IRANIAN JOURNAL OF CATALYSIS

ZnO nanoparticles as an Efficient and Reusable Catalyst for Synthesis of Quinoxaline under Solvent Free Condition

Bahareh Sadeghi^{*}, Fereshteh Karimi

Department of Chemistry, Yazd Branch, Islamic Azad University, P.O. Box 89195-155, Yazd, Iran Received 7 October 2012; received in revised form 28 December 2012; accepted 30 December 2012

ABSTRACT

1,2-Diketones have been reacted in one-pot method with 1,2-diamines at room temperature with ZnO nanoparticles as a catalyst. ZnO nanoparticles as an available and reusable catalyst is used for the synthesis of Quinoxalinein improved yields.

Keywords: Quinoxaline, ZnO nanoparticles, Solvent free, Benzil, 1,2-Diamines

1. Introduction

Among the various classes of nitrogen containing heterocyclic compounds, guinoxaline derivatives show a wide range of biological activities and play an important role as a basic skeleton for the design of a number of antibiotics such as echinomycin, actinomycin, leromycin and antifungal [1]. Quinoxalines have a variety of activities such as tranguilizing, antimycobacterial, cardiotonic. antidepressant and antitumor activities depending on the substitution pattern on the scaffold [2]. Synthesis of quinoxaline ring is still an important challenge. They have also many applications in dyes, pharmaceuticals and efficient electroluminescent materials [3]. The most common method for their synthesis relies on the condensation of an aryl 1,2diamine with a 1,2-dicarbonyl compound in refluxing ethanol or acetic acid for 2-12h giving 34-85% yields [4].Recently, the synthesis of quinoxaline has been catalyzed by CuSO₄.5H₂O, microwave irradiation, $H_6P_2W_{18}O_{62}$.24 H_2O , Zn[(I) proline], Acidic alumina, NH₄Cl-CH₃OH, Sulfamic acid/MeOH, Molecular iodine, Metalhydrogen sulfated, Ni-nanoparticles, Montmorillonite K-10, Task-specific ionic liquid and Oxalic acid [5-17].

In recent years, the importance of nanoparticle materials and increased investment in nanotechnology has been identified for the coming year [18]. Surface

of metal oxides exhibit both Lewis acid and Lewis base character [19]. Nanomaterials are an exciting subject for both fundamental interests and their practical advanced applications [20]. ZnO nanoparticles are one of the most important functional oxides with many interesting and unique electrical, catalytic and optical properties [21].

ZnO nanoparticles as a solid acid catalyst has been used in some organic reaction, such as Synthesis of β -acetamidoketones [22], removal phenol from water [23] and etc. In this article, we report a simple and efficient method for synthesis of quinoxaline derivatives using different 1,2-phenylene diamine and 1,2-dicarbonyl in the presence of ZnO nanoparticles as an efficient and reusable catalyst.

2. Experimental

Melting points were measured by using the capillary tube method with a Barnstead Electrothermal melting point apparatus. ¹H NMR and ¹³C NMR spectra were recorded on a BrukerAvans 500 MHz spectrometer using TMS as an internal standard (CDCl₃ solution). IR spectra were recorded from KBr disk on the Shimadzu IR-470 spectrometer. Elemental analyses were performed using a Costech ECS 4010 CHNS-O analyser. All products were characterized by spectra and physical data.

2.1. Preparation of ZnO nanoparticles

The stable catalyst is easily prepared [24] and used for preparation of quinoxalines. Aqueous solutions of zinc

^{*} Corresponding author: E-mail: bsadeghia@gmail.com. Tel: (+98) 351 8211391-9, Fax: (+98) 351 8214810.

nitrates and urea were added into a flask under vigorous stirring (300 rpm/min). The molar ratio of Zn^{2+} to urea was about 1:4. In order to inhibit the growth of the ZnO crystallite during the course of precipitation, a certain amount of surfactant, sodium dodecyl sulfate (SDS), was added into reaction system. Then the reaction system was heated to 95°C and maintained at that temperature. After stirring for 2 h, a semitransparent zinc hydroxide colloid was obtained. The precipitates were then filtered, washed with distilled water and alcohol for three or four times, dried in air at 80°C, and finally calcined at 350°C for 2 h to achieve samples with 30-50 nm particle size.

