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ABSTRACT 

In the current survey, the removal of dye from contaminated water was studied by photocatalytic degradation using TiO2 
nanoparticles with respect to pH, TiO2 dosage, reaction time, temperature and initial dye concentration. TiO2 nanoparticles were 
investigated by XRD, FESEM and FT-IR. The RSM was chosen to study the composition effects of input independent factors 
and one dependent output response (removal efficiency). The P-value (2.2 × 10−16), F-value (1832), R2 (multiple R-squared: 
0.9985, adjusted R-squared: 0.9972), and lack of fit (0.432) indicate that the reduced full second order model is highly significant 
for dye removal by TiO2 nanoparticles. The maximum percentage removal of dye, 90.2%, was achieved at optimum operating 
conditions including pH=6.5, TiO2 dose (1.2 g L-1), contact time (67.5 min), temperature (40 °C), and dye concentrations  
(55 mg L-1)), respectively. The maximum removal efficiency was calculated to be 100%, using regression coefficients derived 
from the model and the Solver “Add-ins”. The results indicated that the TiO2 photocatalyst was very proper for the removal dye 
from contaminated water, and it had good efficiency in eliminating textile dyes. 

Keywords: TiO2, Photocatalyst, Degradation, Direct blue 71, Optimization, RSM. 

1. Introduction

Today water pollution as a result of industrialization and 
fast population growth is transformed into an 
environmental health risk to mankind [1]. Annually 
about 7×105 tons of dyes are manufactured in worldwide 
and dyes pollutants produced by various industries such 
as textile, leather, paper, ceramic, cosmetics, ink and 
plastic are entered into the environment [2-4].  
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Dyes and products of their degradation are often toxic, 
non-biodegradable, non-consistent and in some cases 
even mutagenic and carcinogenic to humans and 
animals [5, 6]. Releasing colored wastewater into the 
free water causes eutrophication and interference in the 
ecology of water bodies, affecting on the intensity of 
photosynthesis of aquatic plants and finally creating 
damage to the environment [7-9]. Treatment of 
wastewater containing dyes is often more important than 
the other substances, because the dyes are recalcitrant 
organic molecules that are resistant to aerobic digestion, 
stable to light, heat and oxidizing agents [10-13]. 
Because of the dye resistance against biodegradation, 
often for the removal of dyes, physical and chemical  
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methods have been used such as adsorption, 
coagulation, flocculation, photolysis, chemical 
oxidation, ozonation, membrane filtration etc. [14]. 
Physical methods only transfer the contaminant to 
another phase, so they are non-destructive and produce 
a potentially hazardous effluent [15,16]. Since chemical 
methods require the high dosage of chemicals, they are 
expensive and produce a large quantity of sludge  
[17-19]. Advanced oxidation processes (AOPs) are 
based on the generation of very reactive and oxidizing 
free radicals, especially hydroxyl radicals [20-22]. In 
general, AOPs typically include all processes, in which 
Hydroxyl radical (OHꞏ) is created as an oxidizer for the 
decomposition of pollutants [23-27]. The process of 
TiO2/UV is one of the newest and most efficient 
methods for the treatment dye pollutants. In this 
photocatalytic process, the nanoparticles of TiO2 due to 
the high oxidation power, photochemical stability, large 
surface area to volume ratio, low toxicity and low cost, 
are widely used as catalysts in photocatalysts reactions 
[28-32]. The statistical response surface methodology 
(RSM) was used for investigation of effects of various 
parameters, determination of the interactions of the 
experimental variables and reduction of the number of 
required experiments [33]. This software is a 
mathematical and statistical technique that was used in 
the statistical design of the experiments, and optimize 
the operating conditions in independent variables [34]. 
In general, the purpose of this work is the study of 
characterization of TiO2 nanoparticles used for removal 
direct blue 71 dye from contaminated waters by the 
photocatalytic oxidation process. Moreover, RSM was 
used for predicting and modeling the complicated 
relations between input-independent factors and 
determining the dye removal efficiency (Y) under the 
optimum operational conditions. 

