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A R T I C L E  I N F O  A B S T R A C T 

Portfolio construction and achieving the set of securities with the most 

desirability is one of the most critical problems in financial markets. Generally, 

there are two types of financial problems in literature, choosing the right stock 

portfolio from a set of possible options which is called portfolio selection, and 

calculating the portion of the purchase for each option which is called Portfolio 

optimization. In this paper, a new two-phase robust portfolio selection and 

optimization approach is proposed to deal with the uncertainty of the data. In 

the first phase of this approach, all candidate stocks’ efficiency is measured 

using a data envelopment analysis (DEA) method. Financial criteria for 

evaluation chosen from fundamental perspectives. Then in the second phase, by 

applying the Fuzzy Weighted Goal programming (FWGP) model with criteria 

related to modern portfolio theory (return and risk) as well as the mentioned 

criteria, the portion of investment in each qualified stock is determined and the 

optimal investment portfolio is formed. Finally, the proposed approach is 

implemented in a real case study of the Dow Jones Industrial Market (DJIA). 

The resulting portfolios for the proposed models are compared against each 

other as well as against the Dow Jones Industrial Average index. The results 

show that for the data used and factors investigated some of the constructed 

portfolios, with a much smaller number of constituents, could potentially 

outperform DJIA in terms of their performance. 
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1. Introduction 

The first concern of managers in any investment complex is the proper and optimal conversion of existing 

capital resources to the maximum possible income through investment at the right time. Therefore, concerning 

the economic situation, how and where to invest is a complex and risky job. In other words, all investors desire 

to reach the best possible choices by regarding the effective criteria in investment strategies in addition to their 

personal preferences, while minimizing the risk for a specific return [10, 11, 24, 25]. Financial issues, such as 

portfolio selection and optimization, are among the intriguing subjects of uncertainty planning. In recent years, 

https://dx.doi.org/10.30495/fomj.2022.1949729.1055
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we have witnessed an increase in the presentation of extensive research and various methods in the finance field, 

which include portfolio selection and portfolio management. The high importance of Profitability is the reason 

for studying portfolio topics and presenting a better model can lead to higher profits. Markowitz proposed the 

first model for the portfolio problems. Modern portfolio analysis received much attention from both researchers 

and investors after the publication of the seminal work of Markowitz, wherein he proposed the mean-variance 

portfolio selection model, which simultaneously maximizes portfolio return whilst minimizing portfolio risk 

[20]. 

The thing that increases the difficulty in solving portfolio models is the uncertainty in the problems. 

Uncertainty can be described as a complete lack of information about future events that can be reduced by 

gathering information, but it cannot be eliminated. The occurrence of economic crises in recent years has caused 

a special place for uncertainty in financial issues; also, many studies have been conducted to deal with 

uncertainty in these issues. 

Financial issues, such as portfolio are also one of the cases that are examined in uncertain conditions 

because the investor cannot predict the exact portion of the portfolio return. The existence of uncertainty in the 

financial markets modeling would cause risk in the decision-making process. The approaches to dealing with 

uncertainty in the literature are limited and fuzzy, robust, and stochastic approaches can be named as the main 

approaches in this topic. The variety and complexity of investment methods have increased significantly in 

recent decades and this widespread growth created an extreme need for inclusive and integrated models. 

The rest of the paper is organized as follows. In Section 2, a brief review of the initial and recent researches 

is presented. In Section 3 to 7, we present a brief Definition of modern portfolio theory (MPT), fundamental 

analysis, goal programming (GP), data envelopment analysis (DEA), and fuzzy approach. In Section 8, the 

proposed approach for the portfolio selection and the portfolio optimization is implemented for a real case study 

and finally, the conclusions of this study and some directions for future research are provided in Section 9. 

2. Literature Review 

The most significant research in this area has been by Markowitz [20] as modern portfolio theory. He 

presented the concept of variety in the portfolio selection problem. In the original Markowitz model, the 

portfolio selection problem is developed by risk, return, and balance between them. Markowitz model assumes 

that investors are interested only with returns attached to specific levels of risk when selecting their portfolios 

[24]. 

