First of all, three random vectors between zero
and one with the length of the problem dimen-
sion are created. 

R1=[r11,...,r1n]   0<r1d<1 (18)

R2=[r21,...,r2n]   0<r2d<1 (19)

R3=[r31,...,r3n]   0<r3d<1 (20)

n=NDim (21)

Then trial vectors are created according to Eq
.22 and 23.

(22)

(23)

Finally the trial vectors are compared with XCol (i,j).
The colony will be replaced in the case of being
dominated by any of them.

Enhanced revolution
As mentioned in Algorithm. 1, in the revo-

lution process of the original ICA, a certain
percent of colonies in each empire are chosen
and their positions are exchanged with random
points in the problem space. The modification
proposed here is in the creation of the new
points. According to the dimension of the
problem, the revolving colonies will take
some part of their vectors from a random im-
perialist and the other part is also created ran-
domly. The formulation has been described in
Eq.24
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XRevolved is the position of a colony which is in the
process of revolution. Xlbound and Xhbound are respec-
tively the lower and upper bound vectors of the de-
cision parameters. Rev2ImpRate is the Probability
that the revolving colony becomes like the imperial-
ist. r is also a random number between zero and one.

Fuzzy possession
In the possession stage of the algorithm, impe-

rialists are replaced by colonies if been domi-
nated by any of them. But there are many
occasions that some colonies are mutually non-
dominated with the imperialist, meaning that nei-
ther the colony nor the imperialist can dominate
the other. In this case, the algorithm will enter
into another stage called the fuzzy possession.
This stage enables the colonies whose TMF is
higher than that of the imperialist to replace it.
The procedure is shown in Algorithm 4.

Considering all the discussed approaches and
strategies, the new devised algorithm is called the
multi-objective enhanced ICA (MOEICA). The
overall procedure of the algorithm is portrayed
in the flowchart of Fig. 2.

MOEAs  ASSESSMENT
The MOEA community has created various

specific benchmark functions which have been
employed by other MOEA designers. Some
MOPs are intended to examine certain areas of
MOEAs. Several appear to be relatively easy in
the sense of finding the Pareto optima. This situ-
ation implies the identification of appropriate
benchmark functions to quantitatively evaluate
MOEAs (Coello et al., 200). Although good per-
formance of an algorithm in handling benchmark
functions does not guaranty its effectiveness on
real-world problems, the benchmarks remain the
best tools for comparative studies (Holland,
2000). There are several ways to categorize dif-
ferent MOPs based on their characteristics. For
example, scalability, modality, type of constraints
and dimensionality alongside with the possible
PF geometries like convexity, continuity and bias
can be taken into account. Explanation and dis-
cussion about the aforementioned traits are pro-
vided in Refs (Huband et al., 2006؛ Deb, 1999).

Benchmark functions
There are a wide variety of Benchmark func-

tions proposed in the literature. Many of which
are unconstrained problems. Among them Fon-
seca’s (1995) and Kursawe’s (1991) functions are
of historical importance and hence examined
here. The well-known group of ZDT test prob-
lems which has been provided by Zitzler et al.
(2000) is also employed. They are six different
functions of which, two have been chosen for the
sake of brevity. ZDT3 has a discontinues Pareto
front and ZDT6 features bias towards the first ob-
jective. The DTLZ suite of benchmark problems,
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Algorithm 4. The fuzzy possession 

1-    Assume that the process is happening in jth empire
2-   For i ϵ NCol (j)
3-         If rand<.5
4-         TFMCol(i,j)=mean[Col,f1(i,j), Col,f2(i,j),…, Col,fM(i,j)]
5-         TMFImp(j)=mean[Imp,f1(j), Imp,f2(j),…, Imp,fM(j)]
6-    Else
7-         TFMCol(i,j)=min[Col,f1(i,j), Col,f2(i,j),…, Col,fM(i,j)]
8-         TMFImp(j)=min[Imp,f1(j), Imp,f2(j),…, Imp,fM(j)]
9-    End If
10- If TMFCol (i,j)>TMFImp (j)
11-     Exchange the position vectors of the imperialist and the colony        
12-     Exchange the objective vectors of the imperialist and the colony
13-     End For
14-  End For
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created by Deb et al. (2001), is also included.
These problems are scalable to any number of ob-
jectives. So in this study the dimensionality of
three is chosen. WFG Benchmark functions
(Huband et al., 2006) are also selected. Similar to
the DTLZ family, they are also scalable in terms
of number of parameters and objectives. Finally
Oka test functions (2004) )are also examined.

