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A R T I C L E  I N F O  A B S T R A C T 

This article introduces a productive algebraic approach to identifying positive 

solutions for a system of fully fuzzy polynomial equations (FFPEs). To achieve 

this, the FFPEs system is transformed into a comparable system of crisp 

polynomial equations. The Wu’s algorithm is then employed to solve the set of 

crisp polynomial equations as the solution method. This algorithm results in the 

solution of characteristic sets that are readily solvable. A key benefit of the 

proposed method is that all the solutions are obtained simultaneously. The 

article concludes by presenting some practical examples to demonstrate the 

efficacy of the proposed method. 
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1. Introduction 

     The fully fuzzy polynomial equations (FFPEs) system is one of the subjects in applied mathematics that 

plays an important role in many applications such as science, engineering, economics and so on [17, 18, 31]. 

Conventional methods for solving crisp linear systems are generalized to solving the FFPEs system, such as 

methods based on iterative methods [15], decomposition processes [14], nonlinear programming methods [27], 

and parametric functions methods [32, 33]. Buckley and Qu in [7, 8, 9] have studied the solution of FFPEs 

system with two variables and presented the necessary and sufficient conditions for the existence of a fuzzy 

solution. These methods usually face two major problems. The first problem is that they need to choose the 
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useful beginning point. Another is that these methods are not able to find all the answers of the system at the 

same time. In this paper, we present two efficient algebraic approaches that, in addition to solving the problems 

mentioned above, seek out the solutions of fully fuzzy polynomial equations system. To achieve this goal, we 

find the fuzzy solutions of the following system, including   polynomial equation with   unknown:  

 

 

{
 
 

 
 
    ̃   ̃     ̃    ̃  
 
    ̃   ̃       ̃    ̃  
 
    ̃   ̃       ̃    ̃  

                       (1)   

where all coefficients and right hand values  ̃   ̃       ̃  and unknowns  ̃   ̃       ̃  are positive fuzzy 

numbers (FNs).   

      Our proposed method is on the base of Wu’s algorithm to solve FFPEs systems [35]. The theory of Ritt and 

some efficient algorithms for zero decomposition of arbitrary systems of polynomials have been considerably 

improved by Wu Wen-Tsun since 1980 [34, 36]. The method of Ritt-Wu was successfully implemented in many 

engineering and science problems [37]. In comparison with  Gröbner method, this method is more effective for 

solving real polynomial equations systems (PESs) in some cases e.g. [11, 21, 26]. Using Wu’s algorithm for 

solving PESs results in solving characteristic sets. Because of triangular structure of these sets we can simply 

find the variety of these sets by a forward substituting. The essential idea of our proposed method is based on 

transforming the fully fuzzy system (1) into a crisp system and achieving a system of    polynomial equations 

such that the solutions of the new system may be obtained by a successful scheme of solving systems. When we 

use Wu’s algorithm, some kinds of the crisp system are found. Therefore, all positive solutions of the original 

system can be found.   

     The structure of the paper is organized as follows. Section   presents the related work to this proposed 

method. Section   includes some required and necessary definitions and results about FNs and the system of 

FFPEs. Section   has two subsections. Wu’s algorithm and varieties are illustrated in the first subsection. To 

find all solutions of the system of FFPEs, an algorithm is proposed in the second subsection. Some illustrative 

examples are given in Section   to show the efficiency of the algorithms. In the end, the sum up of the paper is 

given in Section  .  

2. Related work 

         Fully fuzzy polynomial equations systems (FFPES) have gained significant attention in recent years due to 

their applicability in various fields, including engineering, economics, and decision-making. These systems 

involve FNs, which are a generalization of crisp numbers and can represent uncertainty and imprecision [38]. 

This literature review aims to provide an overview of the main methods and techniques used to solve FFPES, as 

well as their applications and limitations. FNs were first introduced by Zadeh [38] as a way to represent 

uncertainty in numerical values. An FN is a convex, normalized fuzzy set on the real line, usually represented 

by a membership function. The most common type of FNs is triangular FNs (TFNs), which are defined by three 

parameters: lower limit, upper limit, and modal value [23, 24]. Fuzzy arithmetic operations, such as addition, 

subtraction, multiplication, and division, are essential for solving FFPES. These operations are performed using 

the extension principle, which extends the operations from crisp numbers to FNs [16]. Several other methods 

have been proposed for fuzzy arithmetic, including the  -cut method [22, 23] and the vertex method [10]. 
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2.1   Methods for Solving Fully Fuzzy Polynomial Equations System 

 2.1.1   Fuzzy Coefficient Method (FCM) 

      The FCM was first proposed by Abbasbandy and Otadi [1] to solve FFPES. This method involves 

transforming the fuzzy polynomial equation system into a crisp polynomial equation system by defuzzifying the 

fuzzy coefficients using a defuzzification method, such as the centroid method or the signed distance method. 