2. Experimental 

2.1. Materials 

To provide all of the chemicals and standard solutions, 
De-ionized water was used. Nanoparticles of P-25 TiO2 
(mainly in anatase form), with an average particle size 
less than 30 nm, the specific surface area (BET) of 
50±15 m2/g and purity greater than 99.5% from Degussa 
(Germany) were applied as the photocatalysts. The 
direct blue-71 dye from Alvan Sabet in Iran, with the 
chemical structure C40H28N7NaO13S4 and a molecular 
weight of 965.94 g/mol was used as the sorbate in this 
study. To immobilize TiO2 on Borosilicate glass plates 
(150mm × 150mm), commercially available Titania 
powder such as aeroxide P25 is used and mixed with a 
solvent. Coating was done by pipetting methods. In 

pipetting, the substrate was then left to dry until most of 
the solvent evaporated. After sintering at high 
temperature (400-600 °C), the film will adhere to the 
substrate [35]. The distance between the UV lamps and 
TiO2 films is 1.5 cm.  

2.2. Photocatalytic experiments 

The reactor used for the photocatalytic oxidation of  
DB-71 dye by UV/TiO2 process is shown in Fig. 1.  
This reactor consists of two outer and inner parts, A  
UV-lamp with 128 W medium-pressure, 220 V and the 
maximum wavelength at 247.3 nm as the radiation 
source is located in the inner part. The outer portion of 
the reactor should contain 2 L solution for keeping the 
solution at 25േ2 °C. All irradiation experiments of dye 
solution were done by stirring 1000 ml of dye solution 
with immobilized TiO2. During the experiment, the 
solution in the reactor was constantly stirred. After 
providing the Stock solution (1000 mg/L) of DB-71, 
photodegradation dye experiments were done in a batch 
reactor by assessing the effects of pH (2 to 11), initial 
dye concentrations (10 to 100 mg L-1), contact time  
(15 to 120 minutes), TiO2 dose (0.2 to 1.2 g L-1) and 
temperature (20 to 60 °C). According to five variables 
of the pH, TiO2 dose, contact time, temperature dye and 
concentration, to accomplish the tests, 62 runs were 
specified using the software R. dye concentrations of the 
samples were determined by spectrophotometer 
(DR5000, HACH LANGE, USA) according to the 
standard method at a wavelength of 594 nm [36]. For 
each experiment, the dye removal percentage (R %) was 
calculated using Eq. (1) : 

𝑅 ൌ
஼బି஼೟

஼బ
ൈ 100    (1) 

Where C0 is the initial dye concentration and Ct, is the 
concentration of dye at intervals of the irradiation time. 
The surface morphology and characteristics of P-25 
TiO2 nanoparticles were investigated using XRD, 
FESEM and FT-IR technology. X-ray diffraction 
patterns of the samples were done by an X' Pert Pro 
(PerkinElmer, Netherland) diffractometer, with Cu K𝛼 
radiation (λ =1.54060 Å), Generator settings = 40 kV, 
40 mA and the 2θ range from 10 to 80 °C. The average 
dimension (D) of particles was calculated based on  
the diffraction of peak broadening using the  
Debye–Scherrer’s Eq. (2) [37]:  

𝐷 ൌ
௞஛

ఉ௖௢௦ఏ
     (2)  

Where λ is the X-ray wavelength of the Cu Kα radiation 
(nm), 𝛽 is the peak width of the diffraction peak profile 
at half the maximum height resulting from the small 
crystallite size (radians), and K is a coefficient relating 
to the crystalline shape and is normally equal to 0.9.  
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Fig. 1. The schematic diagram of the experimental reactor 
used for photocatalysis. 

The morphological features and surface characteristics 
of TiO2 were investigated using a FESEM unit (MIRA3, 
TE-SCAN, Czechoslovakia). FT-IR, is another 
characterization technique that was obtained using 
Spectrum Tow PerkinElmer, USA. Statistical analysis 
also was carried out using the software R. 

2.3. Experimental design with RSM 

RSM is an efficient statistical tool used in the data 
analysis, statistical design of the experiments, and 
optimizing the operating conditions in independent 
variables [38]. In RSM, two designs are used, they are 
Box Behnken Design (BBD) and Central Composite 
Design (CCD). In this survey, for predicting and 
modeling the complicated relations between  
input-independent factors (pH(X1), the initial dye 
concentration (X2), reaction time (X3), TiO2 dose (X4), 
and temperature (X5)) and determining the dye removal 
efficiency(Y) under the optimum operational conditions 
several of experiments were accomplished according to 
a CCD [39]. The actual values of the independent 
variables applied to the experimental design are shown 
in Table 1.  

The Independent variables were different over three 
levels as -1, 0, and 1, respectively at the specified ranges 
based on a set of preliminary experiments. 