They are very difficult for any MOEA, because of
their high modality close to the PF. The specifica-
tions of these employed unconstrained benchmark
functions are summarized in Table 1. As for the
constrained benchmark functions the Osyczka’s
(1995) and Tanaka’s (1995) and Viennet’s (1996)
functions are incorporated. the specifications of
these MOPs are also described in Table 2.

Fig. 2. The flowchart of the proposed MOEICA

Benchmark Function M NDim Geometry Modality Bias Continuity Parameter
Scalability 

Objective
Scalability

Fonseca
Kursawe
ZDT3
ZDT6
DTLZ1
DTLZ5
DTLZ7
WFG2
WFG6
WFG8
Oka1
Oka2

2
2
2
2
3
3
3
3
3
3
2
2

3
3
30
30
7
12
22
24
24
24
2
2

Concave
Mixed
Mixed

Concave
Linear

Concave
Mixed
Convex
Concave
Concave
Convex
Concave

Unimodal
Unimodal

Multimodal
Multimodal
Multimodal
Unimodal

Multimodal
Unimodal
Unimodal
Unimodal

Multimodal
Multimodal

No
No
No
Yes
No
Yes
Yes
No
No
Yes
No
No

Connected
Disconnected
Disconnected

Connected
Connected
Connected

Disconnected
Disconnected

Connected
Connected
Connected
Connected

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No

No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
No
No

Table 1: The characteristics of unconstrained benchmark functions



Performance metrics
The primary purpose of every MOEA is to

guide the searching route of the algorithm to the
true PF as close as possible, while simultane-
ously maintain the diversity in the obtained non-
dominated solutions or otherwise called the
approximate set. Hence in order to evaluate these
properties, several assessment metrics have been
developed in the literature. The purpose is to
quantitatively examine the following criterions:
1) proximity of the approximate set with the true
PF (convergence); 2) whether the solutions are
uniformly distributed on the obtained approxi-
mate set (distribution); and 3) how widespread
the solutions are in the objective space (spread).
Let P be a set of evenly distributed sample points
along the true PF, and S be the obtained approx-
imate set by an algorithm. The following metrics
are defined based on the above notations. The in-
verted generational distance (IGD) developed by
Li and Zhang (2009) is used to evaluate the con-
vergence capability of the candidate MOEAs.

(25)

Where di is the distance of  pi⃗ ∈ P to the closest
solution in S. q is taken equal to 2. |P| is the number
of points in P. Another convergence metric which is
used in this study is the Epsilon indicator which has
been introduced by Zitzler et al. (2003). This metric
is a measure of the smallest distance one would need
to translate every solution in S so that it dominates P.

(26)
Where s ⃗⪯p ⃗+ε means that ∀j=1:M,s j ≤ p j+ε.

The third metric employed here is the generalized
spread (∆*) which has been devised by Zhou et
al. (2006) and measures the distribution and
spread of the solutions found by an algorithm.

(27)

ek is the extreme solution in P corresponding to the
kth objective. di is identified as the distance of si ⃗ ∈
S to its closest solution is S. d  ̅ is the mean of di.