The crisp system is then solved using traditional numerical methods, and the solutions are fuzzified to obtain the 

fuzzy solutions. The FCM is a popular method for solving FFPES due to its simplicity and ease of 

implementation. The main idea behind this method is to transform the fuzzy polynomial equation system into a 

crisp polynomial equation system by defuzzifying the fuzzy coefficients. Defuzzification is the process of 

converting an FN into a crisp number, which can be done using various methods, such as the centroid method, 

the signed distance method, or the mean of maxima method. Once the fuzzy coefficients are defuzzified, the 

crisp polynomial equation system can be solved using traditional numerical methods, such as the Newton-

Raphson method, the bisection method, or the secant method. After obtaining the crisp solutions, they are 

fuzzified to obtain the fuzzy solutions. Fuzzification is the process of converting a crisp number into an FN, 

which can be done using various methods, such as the extension principle or the inverse of the defuzzification 

method used earlier. 

2.1.2   -cut Method 

     The  -cut method, introduced by Klir and Yuan [22], is another approach to solving FFPES. This method 

involves converting the fuzzy polynomial equation system into a set of interval polynomial equation systems 

using  -cuts. Each interval system is then solved using interval arithmetic and numerical methods, and the 

solutions are combined to obtain the fuzzy solutions. The main idea behind this method is to convert the fuzzy 

polynomial equation system into a set of interval polynomial equation systems using  -cuts. An  -cut of an FN 

is an interval that contains all the real numbers whose membership degree in the FN is greater than or equal to 

 . By varying   from   to  , a family of interval polynomial equation systems is obtained. Each interval system 

can be solved using interval arithmetic and numerical methods, such as the interval Newton method, the interval 

bisection method, or the interval Krawczyk method. The solutions of the interval systems are combined to 

obtain the fuzzy solutions, which can be represented as a union of intervals or as an FN with a membership 

function.  

2.1.3   Homotopy Analysis Method (HAM) 

     The Homotopy Analysis Method (HAM) is a semi-analytical technique that has been applied to solve FFPES 

[5]. HAM constructs a homotopy between the original fuzzy polynomial equation system and a simpler 

auxiliary system, which can be easily solved. 

 2.1.4   Hybrid Methods 

       Hybrid methods combine the advantages of the FCM and  -cut methods to solve FFPES more efficiently 

and accurately. For example, Allahviranloo et al. [3] proposed a hybrid method that uses the FCM to obtain an 

initial guess for the solutions and then refines the solutions using the  -cut method and Newton’s method. 

 

2.2   Applications and Limitations 

      FFPES have been applied in various fields, such as engineering, economics, and decision-making. For 
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example, fuzzy polynomial equation systems have been used to model and solve problems in structural 

engineering [25], economic equilibrium [28], and multi-objective optimization [20]. However, there are some 

limitations to the existing methods for solving FFPES. One limitation is the computational complexity, 

especially for high-dimensional systems and large  -cut levels. Another limitation is the dependence on the 

choice of defuzzification method in the FCM, which can affect the accuracy of the solutions. As mentioned 

earlier, one of the main limitations of the existing methods for solving FFPES is the computational complexity. 

This is particularly true for high-dimensional systems and large  -cut levels, which can lead to a combinatorial 

explosion in the number of interval systems that need to be solved. To overcome this limitation, researchers 

have proposed various techniques, such as adaptive  -cut selection, parallel computing, and approximation 

methods [4]. Another limitation is the dependence on the choice of defuzzification method in the FCM, which 

can affect the accuracy of the solutions. Different defuzzification methods may lead to different crisp 

polynomial equation systems, and hence different solutions. To address this issue, researchers have proposed 

various techniques, such as sensitivity analysis, robust optimization, and multi-objective optimization [20]. In 

addition to the applications mentioned earlier, FFPES have been used in various other fields, such as:   

 Environmental modeling: Fuzzy polynomial equation systems have been used to model and analyze 

uncertain environmental processes, such as groundwater flow, pollutant transport, and air quality [6]. 