Table 1. Coded values of independent variables used for 
experimental design. 

Variable 

 Coded level 

 -1 0 1 

 values 

pH 1x 2 6.5 11 

)1-(g L 2TiO 2x 0.2 50.7 1.2 

Time (min) 3x 15 67.5 120 

Temp (℃) 4x 20 40 60 

)1-Conc. DB71 (mg L 5x 10  55  100 

The experimental design was done using R software for 
Windows (version 3.0.3:6 March 2014). The total 
number of experiments according to Eq. (3) were done 
for the five factors.  

No. of experiments = 2k + 2k + 20  (3)  

Totally, 62 runs were considered using a 32 full factorial 
design (the base design), 10 axial points and 20 
replicates in the center point [40].  

A quadratic model as Eq. (4) was applied to express the 
interaction between (Y) and (X1, X2, X3, X4 and X5): 

𝛾 ൌ 𝐵଴ ൅ ∑ 𝐵௜
௞
௜ୀଵ 𝑋ூ ൅ ∑ 𝐵௜௜

௄
ூୀଵ 𝑋௜

ଶ ൅
∑ ∑ 𝐵ூ௃

௞
௝ୀଵ

௞ିଵ
௜ୀଵ 𝑋ூ𝑋௃ ൅ C    (4) 

Where B0 is the intercept value, Bi, Bii, and Bij refer to 
the regression coefficient for linear, second order, and 
interactive effects respectively, Xi and Xj are the 
independent variables, and C denotes the error of 
prediction [41,42]. 

3. Results and Discussion 

3.1. Characterization of the TiO2 nanoparticles 

To survey the structure, nature and size of  
TiO2 crystalline phases, XRD analysis was  
performed (Fig. 2). The XRD analysis demonstrates  
the diffraction pattern and the mineralogical 
composition of the TiO2 nanoparticles. According  
to the Eq. (2), the average crystallite size based  
on the half width of the most intense peak (101)  
was estimated to be 30 nm, suggesting achievement  
to nanoscale crystals. As shown in Fig. 2, several  
Titania crystalline peaks for samples can be seen  
at 2θ including 25.4(101), 37.9(004), 48.0(200), 
54.5(211), 62.6(204), 69.5(116) and 75.2(118)  
[JCPDS No. 71-1167 were a = 3.786 Å and c = 9.507Å] 
which shows the existence of the anatase phase  
[43]. 

 
Fig. 2. XDR pattern of TiO2 nanoparticles. 
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The FESEM provides topographical and elemental 
information with the virtually unlimited depth of fields. 
The FESEM images of the TiO2 nanoparticles before 
(A) and after (C) degradation process are shown in  
Fig. 3. As shown in Fig. 3A, nanoparticles are spherical 
and dispersed in different sizes (20–60 nm). TiO2 
nanoparticles are very fine and have an irregular texture. 
Further, there are holes between the porous structure of 
this material. In some places the nanoparticles are well-
set in mass, but in general, optimum scattering of 
particles is observed in the surface. After of the 
degradation process no noticeable changes were 
identified in the surface morphology of the TiO2 
nanoparticles (Fig. 3C). Energy-dispersive X-ray 
spectroscopy (EDS) is an analytical technique applied to 
the elemental analysis of a sample. The EDS spectra of 
the TiO2 nanoparticles, before (B) and after (D) of dye 
removal in order to study their localized elemental 
information are presented in Fig. 3. Oxygen and Titania 
are the elements throughout the surface of the TiO2 
nanoparticles before removing the dye with weight 
percentages of 43.1 and 56.9 respectively (Fig. 3B).  

Therefore, the presence of TiO2 was confirmed. After 
removing the dye, O, Ti, C, Na, S and N are the elements 
throughout the surface of the TiO2 nanoparticles with 
weight percentages of 35.3, 52.1, 12.5, 0.1, 0.1 and 
0.0%, respectively. So, after removing the dye with 
TiO2 nanoparticles, these elements are added as 
observed in Fig. 3D [44,45]. 

To inspect frequency changes in the functional group of 
the photocatalyst, the surface characteristics of the TiO2 
nanoparticles before and after degradation of direct blue 
71 dyes, were investigated by using the Fourier 
transform infrared spectroscopy (FT-IR) spectra in the 
range of 400-4000 cm-1 (Fig. 4A and 4B). 