2.2 General procedure for the synthesis of quinoxalines

A mixture of 1,2-dicarbonyl (1 mmol), orthophenylendiamine (1 mmol) and Nano ZnO (0.0009g) were placed in a round bottom flask. The materials were mixed at room temperature for 20 min (table 3). The progress of the reaction was followed by TLC. After the completion of the reaction, dichloromethane was added to the mixture and filtered to remove the catalyst. The recovered catalyst was washed with chloroform and dried in air. Thus recovered catalyst was reused for further reactions without significant loss of activity. By evaporation of the solvent, an oily residue or an impure solid was obtained. The solid was then crystallized with ethanol and then a milky to vellow solid was obtained. All the products (except entry 7, 8, 11-14) are known compounds, which were characterized by IR and ¹H NMR spectral data and their melting points compared with literature reports.

The selected spectral data

Acenaphtho [1,2-b] quinoxaline (Table 3, entry 7). IR (v_{max} , cm⁻¹): 3040, 1622, 1571, 1480, 1297. ¹H NMR (500 MHz, CDCl₃, ppm) δ : 7.73 (dd, *J*=3.4 Hz, 6.3 Hz, 2H), 7.78 (dd, *J*=7.1 Hz, 7.9 Hz, 2H), 8.03 (d, *J*=8.2 Hz, 2H), 8.17 (dd, *J*=3.4 Hz, 6.2 Hz, 2H), 8.35 (d, *J*=6.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 154.5, 141.7, 136.9, 132.2, 130.3, 130.0, 129.8, 129.6, 129.0, 122.2. Anal. Calcd. for C₁₈H₁₀N₂: C, 85.04; H, 3.94; N, 11.02 found: C, 84.8; H, 3.89; N, 11.01.

7-methylacenaphtho [1,2-b] quinoxaline (Table3, entry 8). IR (ν_{max} , cm⁻¹): 3040, 2915, 1626, 1482, 1207. ¹H NMR (500 MHz, CDCl₃, ppm) δ : 8.36 (d, *J*=6.6 Hz, d, *J*=6.6 Hz, 2H), 8.05 (m, 3H), 7.95 (S, 1H), 7.79 (d, *J*=7.4 Hz, d, *J*=7.6 Hz, 2H), 7.55 (dd, *J*=1.3 Hz, 8.3 Hz, 1H), 2.61(S, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 154.5, 153.8, 141.7, 140.1, 140.0, 136.7, 132.4, 131.7, 130.4, 129.8, 129.6, 129.5, 129.2, 129.0, 122.1, 122.0, 22.2. Anal.calcd. for C₁₉H₁₂N₂: C, 85.07; H, 4.47; N, 10.44, found: C, 84.9; H, 4.43; N, 10.40. Phenantherene [1, 2-b] quinoxaline (Table3, entry 11). IR (v_{max} , cm⁻¹): 3020, 1614, 1490, 1356, and 1032. ¹H NMR (500 MHz, CDCl₃, ppm) δ : 9.38 (dd, *J*=1.4 Hz, 7.9 Hz, 2H), 8.53 (d, *J*=7.9 Hz, 2H), 8.31 (dd, *J*=3.4 Hz, 6.4 Hz, 2H), 7.84 (dd, *J*=3.4 Hz, 6.5 Hz, 2H), 7.74 (m, 4H). ¹³C NMR (125 MHz, CDCl₃, ppm) δ : 142.8, 142.6, 132.5, 130.7, 130.6, 130.1, 129.9, 128.3, 126.7, 123.3. Anal. Calcd. for C₂₀H₁₂N₂; C, 85.71; H, 4.28; N, 10. Found: C, 85.70; H, 3.90; N, 9.8.

7-methyl-Phenanthrene [1,2-b] quinoxaline (Table3, entry 12). IR (ν_{max} , cm⁻¹): 3010, 1622, 1499, 1354, 1206. ¹H NMR (500 MHz, CDCl₃, ppm) δ : 9.39 (m, 2H), 8.56 (d, *J*=8.0 Hz, 2H), 8.21 (d, *J*=8.6 Hz, 1H), 8.09 (S, 1H), 7.78 (m, 4H), 7.68 (dd, *J*=1.8 Hz, 8.6 Hz, 1H), 2.68 (S, 3H). ¹³C NMR (125 MHz, CDCl₃, ppm) δ : 142.7, 142.6, 142.1, 141.2, 140.8, 132.8, 132.4, 132.2, 130.9, 130.8, 130.5, 130.4, 129.4, 128.4, 128.3, 128.2, 126.6, 126.5, 123.3, 22.5. Anal. calcd. for C₂₁H₁₄N₂: C, 85.71; H, 4.76; N, 9.52, found: C, 84.93; H, 4.67; N, 9.34.