 Control systems: Fuzzy polynomial equation systems have been used to design and analyze fuzzy 

controllers for complex systems, such as robotic manipulators, aircraft, and power systems [30].  

 Image processing: Fuzzy polynomial equation systems have been used to develop image processing 

algorithms that can handle uncertainty and imprecision in pixel values, such as edge detection, 

segmentation, and enhancement [29].  

3.   Preliminaries 

In this section, some required background and notation of fuzzy set theory and the system of FFPEs are given. 

Definition 1. [19] A fuzzy subset  ̃ of   is defined by its membership function  

   ̃          

which assigns a real number in the interval       to each element     and the value   ̃    shows the grade of 

membership of   in  ̃. 

Definition  2. [19]  An FN  ̃ is a fuzzy set like   ̃         which satisfies:   

    1.    ̃ is upper semi-continuous,  

    2.    ̃ is normal, i.e., there exist an element    such that        ;  

    3.    ̃ is fuzzy convex, i.e.,                                                  ;  

    4.        ̃) is bounded, where       ̃                  , and    is the closure operator. 

 

The set of all FNs is denoted by   . 

Definition 3. [19] An arbitrary FN  ̃ in parametric form is denoted by an ordered pair of functions            , 

for all        , which satisfy the following conditions: 

      is a bounded left continuous non decreasing function on [0, 1], 

       is a bounded left continuous non increasing function on [0, 1], 

          . 
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The crisp number   is simply represented by            , for all        . An FN  ̃ can be represented 

by its  -cuts  ̃                 for       and  ̃  ⋃          ̃ . 

It is important to observe that the  -cuts of an FN are intervals that are both closed and bounded. The fuzzy 

arithmetic, which is based on the Zadeh extension principle [39] can be computed using interval arithmetic [22] 

applied to the  -cuts. To refer to the  -cut of any arbitrary FN  ̃, we use the notation  ̃             . 

If we have an FN  ̃                   , we can express that  ̃    if       , and  ̃    if      

 . 

Definition 4. [19] The arithmetic operations for any given FNs  ̃              and  ̃              are 

defined as follows: 

1. The FNs  ̃ and  ̃ are equal if and only if           and          . 

2. The sum of FNs  ̃ and  ̃, denoted as  ̃   ̃, is as                      . Expressed in terms of  -

cuts, the sum of FNs  ̃ and  ̃, denoted as   ̃   ̃  , is equal to                      . 

3. The difference between FNs  ̃  and  ̃ , denoted as  ̃   ̃ , is equal to                      . 

Expressed in the language of  -cuts, the difference between  ̃ and  ̃, denoted as   ̃   ̃  , can be written 

as                      .  

4. If  ̃  ̃    then the expression  ̃   ̃  can be rewritten as                      , where the dot 

represents a product operation. In the context of  -cuts,   ̃   ̃   is equal to                       . 

Out of the different kinds of imprecise numbers, the triangular FN is the most commonly used. It can be 

expressed as a set of three values, as follows:  

  ̃               

the given sequence of numbers,         , can be understood as membership functions and satisfies the set 

of conditions (1) an increasing function on        , and (2) a decreasing function on        : 

  

   ̃    

{
 
 
 

 
 
 
                                                                          

    

     
                                            

    

     
                                            

                                                            

 (2) 

Based on Definition 2 and the aforementioned points, it can be inferred that the  -cut  ̃  of  ̃ is a closed 

interval in   every   within the range of   to  . This implies that  ̃  is both compact and convex, making it a 

subset of  . 

The  -cut of the FN (2) can be expressed as: 

  ̃    ̃   ̃                                

Definition 5. An FN in the shape of a triangle, denoted as  ̃            , is considered positive if its first 

value,   , is greater than zero. Conversely,  ̃ is as a negative triangular FN if its third value,   , is less than 

zero. 

Definition 6. If the values of the three parameters in two triangular FNs, denoted as  ̃             and 

 ̃            , are the same, then the two FNs are considered equal. Specifically, the first parameter of  ̃ must 
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be equal to the first parameter of  ̃, the second parameter of  ̃ must be equal to the second parameter of  ̃, and 

the third parameter of  ̃ must be equal to the third parameter of  ̃. 

Definition 7. There are three actions that can be executed on triangular FNs. If we have  ̃             and 

 ̃            , then the following operations can be performed. 

    ̃               ,  

  ̃   ̃                     ,  

  ̃   ̃                     . 

 

 

Suppose that  ̃ and  ̃ are two triangular FNs that are positive. In that case, their triangular FN product, 

denoted by  ̃   ̃, is equal to                 .  