The FT-IR spectrum of TiO2 nanoparticles before the 
degradation of dye shows that the peak situations are at 
3390, 1631, 792 cm-1. The decomposition band at 
∼3390 cm−1 was the characteristic peak of alcohol and 
phenol groups due to the symmetric stretching vibration 
of OH. The intense broad peak at ∼1631cm-1 is allocated 
in the bending vibration of the C=O bond. Furthermore, 
the small peak at ∼792 cm-1 might be appropriate to the 
bending vibration of the N–H bond. 

 
 

 

 

Fig. 3. FESEM image and EDS spectrum of TiO2 nanoparticles before (A, B), and after (C, D) of dye removal. 
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Fig. 4. FT-IR spectra of TiO2 nanoparticles before (A), and after (B) degradation of dye. 

The FT-IR spectrum of TiO2 nanoparticles after removal 
of dye indicates the peak at 3519, 3492, 3327, 1635 and 
623 cm-1. The bonds at 3519, 3492 and 3327 specify the 
tensile frequencies OH from alcohol and phenol groups, 
1628 presents the tensile frequency C–H from the amide 
group and 783 shows the bend frequency N–H from the 
amine group [46-48]. 

3.2. Quadratic models for photocatalytic degradation of 
dye via the TiO2 nanoparticles 

To study the individual and combined effects of 
variables on dye removal efficiency, degradation 
experiments were accomplished at the specified 
combinations of the physical parameters. The CCD 
design matrix was performed to appraise the 
contribution of five influential factors including pH, 
TiO2 dosage, time, temperature and dye concentration. 
The experimental design of 62 runs along with the 
experimental and the predicted data for the removal of 
dye by TiO2 nanoparticles in the CCD experimental 
design are presented in Table 2. To determine the 
optimum conditions, the RSM results need to be 
surveyed through the optimization process [49]. 

From Table 2, it can be observed that the dye removal 
values are between 17.0% (Run 38) and 90.2% (Run 
48). Moreover, the lowest dye removal efficiency has 
been in run 38, and the main reasons for decreasing 
removal can be the lower pH level and/or lower TiO2 
dosage. When the TiO2 dose and pH level are low, e.g. 
run 38, the synergistic efficacy was very significant and 
the dye removal efficiency reduced intensively. 
Referring to Table 2, the time and temperature have low 
significant effects on dye removal with TiO2 
nanoparticles. Run 48 was clear at optimum conditions, 
because it indicated the highest removal efficiency, and 

also the pH is a very essential parameter in water 
treatment plants. The pH, TiO2 dosage and dye 
concentration were considered as optimum conditions. 
The pH in an acidic range may induce serious 
operational difficulties in water treatment processes. So, 
economically the conditions for run 48 with the pH 6.5, 
initial dye concentration of 55 mg L−1, time of 67.5 min, 
temperature of 40 ℃ and TiO2 dosage of 1.2 g L−1 are 
better than other runs.  

3.3. Development of regression model equation and 
model analysis 

The reduced quadratic model was produced by the 
multiple regression analysis of the experimental data, 
and are presented in Table 3. According to the Table 3, 
it is observable that the pH (X1), TiO2 dosage (X2), time 
(X3), temperature (X4) and initial dye concentration (X5) 
are significant (p-values < 0.05), so five terms available 
in Table 3 could affect the model formulation. In this 
table, it can be seen that the pH (X1), TiO2 dosage (X2), 
time (X3), temperature (X4), X1:X2, X1:X5, X2:X3, X2:X4, 
𝑋ଷ

ଶ and 𝑋ହ
ଶ have synergistic effects on the response 

prediction by the model, while the initial dye 
concentration (X5), X1:X3, X2:X5, X3:X5, 𝑋ଵ

ଶ and 𝑋ଶ
ଶ have 

antagonistic effects. 
Dye removal efficiency predicted by the model is 
presented in the Table 2. When the response predicted 
by the model and experimental data obtained in the 
laboratory have a leaner correlation, the model is 
reliable [50]. 
The equations of quadratic model, for both coded and 
uncoded values of the parameters, are indicated at Eqs. 
(5) and (6), respectively. Therefore, these models can be 
applied for the purposes of prediction and optimization 
[51-53]. 