2-Methyl-3-propyl-quinoxaline (Table3, entry 13). IR (v_{max} , cm⁻¹): 2952, 2867, 1563, 1488, 1205, 1153. ¹H NMR (500 MHz, CDCl₃, ppm) δ : 7.79 (m, 2H), 7.47 (m, 2H), 2.78 (t, *J*=8.0Hz, 3H), 2.57 (s, 3H), 1.63 (m, 2H), 0.89 (t, *J*=7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃, ppm) δ : 157.03, 153.50, 141.55, 141.26, 129.11, 129.06, 128.91, 128.66, 38.19, 23.18, 21.80, 14.54. Anal. calcd. for C₁₂H₁₄N₂: C, 77.42; H, 15.05; N, 7.52, found: C, 77.38; H, 14.89; N, 7.49.

3,6-Dimethyl-2-propyl-quinoxaline (Table3, entry 14). IR (v_{max} , cm⁻¹): 2958, 2869, 1619, 1561, 1495, 1443, 1367, 1321¹H NMR (500 MHz, CDCl₃, ppm) δ : 7.67 (m, 1H), 7.56 (m, 1H), 7.30 (m, 1H), 2.76 (t, *J*=8.0 Hz, 3H), 2.57 (s, 3H), 2.36 (s, 3H), 1.67 (m, 2H), 0.89 (t, *J*=7.2Hz, 3H). ¹³C NMR (125 MHz, CDCl₃, ppm) δ : 156.98, 152.55, 141.63, 139.72, 139.41, 131.39, 128.21, 127.94, 38.21, 23.12, 22.11, 21.91, 14.57. Anal. calcd. for C₁₃H₁₆N₂: C, 78; H, 8; N, 14, found: C, 76.08; H, 7.49; N, 13.02.

3. Results and discussion

Nanoparticles of ZnO were prepared via uniform precipitation method. The ZnO nanoparticles were characterized by scanning electron microscopy (SEM) and FT-IR spectroscopy techniques.

The SEM of ZnO nanoparticles is shown in Fig. 1. As seen, single phase primary particle is spherical in shape with the average diameter of about 30-50 nm.

After reaction, catalyst was recycled and characterized by FT-IR spectra. The FT-IR spectrum of ZnO nanparticles in KBr matrix is shown in Fig. 2. There is a broad band at 3326 cm⁻¹ corresponding to the vibration mode of water OH group indicating the

Scheme 1.

Fig. 1. The SEM of ZnO nanoparticles.

presence of small amount of water adsorbed on the ZnO nanparticles surface. The band at 1620 cm^{-1} due to the OH bending of water. A strong band at 611 cm^{-1} is attributed to the Zn-O stretching band whitch is consistent with that reported before [25].

In a preliminary study, to optimize the reaction conditions.the reaction of benzil and orthophenilendiamin was used as a model reaction (Table 1). The efficiency of ZnO nanoparticles is comparable with other catalysts such as CuSO₄.5H₂O, NH₄Cl, Sulfamic acid, Iodine and Acidic alumina. According to the obtained data, NH₄Cl and sulfamic acid have more yield but NH₄Cl was applied (50 mol%) more amount. These results clearly show the advantages of our methodology over other protic or Lewis acid catalyzed quinoxaline synthesis such as low consumption of catalyst and solvent free condition.

As a result, ZnO nanoparticles was selected as an efficient solid acid catalyst, the model reaction was done with various amount of catalyst and various condition. According to the obtained data, using the Nano ZnO (1.1 mol%) under solvent free at 25 °C is the best condition for the quinoxaline formation (Table 2, entry 3).

Fig. 2. FT-IR Spectrum of ZnO nanoparticles.

Entry	Catalyst (amount)	Temp. (°C)/ Solvent	Time (min)/ Yield (%) ^a	Ref.
1	CuSO ₄ .5H ₂ O (10mol%)	25/H ₂ O	15/96	5
2	CuSO ₄ .5H ₂ O (10mol%)	25/EtOH	8/97	5
3	NH ₄ Cl (50mol%)	25/CH ₃ OH	7/100	10
4	Sulfamic acid (5 mol%)	25/CH ₃ OH	5/100	11
5	Acidic alumina	Microwave	5/85	9
6	Glycerol	Reflux/H ₂ O	240/90	27
7	I ₂ (10mol%)	25/DMSO	35/95	28
8	Polyaniline-sulfate salt (5wt%)	$25/CH_2Cl_2$	20/95	29
9	$TiO_2-P_2O_5-SO_4^{2-}(0.1g)$	25/EtOH	5/98	30
10	ZnOnanoparticles(1.1 mol%)	25/-	20/93	-

Table 1. Comparison of the efficiency of ZnO nanoparticles with reported catalysts.