Definition 8. A fuzzy vector is defined as a vector  ̃ consisting of FNs, where each element  ̃  is an FN. 

Definition 9. A fuzzy solution of system (1) is defined as a fuzzy vector  ̃    ̃   ̃       ̃   that satisfies the 

equations     ̃   ̃       ̃    ̃  for      . 

Definition 10. In the context of system (1), a positive fuzzy solution is defined as a fuzzy vector  ̃  

  ̃   ̃       ̃   where each component  ̃  is greater than zero, for      .  

It should be noted that the notations introduced in this subsection define how FFPEs are treated in system 

(1), which is as follows: 

    ̃   ̃       ̃   ∑  
 

   
     ̃  ∑  

 

   
∑  

 

   
      ̃   ̃  

 ∑  
 

   
∑  

 

   
∑  

 

   
       ̃   ̃  

  ̃       ̃  

 for      . 

Assuming that we use triangular FNs to represent all the parameters              and unknowns      

      , denoted by                ,                         and              , respectively, we can express system (1) as: 

 

∑   
                                  ∑   

   ∑   
                                                                         

Assuming  

                                                 

and  

                                                                    . 

Then for      , we have:  

 

 ∑   
                    ∑   

   ∑   
                                        . 

The system represented by equation (1) can now be transformed into a clear and precise system as follows: 
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{
 
 
 
 
 
 

 
 
 
 
 
 
∑   

        ∑   
   ∑   

                 

∑   
       ∑   

   ∑   
               

∑   
         ∑   

   ∑   
                   

 
∑   

        ∑   
   ∑   

                 

∑   
       ∑   

   ∑   
               

∑   
         ∑   

   ∑   
                   

 
∑   

        ∑   
   ∑   

                 

∑   
       ∑   

   ∑   
               

∑   
         ∑   

   ∑   
                   

 (3) 

 By deriving a set of    polynomial equations, which is commonly referred to as the crisp form of system 

(1), we can establish a necessary and sufficient condition for the existence of a positive solution to the system. 

This condition is presented in the following theorem. 

 
Theorem 1.  [2] The system of fully fuzzy polynomial equations represented by (1) possesses a positive fuzzy 
solution if and only if the  -cut system of the equations has a positive solution.  

4.   Resolution of FFPEs systems via Wu’s method 

This section outlines a method for solving a system of FFPEs using Wu’s algorithm. 

 

4.1   Wu’s Algorithm and Varieties 

This subsection begins by introducing characteristic sets, followed by an explanation of Wu’s Algorithm 

and its relationship with varieties. Let              be the polynomial ring in   variables over a field   

with characteristic zero. The variables             are ordered such that       for    . If we select the 

variable   , then a polynomial     can be expressed as a univariate polynomial in    of form  

 

       
        

         

Here,   represents the degree of   with respect to   , denoted by      
   , and  

                           

for      .  

The leading coefficient    of   with respect to    is denoted by         . The class of   is defined as the 

greatest subscript   of   appearing in  , denoted by         . The class of a constant is defined to be zero. The 

leading variable and initial of   are denoted by       and       , respectively, where    is the leading variable and 

         is the initial of  . A polynomial     is considered reduced with respect to   if      
         

   , 

where             . The polynomial   is reduced with respect to     if   is reduced with respect to any 

   . A partial order on polynomials is defined as follows: let      . The polynomial   has a higher rank than 

  and is denoted by     if one of the conditions holds (1)                    and (2)                     

and      
         

   . 

If                     and      
         

   , or both polynomials are constant, then we consider   

and   to be equivalent, denoted    . An ordered polynomial set                is a triangular set if either 
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    or                              . The triangular set   is called an ascending set if    is reduced with 

respect to    for    . The partial order on polynomials is extended to provide a partial order for ascending sets. 

Let             and             be ascending sets. We say     if one of the following two cases holds: 

  

1. If            such that       for    , but      . 

2.       and     for all    .  

If two ascending sets are incomparable, we write    . When    , we say that   has a lower rank than 

 . An ascending set of lowest rank consisting of polynomials from   is called the basic set of  . We now 

introduce an interesting division for multivariable polynomials known as the pseudo division. 

Proposition 1.  [13] Given       with           , there exists an equation of the form   
        where 

     ,          ,    , and either     or   is reduced with respect to  .  