125



M. Massoudinejad et al. / Iran. J. Catal. 9(2), 2019, 121-132 

𝛾஽௬௘ୀିଶ଴.ଽସ଼ାଶ଴.ଷ଻ଵ௑భାସ଴.ଵ଻ଷ௑మି଴.ଵଶହଵ௑ఱା଴.ସଽଵ଺௑భ௑మି଴.଴଴ଵ଺଺ଽ௑భ௑యା଴.଴଴଺ଵଵସ௑భ௑ఱ

ା଴.଴ଷ଺ସସ௑మ௑యା଴.଴଺଴଺ଵ௑మ௑రି଴.଴଺଴଴ଵ௑మ௑ఱି଴.଴଴଴ଵ଻ସ଼௑య௑ఱିଵ.଺଻ଽ௑భ
మିଵ଴.ଷ଴ସ௑మ

మ

ା଴.଴଴଴ଷଽଽ଼௑య
మା଴.଴଴଴ଽଷଽଶ௑ఱ

మ

   (5) 

𝛾஽௬௘ୀ଻଻.ସହ଻଺ାଵଵ.ଶଽଽସ௑భାଵସ.ଵଶ଺଺௑మାଶ.଴଻ଵଵ௑యା଴.଼ଵ଻ଵ௑రିଵ.଺ଵଶଷ௑ఱାଵ.ଵ଴଺଴௑భ௑మି଴.ଷଽସଷ௑భ௑య

ାଵ.ଶଷ଼଴௑భ௑ఱା଴.ଽହ଺ସ௑మ௑యା଴.଺଴଺଴଼௑మ௑రିଵ.ଷହ଴ଵ଻௑మ௑ఱି଴.ସଵଷ଴଼௑య௑ఱିଷଷ.ଽଽ଼଴௑భ
మିଷ.ଶ଺଴ଶଶ௑మ

మ

ାଵ.ଵ଴ଵଽଵ௑య
మାଵ.ଽ଴ଵଽଵ௑ఱ

మ

 (6) 

Table 2. CCD experimental design for RB5 removal by TiO2 nanoparticles. 

Run 
Independent factors Removal (%) 

Run 
Independent factors Removal (%) 

X1 X2 X3 X4 X5 Expt. Expt. X1 X2 X3 X4 X5 Expt. Pred. 