In further studies, based on the mean-variance model, portfolio allocation management was improved by 

adding several factors such as borrowing, loaning, short-term selling, transaction cost, to the original model [43, 

46]. 

One of the techniques that use multi-objective models for optimization is the goal programming approach. 

Charnes [5] presented this method in 1955. For the first time, Lee and Lero [19] used it in financial problems. 

Subsequently, in several papers, this approach was used to select portfolios. 

Ross and Roll [36] proposed the theory of arbitrage pricing or the multi-index model. Arbitrage pricing 

theory asserts that an asset's riskiness, hence its average long-term return, is directly related to its sensitivities to 

unanticipated changes in four economic variables inflation, industrial production, risk premiums, and the slope 

of the term structure of interest rates. 

Konno & Yamazaki [17] proposed absolute deviation (AD) instead of variance as a risk measure for 

portfolio selection. The mean-absolute deviation model (MAD) is a linear programming (LP) model and reduces 

computational time .this risk measure quantifies the deviation from the expected return and by using the MAD 

model, it is not required to compute the covariance matrix. 

Alexander and Baptista [2] relate value at risk (VaR) to mean-variance analysis and examine the financial 

implications of using a mean-VaR model for portfolio selection. When comparing two mean-variance efficient 

portfolios, the higher variance portfolio might have less VaR. Consequently, an efficient portfolio that globally 

minimizes VaR may not exist. finally, they show that it is plausible for certain risk-averse agents to end up 



M. Parkhid  & E. Mohammadi / FOMJ 3(3) (2022) 1–18                                                                                                     3 

selecting portfolios with larger standard deviations if they switch from using variance to VaR as a measure of 

risk. 

Afshar Kazemi et al. [1] purpose a model to make an optimal portfolio by using data development analysis 

(DEA) and goal programming (GP) methods. Therefore, the data, which is related to 250 firms, have been 

collected from October 2009 to March 2010. The ratio efficiency of every industry’s firm has been calculated by 

the DEA method and the most efficient ones selected, and 48 efficient firms have been determined. In the next 

phase, considering data related to the criteria, to determine goal number, linear programming has been used, and 

to ensure the attainment of the goals with the low priorities, the result has been brought to goal programming 

model after a little rebalancing. In the final phase, the investor has selected a portfolio using GP by considering 

priorities and his goals. The result shows the complete achievement of four goals and the incomplete 

achievement of two goals has 2.27 units positive derivation and it was made a various portfolio includes eight 

stocks among 250 stocks. 

Khanjarpanah et al. [15] proposed a novel logical and useful model for portfolio optimization. This model 

has some constraints such as flexibility and solid bounds in stock's weight in portfolio optimization problem and 

cardinality constraint is applied for portfolio problem. Then fuzzy programming is applied to handle the 

uncertainty of stock returns and with flexible and possibilistic programming, that both of these methods are 

categories of fuzzy programming, the proposed model converts to a crisp one. The proposed model for 

evaluating, performance testing, and logicality approved, is applied to some monthly returns of companies’ 

stock of Tehran Stock Exchange and the results showed that in lower values of confidence level in proposed 

portfolio problem, it's possible to obtain a higher profit with low risk. 

Peykani et al. [31] purposed a study to adopt data envelopment analysis (DEA) to construct portfolios, and 

compare their return rates with the market index to examine whether DEA portfolios created superior returns. In 

addition, this study investigated whether using the “size effect” as a stock selection strategy is appropriate in 

Taiwan. This study applied two DEA models to evaluate the efficiency of the firms and construct portfolios by 

selecting stocks with high efficiency. Furthermore, the return rates of the portfolios constructed by small-size 

firms, DEA models, and market indices were compared via empirical data analysis. The results showed that the 

size effect seems inappropriate as a stock selection strategy in the Taiwan stock market. However, the portfolios 

constructed by DEA models achieved noticeable superior returns. 

Peykani et al. [32] proposed a two-phase robust portfolio selection and optimization approach to deal with 

the uncertainty. In the first phase of this approach, all candidate stocks’ efficiency is measured using a robust 

data envelopment analysis (RDEA) method. Then in the second phase, by applying robust mean-semi variance-

liquidity (RMSVL) and robust mean-absolute deviation-liquidity (RMADL) models, the amount of investment 

in each qualified stock is determined. Finally, the proposed approach is implemented in a real case study of TSE 

and results show that the proposed approach is effective for portfolio selection and optimization in the presence 

of uncertain data. 