The polynomial   mentioned in Proposition 4.1 is referred to as the pseudo remainder of   on pseudo 

division by  , denoted by          . Given an ascending set             and    , we can obtain the 

following remainder formula through successive pseudo divisions:  

   
    

     
    ∑                                                                         (4) 

 

Here,           ,     ,     , and   is reduced with respect to  . If we choose each    to be as small as 

possible, then   is unique and denoted by          . For a finite subset   of  , we define           

               . The ideal generated in   by   is den by ⟨ ⟩. 

Definition 11. [18] An ascending set   in   is considered a characteristic set of a non-empty polynomial set 

    if   ⟨ ⟩ and              .  

Given    , the set                                                 is referred to as the variety defined 

by  . For a polynomial set    , we define                 , which is called a quasi-algebraic variety. 

The main properties of characteristic sets are summarized in the following theorem. 

Theorem 2. [34] (Wu’s Well-ordering Principle) Suppose   is a characteristic set of    . Then we have  

             ⋃  ⋃                     

where    ∏           .  

The Wu’s algorithm is presented based on Wu’s Well-ordering Principle Theorem to provide all necessary 

characteristic sets for computing     . 

Algorithm 1. [35] (Wu Method) 

Input:    , a non-empty set 
Output:  , a set of characteristic sets such that        ⋃            , where    ∏           . 

1.             
2. While     Do 

                      Pick an element    from   
                               
                       Choose a characteristic set   of    
                     If       then 
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                                ⋃                                 
    3. Return    

Using Wu’s algorithm, we can express      as a union of quasi-algebraic varieties of characteristic sets. As 
a result, we can easily find      since these sets are straightforward to solve. 

Example 1. We can apply Wu’s algorithm to                    with    . We start with       

and    . The set                  is a set, so we set       . We have                 

and             , so we set              . We then set                         . set     

is a characteristic set of   , and    . Therefore, the output is                    and   

                                              
 

 
        

4.2   Main algorithm for solving a system of FFPEs based on Wu’s method 

In this subsection, we describe an algorithm for solving a system of FFPEs based on the previous 

discussions. To obtain the form of characteristic sets of this system, we proceed as follows. Consider the FFPE 

system (2). Let                   be the set of polynomials in its crisp form system, and let  

 

                                           

 

be the set of variables that appear in   ’s, ordered as                                        . 

Then, every characteristic set of   in the ring                                              has a structure as 

follows: 

 

 

{
 
 
 

 
 
 
            

                                                                                 

                                                                              

 
                                                                        

                                                                     

         
 
      

  
       

 
        

                               

 (5) 

  

Using the above discussions, we can present the following algorithm for finding positive solutions to a 

system of FFPEs:  

 

Algorithm 2. (Main Algorithm) 

Input: The system of FFPEs   

Output: The set of positive solutions, i.e.,   for   

    1.  Compute the parametric form of   

    2.  Compute the  -cut system, i.e.,     

    3.                   

    4.  If    has positive solution then go to 5 else go to 7 

    5.  Compute the crisp form of system, i.e.,     

    6.                   

    7.  System   does not has any positive solution 

    8.  End  
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5.   Numerical examples 

In this section, we provide several numerical examples to demonstrate the effectiveness of our method. 

 

Example 2. Consider the following system of FFPEs: 

{

 ̃   ̃   ̃            

         ̃   ̃ 
           ̃            

 

We will use our algorithm to solve this system. The parametric form of the system is as follows: 

 

{

                                                       

                              
       

                                           
 

It’s  -cut system is as follows: 

 

   

{
 
 
 

 
 
 
                     

                      

                      

                        

 

 

Using Wu’s algorithm, the set of characteristic sets for    is 

                                                                              

                              

  

By Wu’s Well-ordering Principle Theorem, we have  

                                  

Therefore, 

                                          

Therefore, the solution to the  -cut system is as follows: 

   ̃ 
         ̃ 

         

We observe that the fully fuzzy polynomial equation’s  -cut system has a positive solution. Thus, by 

Theorem 1, the original system also has a positive solution. Let  ̃                and  ̃               . The 

given system of FFPEs can be expressed as: 

 

{
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where               and               are positive triangular FNs and this system is equivalent to the following: 

 

{

                                             

         
            

                
                   

 

By employing the method described in Section 4, it is possible to transform the aforementioned system of 

fuzzy functional differential equations (FFPEs) into a clear-cut system. 