1 2 1.2 120 60 100 45.3 47.59 32 2 1.2 120 20 100 42.9 44.68 

2 11 1.2 120 20 10 72.4 75.46 33 11 0.2 120 60 100 41.6 43.20 

3 6.5 0.7 67.5 40 55 75.7 78.84 34 6.5 0.7 67.5 40 55 77.8 78.84 

4 2 1.2 15 20 100 34.6 36.61 35 11 0.2 15 60 100 39.9 40.53 

5 6.5 0.7 67.5 40 55 79.6 78.84 36 2 1.2 15 60 100 38.8 39.52 

6 11 1.2 120 20 100 68.8 71.18 37 11 0.2 120 20 100 39.5 40.53 

7 6.5 0.7 67.5 40 55 78.4 78.84 38 2 0.2 15 60 100 17.0 16.88 

8 6.5 0.7 67.5 40 55 77.9 78.84 39 2 0.2 15 20 10 18.6 18.57 

9 11 0.2 15 20 100 39.7 40.04 40 11 0.2 120 60 10 41.3 42.07 

10 11 1.2 15 20 10 67.3 67.31 41 6.5 0.7 67.5 40 55 78.8 78.84 

11 6.5 0.7 67.5 40 55 78.2 78.84 42 2 1.2 15 60 10 47.7 47.10 

12 2 0.2 120 60 100 18.9 21.13 43 6.5 0.7 67.5 40 55 77.6 78.84 

13 11 1.2 120 60 10 75.9 78.36 44 6.5 0.7 67.5 40 55 76.9 78.84 

14 11 0.2 15 60 10 36.8 37.75 45 6.5 0.7 67.5 40 55 76.7 78.84 

15 2 0.2 15 60 10 18.2 19.06 46 2 0.7 67.5 40 55 32.5 33.54 

16 6.5 0.7 67.5 40 55 77.1 78.84 47 6.5 0.7 67.5 40 55 77.3 78.84 

17 2 1.2 120 20 10 50.6 53.91 48 6.5 1.2 67.5 40 55 90.2 89.70 

18 11 1.2 15 60 10 69.2 70.22 49 6.5 0.7 67.5 40 55 76.8 78.84 

19 6.5 0.7 67.5 40 55 77.1 78.84 50 6.5 0.7 67.5 40 55 77.9 78.84 

20 2 1.2 120 60 10 54.4 56.82 51 6.5 0.7 15 40 55 75.3 76.84 

21 11 1.2 120 60 100 70.9 74.09 52 6.5 0.7 67.5 40 10 80.8 82.35 

22 11 1.2 15 60 100 67.5 67.59 53 6.5 0.7 67.5 20 55 77.5 77.99 

23 11 0.2 120 20 10 38.7 41.59 54 11 0.7 67.5 40 55 54.3 56.13 

24 11 1.2 15 20 100 65.3 64.68 55 6.5 0.7 67.5 40 55 75.7 78.84 

25 2 0.7 120 20 10 40.7 42.45 56 6.5 0.7 67.5 40 55 77.1 78.84 

26 6.5 0.2 67.5 40 55 58.7 61.45 57 6.5 0.7 67.5 40 55 76.7 78.84 

27 2 1.2 15 20 10 43.8 44.19 58 6.5 0.7 67.5 60 55 77.3 79.68 

28 2 0.2 120 20 100 17.5 20.64 59 6.5 0.7 67.5 40 100 77.8 79.12 

29 11 0.2 15 20 10 37.7 37.27 60 6.5 0.7 67.5 40 55 78.3 78.84 

30 2 0.2 120 60 10 21.9 24.95 61 6.5 0.7 120 40 55 81.7 83.04 

31 2 0.2 15 20 100 17.2 16.30 62 6.5 0.7 67.5 40 55 77.4 78.84 

X1: pH, X2: TiO2 (g L−1), X3: Time (min), X4: Temperature (℃), X5: dye concentration (mg L−1). 
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Table 3. Regression analysis for the reduced quadratic model. 

Model term Coefficient estimate Std. error t-Value p-Value 

Intercept 77.45760 0.19204 403.3432 2.2×10-16 

𝑋ଵ 11.29945 0.17068 66.2043 2.2×10-16 

𝑋ଶ 14.12663 0.17324 81.5417 2.2×10-16 

𝑋ଷ 2.07114 0.17068 12.1349 8.669×10-16 

𝑋ସ  0.81710 0.17068 4.7874 1.860×10-05 

𝑋ହ  -1.61231 0.17068 -9.4467 2.999×10-12 

𝑋ଵ: 𝑋ଶ  1.10608 0.17882 6.1853 1.656×10-07 

𝑋ଵ: 𝑋ଷ  -0.39433 017601 -2.2404 0.030048 

𝑋ଵ: 𝑋ହ 1.23808 0.17601 7.0341 9.070×10-09 

𝑋ଶ: 𝑋ଷ  0.95642 0.17882 5.3485 2.860×10-06 

𝑋ଶ: 𝑋ସ  0.60608 0.17882 3.3893 0.001467 

𝑋ଶ: 𝑋ହ -1.35017 0.17882 -7.5504 1.568×10-09 

𝑋ଷ: 𝑋ହ -0.41308 0.17601 -2.3469 0.023390 

𝑋ଵ
ଶ  -33.99809 0.60026 -56.6387 2.2×10-16 

𝑋ଶ
ଶ  -3.26022 0.54069 -6.0298 2.82×10-07 

𝑋ଷ
ଶ 1.10191 0.60026 1.8357 0.073013 

𝑋ହ
ଶ 1.90191 0.60026 3.1685 0.002754 

 

The model adequacy can be described by ANOVA 
analysis, R2 and R2adj that are shown in Table 4. In the 
ANOVA analysis via high F, the low p-value, 
correlation coefficient (R), and the results of lack of a fit 
test can be predicted by statistical significance and 
accuracy of the models [54]. Also the p-value less than 
0.05 indicates the model terms are significant and the 
values greater than 0.10 shows they are not significant. 

The lack of fit value parameters indicates the variation 
of response around the fitted model; if the model fits 
data well this parameter should be insignificant [55]. 
According to the ANOVA analysis, the higher F-value 
of 1832 with a p-value lower than 0.0001 indicates that 
the second-order polynomial model is statistically 
significant as shown in Table 4, thus the model fitted the 
experimental results well.  

 
Table 4. Analysis of variance (ANOVA) for the reduced quadratic model. 
 