Tamiz & Azmi [44] in "Goal programming with extended factors for portfolio selection" proposed the use 

of several stock-related factors, called extended factors, for portfolio selection. These factors, including the 

traditional factors of risk and return, are represented as objectives in weighted goal programming (WGP) 

models. Several WGP models with passive and active target values and various weights for their unwanted 

deviational variables in their achievement functions have been developed. The resulting portfolios for the 

proposed models are compared against each other as well as against the Dow Jones Industrial Average index 

and portfolios obtained from the well-established Markowitz [20] and Konno and Yamazaki’s [17] models. The 

experimental results strongly support the use of extended factors for portfolio selection problems and the 

assumption of meeting decision makers’ preferences and utilities better than the portfolios based entirely on risk 

and return. 

A review of the literature review is provided as follows in which the modelling method and criteria used in 

each model are given and the characteristics of our work have also been presented in the last row of Table 1 

(FA: fundamental analysis, TA: technical analysis, MPT: Modern Portfolio Theory, U.C.: uncertainty): 



4 M. Parkhid  & E. Mohammadi / FOMJ 3(3) (2022) 1–18 

 
Table 1. A review of literature review. 

Researcher Year problem method 
model criteria 

U.C. MPT TA FA 

Fu et al. 1997 Portfolio Selection Genetic algorithm    
 

Chavarnakul & Enke 2008 Stock trading Neural networks  
 

 
 

Jana et al. 2009 Portfolio Selection Possibility theory, Fuzzy   
  

Lee & Yu 2010 
Stock evaluation and 

portfolio 
Conceptual model   

  

Dastkhan et al. 2011 Portfolio selection Fuzzy programming   
  

Esfahanipour & 

Mousavi 
2011 Stock trading Genetic programming  

 
 

 

Gorgulho et al. 2011 Portfolio management Genetic algorithm  
 

 
 

Jasemi et al. 2011 Portfolio management Conceptual model    
 

Yu and Lee 2011 Portfolio rebalancing Fuzzy programming   
  

Afshar Kazemi et al. 2012 Portfolio Optimization 
Data envelopment analysis, goal 

programming 
    

Escobar et al. 2013 Stock recommendation Fuzzy logic  
 

 
 

Gradojevic & Genc 2013 Stock market timing Fuzzy logic  
 

 
 

Khodamoradi et al. 2013 Portfolio Selection goal programming     

Yunusoglu & Selim 2013 
Stock evaluation and 

portfolio 
Fuzzy expert system  

 
 

 

Mohammadi et al. 2014 Portfolio Optimization goal programming   
  

Shams & Alavi 2015 Portfolio Selection Linear programming     

Tharavanij et al. 2015 
Stock evaluation and 

portfolio 
grid-search  

 
 

 

Khanjarpanah et al. 2017 Portfolio Optimization Fuzzy programming     

Tamiz & Azmi 2017 Portfolio selection weighted goal programming   
 

 

Khayamim et al. 2018 Portfolio rebalancing 
Fuzzy programming, Market 

psychology 
   

 

Mangaraj et al. 2018 Portfolio Optimization Fuzzy goal programming   
  

Mehlawat et al. 2018 
Portfolio selection & 

Optimization 

Data envelopment analysis, 

Fuzzy optimization 
  

 
 

Falah & Farokh 2019 Portfolio Selection 
Multi-objective fuzzy possibility 

programming 
    

Peykani et al. 2020 
Portfolio selection & 

Optimization 

Robust Data envelopment 

analysis 
  

 
 

This research 2022 
Portfolio Selection,  

Portfolio Optimization 

Data envelopment analysis, 

Fuzzy weighted goal 

programming 

    

 