COMPARATIVE  SIMULATION
For simulation and comparison, the proposed

Benchmark 
Function

M NDim Geometry Modality Bias Continuity Parameter
Scalability 

Objective
Scalability

Objective
Scalability

Osyczka2
Tanaka
Viennet4

2
2
3

6
2
2

Linear
Mixed
Mixed

Unimodal
Unimodal
Unimodal

Yes
No
No

Connected
Disconnected

Connected

No
No
No

No
No
No

6
1
3

Table 2: The characteristics of constrained benchmark functions

Benchmark Function Number of Intended Function Evaluations

Fonseca
Kursawe
DTLZ7
WFG2
WFG6
WFG8
Osyczka2
Viennet4
ZDT3
DTLZ5
Tanaka
Oka1
ZDT6
DTLZ1
Oka2

50,000

100,000

200,000

Table 3 : The number of function evaluations intended for MOPs
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MOEICA along with the two well-known algo-
rithms, NSGA-II (Deb et al., 2002) and MOPSO
(Coello & Lechuga, 2002) are incorporated. 10 in-
dependent runs are carried out for every benchmark
MOP. The optimization ending condition is to reach
a determined number of function evaluations which
has been given for every problem in Table 3. The
maximum number of solutions presented in the ap-
proximate set is limited to 100 for all methods. To
deal with constrained problems, the penalty method
is intended, so that sum of all violations multiplied
in a fixed large coefficient is added to all objectives.

The true PFs which are required for evaluation of
performance metrics are available for downloading
at: http:// www.cs.cinvestav.mx/~emoobook. All
codes have been implemented by Matlab 7.12 soft-
ware and simulated via an Intel core i5 processor and
4GB of RAM. The chosen parameters associated
with the MOEICA for testing are listed in Table 4.

Metrics results
After finishing the simulations, performance

metrics are computed. The mean and standard
deviation values for IGD, Epsilon, ∆* and run-

Parameter 
Value

βmin.first 

2

βmin.last

.75

βmax.first

4

βmax.last

1.5

Accfirst

1.5

Acclast

2.5

Parameter
Value

NImp NRC

3

AssRate

.5

Rev2ImpRate
.25

-

Table 4: The corresponding parameters for MOEICA testing

Problem NSGA-II MOPSO MOEICA

Fonseca
Kursawe
ZDT3
ZDT6
DTLZ1
DTLZ5
DTLZ7
WFG2
WFG6
WFG8
Oka1
Oka2
Osyczka2
Tanaka
Viennet4

2.9539e-4  (2.1635e-5)
1.7803e-3  (1.4487e-4)
4.4691e-3  (2.9240e-4)
2.8129e-2  (9.7979e-4)
2.2175e-2  (1.0549e-2)
7.4553e-5  (1.5403e-5)
1.4092e-2  (1.8501e-3)
1.4118e-3  (1.1793e-4)
3.3008e-3  (1.8590e-4)
4.6618e-3  (1.9773e-4)
5.2369e-3  (2.2111e-3)
4.2369e-2  (1.7211e-3)
2.8970e-1  (6.6873e-2)
2.4883e-4  (1.1061e-5)
1.1772e-3  (6.7711e-5)

4.5784e-4  (3.3951e-5)
3.7729e-3  (5.6940e-4)
4.0239e-4  (2.6037e-5)
2.0214e-3  (4.1438e-3)
1.7929e-1  (8.9960e-2)
7.8666e-4  (3.0379e-5)
9.9775e-4  (4.1044e-5)
2.8719e-3  (3.7672e-4)
3.6690e-3  (3.1291e-4)
6.9185e-3  (2.8333e-4)
4.6639e-3  (2.8795e-4)
4.8301e-2  (1.4894e-3)
1.2119e-1  (4.8161e-2)
4.2180e-4  (1.6020e-5)
8.0853e-4  (4.3018e-5)

2.6402e-4  (8.3133e-6)
9.5241e-4  (1.8178e-4)
2.0497e-4  (9.7955e-6)
3.3207e-4  (2.1324e-3)
5.4183e-4  (3.0849e-5)
7.1656e-5  (6.0666e-6)
1.1123e-3  (1.0098e-4)
1.3150e-3  (1.1836e-4)
3.0397e-3  (9.2205e-4)
4.3912e-3  (1.1783e-4)
5.1135e-3  (3.2387e-4)
6.9486e-2  (1.5452e-3)
8.2187e-2  (6.4158e-3)
2.9307e-4  (1.8769e-5)
1.0511e-3  (5.7163e-5)