Model formula in RSM X1, X2, X3, 

X4,X5 
DF 

Sum of 
squares 

Mean 
square 

F-value Fcritical 
Probability 

(P) 

First-order response 5 10487.4 2097.5 2150.244 4.45 2.2×10-16 

TWI(x1, x2) 1 82.5 82.5 84.575  6.704×10-12 

TWI(x1, x3) 1 10.8 10.8 11.115  0.0017207 

TWI(x1, x5) 1 65.2 65.2 66.885  1.899×10-10 

TWI(x2, x3) 1 4.3 4.3 4.405  0.0414764 

TWI(x2, x4) 1 47.2 47.2 48.365  1.190×10-08 

TWI(x2, x5) 1 17.1 17.1 17.574  0.0001276 

TWI(x3, x5) 1 11.9 11.9 12.194  0.0010869 

Pure quadratic response 4 17870.1 4467.5 4579.927  2.2×10-16 

Residuals 45 43.9 1.0    

Lack of fit 26 26.3 1.0 1.097 2.1 0.423997 

Pure error 19 17.5 0.9    
 

Notes: Multiple R-squared: 0.9985, Adjusted R-squared: 0.9972, F-statistic: 1832 on 16 and 45 DF, p-value: < 2.2×10-16. 
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The F-values of linear and quadratic terms of the model 
are 2150.24 and 4579.92 respectively, this shows the 
model and the individual coefficients of the model  
are more significant. F-value of model is significant  
(Fcal = 2150.24 > F0.05, 5, 45 = 4.45) and the lack of the fit 
value of the model available in Table 4, is not significant 
relative to the pure error (Fcal = 1.09 < F0.05, 26, 19 = 2.1), 
they indicated the correlation between factors and dye 
removal as a response [56,57]. 
In general, the efficiency of the model is illustrated  
by the R2 value of 0.9972. On the other hand, R2 values 
(R2 = 0.9985, adjusted R2 = 0.9972, predicted  
R2 = 0.9974) are close to one and indicated that about 
99% of the variations presented in the results can be 
described by the independent variables and their 
interaction effects. Also R2 values showed a satisfactory 
adjustment between quadratic model and experimental 
data [58,59]. Pareto analysis using the Eq. (7) was 
employed to assess the importance of the role (Pi) of the 
selected factors (factor i) of the created response. 

𝑃௜ ൌ  ൬
ఉ೔

మ

∑ ఉ೔
మ൰      (7) 

As indicated in Fig. 5, the following sequence  
was gained for the terms containing singular factors  
X2 (TiO2; 13.2%) > X1 (pH, 8.4%) > X3 (Time; 0.3%) > 
X5 (Temp; 0.17%) > X4 (Conc.DB71; 0.044%),  
which proves that TiO2 and pH play the most important 
role among these terms. The quadratic terms have  
the sequence of X1

2 (74.4%) > X2
2 (10.6%) > X5

2 (0.23%) 
> X3

2 (0.08%), while the interaction terms  
have the sequence of X2X5 (0.12%) > X1X5 (0.1%) > X1X2 
(0.08%) > X2X3 (0.06%) > X2X2 (0.02%) > X3X5 (0.01%) 
> X1X3 (0.01). So the quadratic pH and the TiO2-Conc. 
DB71 interaction play the most important role  
in the created response. The results obtained from the 
Pareto method can be well confirmed by the F-values 
[60,61]. 

3.4. Response surface methodology and contour plotting 

To study the effects of various parameters and their 
interactions on the efficiency of the dye decomposition 
via TiO2 nanoparticles, the contour plots which is 
specified based on the model coefficients is shown in 
Fig. 5 (A-F). In these plots, the effect of two variables is 
studied while the other parameters are stabilized [62]. 
The effect of TiO2 dosage and pH solution on the 
removal efficiency at the initial time of 67.5 min, 
temperature of 40 ℃ and dye concentration of  
55 mg L−1 is presented in Fig 6A. The percentage of dye 
removal was changed by varying the TiO2 dosage and 
pH. As can be understood from the figure, in the neutral 
pH, the increase of the TiO2 dosage, led to the increase 
of removal efficiency from 60 to 80%. This reveals that 
the pH and TiO2 dosage play an important role in the 
decomposition process [63]. Fig. 6B indicates the 
effects of the pH and contact time in the removal 
efficiency of photocatalyst process. Based on this image 
in the pH range of 7, dye degradation was increased by 
the time increase. The interaction effects of pH (X1) and 
dye concentration (X5) in Fig. 6C shows that the 
percentage of dye removal was decreased with 
increasing dye concentration. Fig. 6D presents that dose 
of the catalyst and the contact time have synergistic 
effects, so that the increase of the TiO2 dosage and 
contact time can enhance removal efficiency up to 90%. 
The interaction effects of the TiO2 dosage (X2) and dye 
concentration (X5) are presented in Fig. 6E. This figure 
shows that the interaction X2X5 had antagonistic effects. 
Fig. 6F also indicates the combined effects of the 
contact time and dye concentration. As shown, dye 
photodegradation was increased with the increase of the 
contact time. Based on the results, it is clear that the 
TiO2 dosage, pH and dye concentration are the most 
effective variables in the dye removal efficiency  
[64, 65]. 