3. Modern Portfolio Theory (MPT) 

Markowitz's Modern portfolio theory (MPT) or mean-variance analysis [20] formed the first mathematical 

model for portfolio selection. In other words, it is a mathematical framework for assembling a portfolio of assets 

and formalization and extension of diversification in investing, the idea that owning different kinds of financial 

assets is less risky than owning only one type. Its key insight is that an asset's risk and return should not be 

assessed by itself, but by how it contributes to a portfolio's overall risk and return. It uses the variance of asset 

prices as a proxy for risk. Markowitz model assumes that investors are interested only with returns attached to 

specific levels of risk when selecting their portfolios. 
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Markowitz also presents the efficient frontier, which is the set of optimal portfolios that offer the highest 

expected return for a defined level of risk or the lowest risk for a given level of expected return. The efficient 

frontier graphically represents portfolios that maximize returns for the risk assumed. Returns are dependent on 

the investment combinations that make up the portfolio. The Markowitz model, as follows: 

 

 min𝛿𝑝
2 = ∑ ∑ 𝜎𝑖𝑗

𝑛
𝑗=1 𝑥𝑖

𝑛
𝑖=1  

 max𝑅𝑝 = ∑ 𝑟𝑖
𝑛
𝑖=1 𝑥𝑖 

   𝑠. 𝑡. :  

      ∑ 𝑥𝑖
𝑛
𝑖=1 = 1 

      𝑥𝑖 ≥ 0       𝑖 = 1,… , 𝑛 

where σij is the covariance (Risk) between stocks i and j, 𝑥𝑖 is the proportion invested in stock i, ri the return 

of the ith stock, δp
2
 portfolio return variance and Rp is portfolio expected return.  

4. Fundamental Analysis 

Fundamental analysis (FA) is the process of evaluating a public firm for its investment worthiness by 

looking at its business at the basic or fundamental financial level. It involves examining a firm’s financials and 

operations, especially sales, earnings, growth potential, assets, debt, management, products, and competition. 

FA may also include analysing market behaviour that stresses the study of underlying factors of supply and 

demand [24]. 

In other words, FA is a method of measuring a security's intrinsic value by examining related economic and 

financial factors. in this field, we study anything that can affect the security's value, from macroeconomic 

factors such as the state of the economy and industry conditions to microeconomic factors and the main purpose 

is to arrive at a measurement criterion that an investor can compare with a security's current price to see whether 

the security is undervalued or overvalued.  

The various fundamental factors can be grouped into two categories: quantitative and qualitative. The 

financial meaning of these terms is not much different from their standard definitions. Quantitative group related 

to information that can be shown in numbers and amounts. Revenue, profit, assets, and more can be measured 

with great precision. Qualitative group relating to the nature or standard of something, rather than to its quantity, 

this group is less tangible. They might include the quality of a company's key executives, its brand-name 

recognition, patents, and proprietary technology [12]. 

The most important element in the Quantitative group considers financial ratios which can be grouped into 

five categories: 

 Liquidity Measurement Ratios: Liquidity ratios measure a company's ability to pay debt obligations 

and its margin of safety through the calculation of metrics including the current ratio, quick ratio, 

and operating cash flow ratio. 

 Leverage ratios: A leverage ratio is any one of several financial measurements that assesses the 

ability of a company to meet its financial obligations. The leverage ratio aims to act as a 

compliment and a backstop to risk-based capital requirements. It should counterbalance the build-up 

of systemic risk by limiting the effects of risk weight compression during booms [51]. 

 Activity Ratios: activity ratios, also known as Efficiency ratios, are used by analysts to measure the 

performance of a company's short-term or current performance. In other words, an activity ratio 

measures a company's ability to use its assets to generate income.  

 Profitability Indicator Ratios: Profitability ratios assess a company's ability to earn profits from its 

sales or operations, balance sheet assets, or shareholders' equity. In other words, Profitability ratios 

measure the company's use of its assets and control of its expenses to generate an acceptable rate of 

(1) 

https://www.investopedia.com/terms/v/valuation.asp
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return. We can name return on assets (ROA), return on equity (ROE) as the most important activity 

ratios. 

 Investment Valuation Ratios: Valuation ratios are used for analyzing the attractiveness of an 

investment in a company. These measures primarily integrate a company’s publicly traded stock 

price to give investors an understanding of how inexpensive or expensive the company is in the 

market. In general, the lower the ratio level, the more attractive investment in a company become. 