Table 5: Mean and standard deviation values for IGD metric

Problem NSGA-II MOPSO MOEICA

Fonseca
Kursawe
ZDT3
ZDT6
DTLZ1
DTLZ5
DTLZ7
WFG2
WFG6
WFG8
Oka1
Oka2
Osyczka2
Tanaka
Viennet4

1.4345e-2  (4.3098e-3)
1.3351e-1  (8.0642e-2)
2.5294e-1  (3.8942e-2)
3.0303       (9.8708e-2)
1.6736       (5.9575e-1)
2.3090e-2  (1.1751e-2)
2.8539       (2.7440e-1)
1.4198       (6.7957e-2)
1.4403       (1.5491e-1)
1.2819       (1.6258e-1)
1.3614e-1  (7.0550e-2)
5.8778e-1  (4.4253e-2)
1.3390e1   (4.6686e-1)
1.2065e-2  (2.6842e-3)
4.0430e-1  (1.1403e-1)

2.3367e-2  (3.7861e-3)
2.2905e-1  (6.2925e-2)
2.7577e-2  (5.9607e-3)
2.1724e-1  (3.9377e-1)

1.3453e1   (4.8873)
4.6098e-2  (5.8369e-3)
2.2317e-1  (2.7105e-2)
9.1752e-1  (1.3982e-1)
9.0753e-1  (1.3556e-1)
1.5991       (2.1562e-1)
1.4828e-1  (9.4570e-3)
5.5550e-1  (4.9787e-3)

6.9448       (2.4414)
2.1681e-2  (4.2059e-3)
3.1102e-1  (6.9732e-2)

1.0856e-2  (1.8341e-3)
8.8082e-2  (8.1152e-3)
1.0570e-2  (1.6687e-3)
2.0879e-1  (5.4252e-2)
5.8876e-1  (6.8657e-2)
1.7964e-2  (3.2938e-3)
2.6971e-1  (6.3449e-2)
4.7969e-1  (3.9354e-2)
8.8267e-1  (1.6138e-1)
9.8448e-1  (5.6552e-2)
1.8643e-1  (3.6596e-2)
7.0923e-1  (3.3057e-2)
1.5711       (3.2575e-1)
1.1528e-2  (5.0189e-4)
3.2779e-1  (5.5883e-2)

Table 6 :  Mean and standard deviation values for Epsilon metric



times are given in Tables 5-8 respectively.
First the algorithms are compared according to

the IGD metric. For some problems like Fonseca,
Kursawe, ZDT3, ZDT6, DTLZ1, DTLZ5, WFG2,
WFG6, WFG8 and Osyczka2 the MOEICA ob-
tains better values which makes it the superior
performer among the three algorithms in terms
of the IGD metric. MOPSO also scores the best
performance in three problems and NSGA-II
leads in only two problems. Considering the fact
that ZDT3, ZDT6, DTZL1, DTLZ7, Oka1 and
Oka2 are multimodal problems, it can be con-
cluded that MOEICA and MOPSO generally ac-
quire better IGD values in problems with high
modality, while the NSGA-II deals better with
unimodal problems in that respect. Taking the
Epsilon metric values into account, the results are

more conclusive in favor of the MOEICA. Ex-
cept in the DTLZ7, Oka1, Oka2 and Viennet4,
MOEICA remains the best performer in most of
the problems. MOEICA outperforms in three
MOPs and NSGA-II leads in only one MOP. An-
alyzing the ∆* metric calculations indicates that
again the MOEICA leads overall by maintaining
better values in seven benchmarks. This metric
is also the only field that NSGA-II can produce
better results than MOPSO, showing its slightly
better capability to distribute the population
evenly on the approximate set. Considering run-
times of the algorithms is also of great impor-
tance. An optimization method which produces
same results within a less computational time is
claimed to be more efficient. In this aspect the
MOEICA and MOPSO are almost on par al-