 
Fig. 5. Pareto plot for studying the importance of each variable to the TiO2 response in the removal of dye. 
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Fig. 6. Contour plot for the effect of TiO2 dosage and pH (A), pH and Time (B), pH and Dye concentration (C), TiO2 dosage and Time (D), 
TiO2 dosage and Dye concentration (E), Time and Dye concentration (F). 
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3.5. Process optimization and confirmation 

The Solver “Add-ins” was applied by effective 
parameters to achieve the optimum decomposition 
conditions through the model equation predicted by 
RSM. These parameters included pH (2-11), TiO2 
dosage (0.2-1.2 g L−1), contact time (15-120 min), 
temperature (20-60 ℃) and the initial dye concentration 
(10-100 mg L-1). In the optimum conditions, all 
parameters simultaneously are favorable criteria, and in 
the predicted optimal conditions, the maximum removal 
efficiency was calculated to be 100 %. The predicted 
optimal conditions by the Solver “Add-ins” were the pH 
of 7.43, TiO2 dosage of 1.17 g L−1, contact time of 120 
min, temperature 49.63℃ and initial dye concentration 
of 17.73 mg L-1. 
To confirm the validity of the predicted optimum 
conditions, laboratory experiments were performed and 
the findings showed that the experimental data were in 
good agreement with the above-mentioned optimal 
conditions [66-68]. To confirm the validity of the results 
predicted by the model, additional laboratory 
experiments were done in four replicates. As it can be 
seen in Table 5, experimental data were in consistent 
with those predicted through the regression model. 
Additionally, there is another set of experiments shown 
in Table 5, they have same optimal conditions except for 
initial pH.  

The result shows that the R-squared value of the model 
is very close to the adjusted R-squared value. The 
presence of significant terms in the model was certified 
by the good agreement between R2 adj. (0.99) and R2 

pred. (0.99) indicated in Fig. 7 [69]. 

4. Conclusions 

In this study, the decomposition of dye via TiO2 
nanoparticle at the solid/aqueous interface was 
investigated. The CCD design matrix was done to study 
the relationship between input-independent factors (pH, 
TiO2 dose (g L-1), contact time (min), temperature (℃), 
and dye concentrations (mg L-1)) and one dependent 
output response (removal efficiency) on dye 
decomposition with TiO2 photocatalyst. The quadratic 
equations developed for this survey show a good 
correlation between actual and model predicted values 
of response. The results such as p-value (2.2 × 10−16), 
higher F-value (1832), R2 (multiple R-squared: 0.9985, 
adjusted R-squared: 0.9972), insignificant lack of fit 
(0.423) indicate that the reduced full second order model 
is highly significant for dye removal by TiO2 
nanoparticles. The closeness of the R-squared value of 
the model to the adjusted R-squared value shows that 
the quadratic regression related to the reduced full 
second order model can be used for prediction and 
optimization.  

Table 5. Experimental and predicted values of the responses at the optimal levels predicted by RSM. 

pH TiO2 (g L-1) Time (min) Temp (℃) Dye concentration (mg L-1) 
Phosphate removal (%) 

Predicted Experimental 

6.5 1.2 67.5 40 55 89.7 90.2 

9 1.2 67.5 40 55 86.1 84.7 
 

 
Fig. 7. Correlation of actual and predicted removal efficiency for dye direct blue 71. 
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The maximum percentage of removal of dye, 90.2%, 
was gained at optimum operating conditions including 
pH=6.5, TiO2 dose (1.2 g L-1), contact time (67.5 min), 
temperature (40 ℃), and dye concentrations  
(55 mg L-1). The maximum removal efficiency was 
anticipated to be 100%, using regression coefficients 
achieved by the model and Solver “Add-ins”. Therefore, 
the results show that the photocatalytic process is very 
effective in removing dye from contaminated water, and 
it has good efficiency in eliminating textile dyes. Hence 
we suggest that this catalyst will be used in treatment of 
different dye pollutants. 
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