Popular valuation multiples include Price to earnings (P/E), Price to book (P/B), Price to sales (P/S), 

and Price to cash flow (P/CF) [25]. 

5. Fuzzy Approach 

Since in many industrial and managerial problems, the decision-maker cannot accurately determine the 

values of the problem variable and this ambiguity can cause improper results, the fuzzy sets theory introduced. 

In fuzzy mathematical programming, the model parameters, constraint structure, and objective function are 

formulated with uncertainty. Then, using a defuzzification approach that can produce specific optimal solutions, 

the fuzzy model becomes a definite mathematical programming model [15].  

A standard way to rank fuzzy numbers is to define a ranking function from a fuzzy set to a real set of 

numbers with an order. In other words, fuzzy logic systems produce acceptable but definite output in response 

to incomplete, ambiguous, distorted, or inaccurate input. Generally, in such methods, the fuzzy linear 

programming model becomes a classical linear programming model, and by solving this model, the answer to 

the main problem is determined. 

We say that �̃� , as a subset of F(R), is a fuzzy number if it is normal, and a convex fuzzy set of R. These 

numbers depend on the possible values and the range of these values is [0, 1]. This weight is called the 

membership function in fuzzy logic and it demonstrates with 𝜇𝑐̃(𝑥). In addition, �̃� is a triangular fuzzy number 

when it is expressed as  �̃� = (𝑐0, 𝑐𝑚, 𝑐𝑝) and its membership function is as follows [49] (see Figure 1): 

𝜇𝑐̃(𝑥) =

{
 
 

 
 𝑓𝑐(𝑥) =

𝑥−𝑐0

𝑐𝑚−𝑐0
    𝑖𝑓 𝑐0 < 𝑥 < 𝑐𝑚

 1                 𝑖𝑓 𝑥 = 𝑐𝑚

𝑔𝑐(𝑥) =
𝑐𝑝−𝑥

𝑐𝑝−𝑐𝑚
   𝑖𝑓 𝑐𝑚 < 𝑥 < 𝑐𝑝

             0              𝑖𝑓 𝑥 ≤ 𝑐0 𝑜𝑟 𝑥 ≥ 𝑐𝑝

 

 

 The solution method presented in this research for converting the proposed mixed linear fuzzy model to 

its equivalent definite model is the proposed model by Jimenez et al [14] who use a fuzzy ranking method to 

rank the fuzzy objective values and to deal with the inequality relation on constraints. It allows us to work with 

the concept of feasibility degree. The bigger the feasibility degree is the worst the objective value will be. This 

method offers the decision-maker the optimal solution for several different degrees of feasibility. This method 

builds a fuzzy subset in the decision space whose membership function represents the balance between the 

feasibility degree of constraints and the satisfaction degree of the goal. A reasonable solution is the one that has 

the biggest membership degree to this fuzzy subset [50]. 

 

 

(2) 

https://www.investopedia.com/terms/p/price-earningsratio.asp
https://www.investopedia.com/terms/p/price-to-bookratio.asp
https://www.investopedia.com/terms/p/price-to-salesratio.asp
https://www.investopedia.com/terms/p/price-to-cash-flowratio.asp
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Figure 1. Triangular fuzzy number 

According to Jimenez, the expected interval (EI) and expected value (EV) of triangular fuzzy number c̃ can 

be defined as follow: 

𝐸𝐼(�̃�) = [𝐸1
𝑐, 𝐸2

𝑐] = [∫ 𝑓𝑐
−1(𝑥)𝑑𝑥,   ∫ 𝑔𝑐

−1(𝑥)𝑑𝑥
1

0

1

0

] = [ 
1

2
(𝑐𝑝 + 𝑐𝑚),

1

2
(𝑐𝑚 + 𝑐0)] 

𝐸𝑉(�̃�) =
𝐸1
𝑐 + 𝐸2

𝑐

2
=
𝑐𝑝 + 2𝑐𝑚 + 𝑐0

4
 

It is noted that the same equations can be used for a trapezoidal fuzzy number. Moreover, according to the 

ranking method of Jimenez for any pair of fuzzy numbers ã  and b̃, the degree in which �̃� is bigger than �̃� is 

defined as follows: 