Problem NSGA-II MOPSO MOEICA

Fonseca
Kursawe
ZDT3
ZDT6
DTLZ1
DTLZ5
DTLZ7
WFG2
WFG6
WFG8
Oka1
Oka2
Osyczka2
Tanaka
Viennet4

7.6637e-1  (4.8241e-2)
8.1921e-1  (1.6143e-1)
9.7021e-1  (9.4878e-3)
9.9971e-1  (8.9304e-5)
9.2682e-1  (4.9958e-2)
7.9569e-1  (7.9103e-2)
9.4490e-1  (3.4960e-2)
9.3598e-1  (3.1950e-2)
8.3210e-1  (3.6395e-2)
8.2254e-1  (3.0113e-2)
9.6469e-1  (9.5404e-1)

1.0610       (1.0554)
8.8798e-1  (3.5563e-2)
7.4325e-1  (2.6707e-2)
9.7538e-1  (7.3219e-2)

9.8211e-1  (4.6348e-2)
1.3312       (4.9927e-2)
1.0888       (9.0781e-2)
1.1524       (2.3558e-1)
8.9885e-1  (2.0942e-1)
1.1099       (9.7220e-2)
8.7033e-1  (5.5228e-2)
9.2760e-1  (1.1658e-1)
7.6312e-1  (3.8021e-2)
7.3483e-1  (4.7068e-2)
1.3176       (6.6842e-2)
1.8332       (9.5939e-2)
1.2588       (1.0660e-1)
1.0796       (4.5909e-2)
1.0727       (7.8083e-2)

5.1579e-1  (3.1410e-2)
1.0657       (4.9627e-2)
6.7337e-1  (2.3302e-2)
9.8914e-1  (4.0307e-3)
7.1036e-1  (5.6861e-2)
7.4332e-1  (1.0241e-1)
9.1171e-1  (1.0314e-1)
1.0476       (1.3839e-1)
7.8083e-1  (9.2469e-2)
7.2041e-1  (5.3433e-2)
9.8286e-1  (7.5678e-2)
1.7711       (6.5634e-2)
1.1959       (4.9600e-2)
8.7108e-1  (4.1305e-2)
9.6566e-1  (5.6750e-2)

Table 7:  Mean and standard deviation values for ∆* metric

Problem NSGA-II MOPSO MOEICA

Fonseca
Kursawe
ZDT3
ZDT6
DTLZ1
DTLZ5
DTLZ7
WFG2
WFG6
WFG8
Oka1
Oka2
Osyczka2
Tanaka
Viennet4

4.1262e2  (2.7211e-1)
4.1301e2  (3.0627e-1)

1.6416e3  (4.9241)
3.2496e3  (8.0442e1)
2.3172e3  (1.1685e2)
1.0914e3  (7.0054e-1)

5.4776e2  (2.0704)
5.4826e2  (1.1919)
5.4845e2  (2.1235)
5.4647e2  (1.07580

1.3695e3  (1.1598e1)
2.3290e3  (2.7604e-1)
4.1907e2  (5.3328e-1)
8.4426e2  (4.2787e-1)
4.1482e2  (3.4373e-1)

7.7624e1  (5.0013e-1)
6.8876e1  (6.6814e-1)

1.7603e2  (5.9055)
5.3721e2  (1.6691e2)
2.5022e2  (5.6093)
1.7612e2  (8.3517)

9.6007e1  (5.6179e-1)
1.1419e2  (1.2774)
1.4261e2  (2.1511)

2.1326e2  (4.6218e-1)
1.0733e2  (8.1153e-1)
1.4983e2  (9.5205e-1)
2.8827e2  (7.4869e-1)
1.4385e2  (5.5591e-1)

9.2547e1  (1.0944)

7.2240+1  (3.5989e-1)
7.0861e1  (7.0064e-1)

1.9131e2  (2.4125)
2.6668e2  (8.3531)

2.4323e2  (1.2916e1)
2.0821e2  (1.3558)
9.3428e1  (1.6188)
1.1056e2  (1.1679)

1.1341e2  (4.5048e-1)
1.2099e2  (4.7648e-1)