 

    

{
 
 
 
 
 

 
 
 
 
 
             

           

                 

        
        

      
         

          
           

 

Using Wu’s algorithm, the set of characteristic sets for     is 

                   
 
    

 
             

    
                  

 
     

 
         

 

             
                   

 
             

By Wu’s Well-ordering Principle Theorem, we have  

 

                                   

Therefore, 

                                               

Thus, the original system has the following solution  

 

  ̃                         ̃                         

Example 3. Consider the following system of FFPEs: 

 

{

         ̃   ̃          

 ̃           ̃             
 

The parametric form of the above system can be presented in the following form: 

 

{

                                                 

                                                      
 



78 H Farahani et al. / FOMJ 4(4) (2024) 67–81 

 

  -cut system of the above system is: 

{
 
 
 

 
 
 
              

               

                

                

 

By applying Wu’s method, we can derive the solution for the  -cut system as follows:  ̃ 
          and 

 ̃ 
        . However, since  ̃ 

  is an interval that does not contain any positive values, it follows that the 

system does not have a positive solution. This conclusion is supported by Theorem 1, which confirms that the 

original system also lacks a positive solution. 

Example 4. Consider the following system of FFPEs: 

{
 ̃ 

   ̃ 
          

         ̃ 
   ̃ 

          

 

The parametric form of the above system is as follows: 

 

{

      
       

         
       

              

                 
       

         
       

              

 

It’s  -cut system is as follows: 

{
 
 
 

 
 
 
                

                

                

                 

 

 

Wu’s algorithm produces an output of     for the  -cut system, indicating that the system has no 

solution. 

Example 5. A shipping company transports two types of shipping packs, with volumes of approximately 2 and 

4    per weight unit. The first type occupies volumes of approximately               for each weight unit, 

while the second type occupies volumes of approximately              . The values of each weight unit of the 

first type of pack are about    dollars           , while the values of each weight unit of the second type of 

pack are about    dollars             . The total cost of the packs is approximately      dollars 

                  , and they occupy a total volume of about 340                      . To determine the 

weight of each type of pack, we can set up a system of linear equations using FNs  ̃  and  ̃  to represent the 

weight of each unit of the first and second type of pack, respectively. These equations form a system of Fuzzy 

Functional Polynomial Equations (FFPEs). 
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{

               ̃                 ̃                     

            ̃                ̃                     
 

 

The system described above can be expressed in parametric form as follows: 

{

                        [           ]                          [           ]                              

                                                                                 

 

 

 -cut system of the above system is: 

 

   

{
 
 
 

 
 
 
                          

                           

                     

                         

 

 

Using Wu’s algorithm, the set of characteristic sets for the above system is 

 

                                               

By Wu’s Well-ordering Principle Theorem, we have  

 

                                  

Therefore, 

                                              

Therefore, we can find the solution to the  -cut system as follows:  

  ̃ 
           ̃ 

         

We observe that the  -cut system of the fully fuzzy polynomial equation above has a positive solution. 

Therefore, according to Theorem 1, the original system also has a positive solution. 

Let  ̃                and  ̃               . Then given system of FFPEs may be written as: 

 

{

                                                                           

                                                                       
 

 

Here,               and               are positive triangular FNs and this system is equal to the following 

system: 
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{

                                                               

                                                           
 

By applying the method discussed in Section 4, we can convert the above system of Fuzzy Functional 

Polynomial Equations (FFPEs) into the following crisp system: 

 

    

{
 
 
 
 
 

 
 
 
 
 
                      

            

                         

                 

               

                       

 

Applying Wu’s algorithm, we obtain the set of characteristic sets for     as follows:   

                                                                             

By Wu’s Well-ordering Principle Theorem, we have  

 

                                               

Therefore, 

                                                                         
               

Thus, the original system has the following solution  

 ̃     
      

  
                                 

 ̃     
      

  
                                 

 

6.  Conclusion 

Since there is no additive inverse for an arbitrary FN, finding solutions to systems of Fuzzy Functional 

Polynomial Equations (FFPEs) is a significant challenge. This paper presents a novel approach based on Wu’s 

algorithm for obtaining all positive fuzzy solutions to systems of FFPEs. This algorithm allows us to solve 

triangular systems, which are relatively easy to solve. The proposed method is not dependent on a suitable 

starting point, and all solutions can be obtained simultaneously. Numerical results demonstrate the effectiveness 

of the proposed algorithm in obtaining all positive solutions to systems of FFPEs. The proposed method can be 

applied to a system in a family of polynomial systems. Future research in this area could focus on developing 

more efficient and accurate methods for solving FFPEs, as well as exploring new applications in various fields. 
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