^aIsolated yield.

The catalyst was reused in subsequent runs without further purification. These results clearly show the advantages of our method over protic or lewis acid catalyzed quinoxalines synthesis.

We have also found that ZnO nanoparticles can be effectively recovered from the reaction mixture during the work-up procedure. After completion of reaction the mixture was filtered off to separate the catalyst and then dry the solid residue. When model reaction carried out by recovered ZnO nanoparticles, the corresponding quinoxaline formation was obtained in good yield (Table 2, entries 8, 9). As can be seen from Table 2, reactivity of the above protocol environmentally acceptable.

Therefore, some 1,2-diketones and 1,2-diaminobenzenes were subjected to quinoxalines (Scheme 1 and Table3).

A mechanistic route is suggested for the generation of quinoxalines from the reaction of 1,2-dicarbonyl and orthophenylendiamines in the presence of ZnO nanoparticles and role of ZnO shown as the catalyst in this proposed mechanism (Scheme 2).

 Table 2. Optimization of the reaction condition.

Entry	Catalyst (mol%)	Temp. (°C)/ Solvent	Time(min)/ Yield(%) ^a
1	ZnO bulk(1.1)	25/-	20/45
2	ZnOnano (5)	25/-	20/95
3	ZnOnano (1.1)	25/-	20/93
4	ZnOnano (2)	25/-	20/95
5	ZnOnano (1.1)	$25/CH_2Cl_2$	20/93
6	ZnOnano (1.1)	Reflux/EtOH	20/94
7	ZnOnano (1.1)	Reflux/H ₂ O	20/93
8	ZnOnano (5)2 nd run	25/-	20/91
9	ZnOnano (5)3 rd run	25/-	20/87

^aIsolated yield.

Entry	1,2-diketone	R^2	Product ^b	Yield(%) ^c	Ref	M.P(°C)
1		Н		92	12	126-128
2		CH ₃	N CH ₃	96	5	114-116
3	CH ₃ O CH ₃ O	CH ₃	CH ₃ O CH	96	5	125-127
4	CH ₃ O CH ₃ O	Н	CH ₃ N CH ₃ N	92	11	102-104
5	CH ₃ O CH ₃ O	NO_2	CH ₃ CH ₃ N N NO ₂	90	10	128-131
6	CH ₃ O	CH ₃	CH ₃ N CH ₃ CH ₃	94	10	76-78
7	¥°	Н		93	-	242-244
8	×	CH ₃	CH ₃	94	-	236-237
9	ОН	CH ₃		93	26	177-179
10	ОН	Н		92	26	221-225
11		Н		93	-	226-228

Table 3. A recyclable and highly effective ZnO nanoparticles catalytic system for the synthesis of quinoxalines at room temperature^a.

```
Table 3. (Continued).
```


^aMolar ratio of benzil, 1,2-diaminobenzene and ZnO nanoparticles(g) was 1:1:0.0009.

^bAll products were identified by their melting points, IR, ¹H NMR, ¹³C NMR spectra and CHN. ^cIsolated yield.

Scheme 2. Proposed mechanism for quinoxaline synthesis.

In the first step, Lewis acid sites of ZnO (Zn^{2+}) coordinates to the oxygen of the carbonyl group, hence reactivity of carbonyl group increases. Then a nucleophilic attack to the activated carbonyl groups proceeds the reaction forward.

4. Conclusion

ZnO nanoparticles a solid acid has a high efficiency as catalyst of the quinoxaline synthesis under solvent-

free conditions. This simple methodology offers several advantages including amild reaction condition, a simple work-up, opportunities for scale-up and improved yields

Acknowledgments

We thank the Islamic Azad University of Yazd, for financial support of this investigation.