1.0176e2  (1.1537)
1.6962e2  (5.4638e-1)

3.2199e2  (1.5575)
2.0031e2  (3.0977)

1.1706e2  (3.9471e-1)

Table 8:  Mean and standard deviation values for Runtime
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though it seems that the MOEICA leads trivially.
NSGA-II has its worst performance in this area
where in some problems its computational time
is above ten times higher than the other two al-
gorithms. Statistical comparison of the perform-
ances in all four categories will be discussed in
the next section. It is also beneficial to compare
how algorithms guide the population toward the
true PF during the optimization. The DTLZ1
problem is selected as an instance. The variations
of all metrics for the three algorithms are por-
trayed in Fig. 5. Fig. 6 also shows obtained solu-
tions in objectives space after 200,000 function
evaluations.

Friedman test
In order to determine whether the results of the

methods are significantly different from each other,
the Friedman statistical test is employed. The prin-
ciple of the Friedman test is based on a null hy-
pothesis which must be rejected to prove that at
least one treatment (method) performs better than
at least one of the other treatments (Zimmerman &
Zumbo, 1993؛ Villegas, 2011).  It is assumed that
there are k treatments to be applied on b blocks
(problems). The Friedman test is applicable to the
observations on the blocks only if they are mutu-
ally independent and can be ranked according to
each treatment. Considering the aforementioned

Fig. 5. Variations of different metrics obtained from DTLZ1 problem.
(a) IGD. (b) Epsilon. (c) ∆*. (d) Runtime.

(a) (b)

(c) (d)

Fig. 6. Approximated sets obtained from DTLZ1 problem after 200,000 function evaluations.
(a) NSGA-II. (b) MOPSO. (c) MOEICA.

(a) (b)

(c)



assumptions, ranks of the algorithms, for all met-
rics have been gathered in Tables 9-10.

After the ranking procedure, the following pa-
rameters must be calculated:

(25)

(26)

(27)

Rij is the rank of jth algorithm on ith problem.
T2 is the statistical test value. If the condition
of T2>F1-α,k-1,(b-1)(k-1) is satisfied, then the null hy-
pothesis is rejected. α is the level of signifi-
cance and the function of Fx,v1,v2 returns the
inverse of the F cumulative distribution func-
tion (CDF) at the value of x with v1 and v2 de-
grees of freedom. By rejecting the null
hypothesis the pairwise comparisons will be
possible. Two algorithms are different if |Ri-Rj|
surpasses the critical value which is calculated
by the following equation.

(28)

Tx.v also calculates the inverse of  CDF for the
student’s T distribution function. The results of
the Friedman tests along with pairwise compar-
isons are gathered in Table 11.  The level of sig-
nificance for all comparisons have been set to
five percent.

What is apparent from the table is that in all
four cases the null hypothesis is rejected. Con-
cerning the IGD, the rank differences between
the MOEICA with both other algorithms is above
the critical value. Then its superior performance
in this category is proved. However it is not the
case for NSGA-II and MOPSO, concluding that
the two methods perform at the same level in
terms of IGD metric values. The same conclu-
sions apply for the Epsilon metric, where the
MOEICA outperforms the other two by a higher
margin than the former case. Again the differ-
ence between NSGA-II and MOPSO is negligi-
ble. As for the ∆* metric, however still the
MOEICA has the lowest overall rank, difference
between its rank and that of the NSGA-II is triv-
ial. Then it is not significantly advantageous
over NSGA-II regarding ∆* metric performance.
Meanwhile the MOPSO has its worst perform-
ance here being inferior compared to other two
algorithms. Paying attention to runtime ranks
provided in the table, it is clear that MOEICA
and MOPSO while performing at the same level,
have a clear advantage over NSGA-II by a very
large margin.

Problem
IGD Epsilon

NSGA-II MOPSO MOEICA NSGA-II MOPSO MOEICA

Fonseca
Kursawe
ZDT3
ZDT6
DTLZ1
DTLZ5
DTLZ7
WFG2
WFG6
WFG8
Oka1
Oka2
Osyczka2
Tanaka
Viennet4
Sum of Ranks

2
2
3
3
2
2
3
2
1
2
3
1
3
1
3
33

3
3
2
2
3
3
1
3
3
3
1
2
2
3
1
35

1
1
1
1
1
1
2
1
2
1
2
3
1
2
2
22

2
2
2
3
2
2
3
3
3
2
1
2
3
2
3
35

3
3
3
2
3
3
1
2
2
3
2
1
2
3
1
34

1
1
1
1
1
1
2
1
1
1
3
3
1
1
2
21

Table 9: Ranks of all algorithms for IGD and Epsilon
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CONCLUSIONS
In this paper, a MOEA based on the single ob-

jective ICA was proposed. In order to deal with
the dominance criteria in multi-objective prob-
lems, the non-dominated sorting and crowding
distance methods were incorporated. An auxil-

iary comparison approach called fuzzy posses-
sion was also presented using the concept of
fuzzy membership functions. By doing so it was
made possible for all the colonies in each empire
to be ranked and compared with the imperialist
without a huge computational effort. The mini-

Problem
∆* Runtime

NSGA-II MOPSO MOEICA NSGA-II MOPSO MOEICA

Fonseca
Kursawe
ZDT3
ZDT6
DTLZ1
DTLZ5
DTLZ7
WFG2
WFG6
WFG8
Oka1
Oka2
Osyczka2
Tanaka
Viennet4
Sum of Ranks

2
1
2
2
3
2
3
2
3
3
1
1
1
1
2
27

3
3
3
3
2
3
1
1
1
2
3
3
3
3
3
37

1
2
1
1
1
1
2
3
2
1
2
2
3
2
1
25

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
45

2
1
1
2
2
1
2
2
2
2
2
1
1
1
1
23

1
2
2
1
1
2
1
1
1
1
1
2
2
2
2
22

Table 10 : Ranks of all algorithms for ∆* and runtime

IGD Test Values Comparisons

A2=210
B2=186.53

T2=3.89
F=3.34

C=10.27

|Ri-Rj|
NSGA-II

MOPSO

MOEICA
11

13

MOPSO
2

-

Epsilon Test Values Comparisons

A2=210
B2=188.13

T2=5.21
F=3.34
C=9.91

|Ri-Rj|
NSGA-II

MOPSO

MOEICA
14

13

MOPSO
1

-

∆* Test Values Comparisons

A2=215
B2=189
T2=4.85
F=3.34

C=10.81

|Ri-Rj|
NSGA-II

MOPSO

MOEICA
2

12

MOPSO
10

-

runtime Test Values Comparisons

A2=210
B2=202.53
T2=42.25
F=3.34
C=5.79

|Ri-Rj|
NSGA-II

MOPSO

MOEICA
23

1

MOPSO
22

-

Table 11: Friedman test values and pairwise comparisons 



mum and mean calculations in TMF focused on
respectively convergence and diversity enhance-
ment. Moreover operating the sorting process at
a less frequent manner than NSGA-II paid off by
reducing the runtime of the algorithm and mak-
ing it somewhat between five-to-ten times faster.
The satisfying performance of the algorithm in
multimodal problems indicates that the recreation
of empires at predefined intervals has aided for
better exploration. These provisions altogether
made it possible for the proposed algorithm to
yield an approximated solution set with better
performance than similar methods like NSGA-II
and MOPSO. To make it evident, the perform-
ance of the algorithm was tested on fifteen
benchmark MOPs in terms of IGD, Epsilon and
∆* metrics. The Friedman test study by the five
percent level of significance showed that the
MOEICA is meaningfully preferable than other
methods in convergence metrics including IGD
and Epsilon. The diversity of the solutions was
much better than MOPSO and slightly better than
NSGA-II. Moreover the speed of the algorithm
is pretty much the same as the MOPSO and sig-
nificantly faster than NSGA-II.  In our future
work, we will focus on the practical applications
of the MOEICA. Furthermore, it is also benefi-
cial to test other sorting and archive preserving
methods to improve the performance of the algo-
rithm even more.
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