References

- [1] (a) G. Sakata, K. Makino, Y. Karasawa, Heterocycles, 27 (1988) 2481-2515.(b) H. Xu, L.I. Fan, Eur. J. Med. Chem., 46 (2011) 1919-1925.
- [2] (a) M.M. Heravi, M.H. Tehrani, K. Bakhtiari, H.A. Oskooie, Catal. Commun., 8 (2007) 1341-1344. (b) M.N. Noolvi, H.M. Patel, V. Bhardwaj, A. Chauhan, Eur. J. Med. Chem., 46 (2011) 2327-2346.
- [3] B. Das, K. Venkateswarlu, K. Suneel, A. Majhi, Tetrahedron Lett., 48 (2007) 5371-5374.
- [4] G.H.C. Woo, J.K. Snyder, Z.K. Wan. Prog, Heterocycl. Chem., 14 (2002) 279-309.
- [5] M.M. Heravi, S. Taheri, K. Bakhtiari, H.A. Oskooie, Catal. Commun., 8 (2007) 211-214.
- [6] Z. Zhao, D.D. Wisnoski, S.E. Wolkenberg, W.H. Leister, Y. Wang. C.W Lindsley, Tetrahedron Lett., 45 (2004) 4873-4876.
- [7] M.M. Heravi, K. Bakhtiari, F.F. Bamoharram, M.H. Tehrani, Monatsh Chem., 138 (2007) 465-467.
- [8] M.M. Heravi, M.H. Tehrani, K.H.A. Bakhtiari Oskooie, Catal. Commun., 8 (2007) 1341-1344.
- [9] F. Mohsenzadeh, K. Aghapoor, H.R. Darabi. J. Braz, Chem. Soc., 18 (2007) 297-303.
- [10] H.R. Darabi, F. Tahoori, K. Aghapoor, F. Taala, F.J. Mohsenzadeh Braz, Chem. Soc., 19 (2008) 1646-1652.
- [11] H.R. Darabi, S. Mohandessi, K. Aghapoor, F. Mohsenzadeh. Catal. Commun., 8 (2007) 389-392.
- [12] R.S. Bhosale, S.R. Sarda, S.S. Ardhapure, W.N. Jadhav, S.R. Bhusare, R.P. Pawar, Tetrahedron Lett., 46 (2005) 7183-7186.
- [13] K. Niknam, M.A. Zolfigol, Z. Tavakoli, Z. Heydari, Chinese. Chem. Soc., 55 (2008) 1373-1378.
- [14] A. Kumar, S. Kumar, A. Saxena, A. De, S. Mozumdar, Catal. Commun., 9 (2008) 778-784.
- [15] T.K. Huang, R. Wang, L. She, X.x. Lu, Catal. Commun., 9 (2008) 1143-1147.

- [16] F. Dong, G. Kia, F. Zhenghao, Z. Xinli, L. Zuliang, Catal. Commun., 9 (2008) 317-320.
- [17] A. Hasaninejad, A. Zare, M.R. Mohammadizadeh, M. Shekouhya. Arkivoc Xiii (2008) 28-35.
- [18].(a) A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, N. Teramae, Nat. Mater., 3 (2004) 337-341; (b) P. Claus, A. Bruckner, C. Mohr, H. Hofmeister, J. Am. Chem. Soc., 122 (2000) 11430-11439.
- [19] K. Tanabe, Solid Acids and Bases, Academic Press, New York, 1970.
- [20] W. Q. Han, S.S. Fan, Q.Q. Li, Y.D. Hu, Science, 34 (1997) 1287-1289.
- [21] E.K. Goharshadi, Y. Ding, P. Nancarrow, J. Phys. Chem. Solids, 69 (2008) 2057-2060.
- [22] Z. Mirjafary, H. Saeidian, A. Sadeghi, F.M. Moghaddam. Catal. Commun., 9 (2008) 299-306.
- [23] K. Hayat, M.A. Gondal, M.M. Khaled, S. Ahmed, A.M. Shemsi, Appl. Catal. A: Gen., 393 (2011) 122-129.
- [24] E. Tang, B. Tian, E. Zheng, C. Fu, G. Cheng, Chem. Eng. Commun., 195 (2008) 479-491.
- [25] Y. He, B. Yang, G. Cheng, Catal Today, 98 (2004) 595-600.
- [26] A.R. Karimi, F. Behzadi, M.M. Amini, Tetrahedron Lett., 49 (2008) 5393-5396.
- [27] H.M. Bachhav, S.B. Bhagat, V.N. Telvekar, Tetrahedron Lett., 52 (2011) 5697-5701.
- [28] R.S. Bhosale, S.R. Sarda, S.S. Ardhapure, W.N. Jadhav, Tetrahedron Lett., 46 (2005) 7183-7186.
- [29] C. Srinivas, C.N.S. SaiPavan Kumar, V. Jayathirtha Rao, S. Palaniappan, J. Mol. Catal. A Chem., 265 (2007) 227-230.
- [30] B. Krishnakumar, M. Swaminathan, J. Organomet. Chem. 695 (2010) 2572-2577.