𝜇𝑀(�̃�, �̃�) =

{
 

  0                 𝑖𝑓 𝐸2
𝑎 + 𝐸1

𝑏 < 0

𝑔𝑐(𝑥) =
𝑐0−𝑥

𝑐0−𝑐𝑚
          𝑖𝑓 0 ∈ [ 𝐸1

𝑎 − 𝐸2
𝑏, 𝐸2

𝑎 − 𝐸1
𝑏 ]

1               𝑖𝑓 𝐸1
𝑎 − 𝐸2

𝑏 > 0

 

Consequently, using the definition of expected interval and expected value of a fuzzy number, the 

equivalent crisp α-parametric model can be written as follows: 

 

6. Goal Programming 

In formulating and solving linear planning problems, the modelling process focuses on goals such as profit 

maximization or cost minimization, but many real-world decision-making situations, limiting the organization's 

goals to one, are not practical and desirable. Most organizations, in addition to the mentioned objective, have 

several other objectives in mind which cannot be formulated in simple leaner programming. To formulate and 

solve mentioned problems a valid method has been developed to complete the linear programming technique 

(3) 

(4) 

(5) 

  𝑐𝑚 
  

 𝑐0  𝑐𝑝 
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called goal programming [47]. 

The distinguishing feature of this method is in the goals that are prioritized from the point of view of 

decision-makers. It is not permanently possible to achieve any of the set goals. Therefore, the decision-maker is 

required to focus his efforts on the level of satisfaction of several goals. The general weighted goal 

programming (WGP) model is as follows: 

 

 𝑚𝑖𝑛∑ (
𝛼𝑖𝑛𝑖

𝑘𝑖
+
𝛽𝑖𝑝𝑖

𝑘𝑖
)𝑚

𝑖=1  

 𝑠. 𝑡: 

     𝑓𝑖(𝑥) + 𝑛𝑖 − 𝑝𝑖 = 𝑏𝑖      𝑖 = 1,… ,𝑚 

    𝑥 ∈ 𝐶𝑠 

    𝑥, 𝑛𝑖, 𝑝𝑖 ≥ 0    𝑖 = 1,… ,𝑚 

where ni is the ith negative deviational variable, αi the weighting factor for negative deviation variable i, pi 

the ith positive deviational variable, βi the weighting factor for positive deviational variable i, ki the 

normalization constant for deviational variable i, x the vector of the decision variables, fi(x) the ith objective 

function, bi is the ith target value, and Cs is an optional set of hard constraints. 

The WGP allows for direct trade-offs between all unwanted deviational variables by placing them in a 

weighted, normalized single achievement function that is minimized. Each objective, fi(x), is given a target 

value, bi, that needs to be achieved. The negative deviational variable, ni, measures the amount of 

underachievement of the target and the overachievement is measured by the positive deviational variable, pi. 

The unwanted deviation from the target value (i.e., negative deviation from return target or positive deviation 

from risk target) is then placed in the achievement function to be minimized. The values of α and β are set to 

reflect the decision maker’s preferences [29]. 

For a reasonable investment decision where the targets assigned to criteria are imprecise due to fuzziness, 

the fuzzy multi-criteria decision-making (MCDM) approach is more meaningful for handling such problems. 

Apart from a fuzzy multi-objective decision-making approach, the literature also shows several applications 

of fuzzy goal programming (FGP) in portfolio selection in different contexts. The central idea behind the fuzzy 

programming technique is that ill-defined problems are first formulated as fuzzy models. Since no solution 

procedure is available for fuzzy models, equivalent crisp models of the problems are to be designed using fuzzy 

set theory to facilitate their solutions by existing algorithms and solution codes. 

7. Data Envelopment Analysis 

Data envelopment analysis (DEA) is a nonparametric approach for calculating the relative efficiencies of a 

set of similar decision-making units (DMUs) by relating their outputs to their inputs and classifying the DMUs 

into managerially efficient and managerially inefficient [26-28, 35, 37, 38, 41, 42, 43]. It originated from 

Farrell’s (1957) work, which was later popularized by Charnes et al. [5]. The CCR ratio model seeks to optimize 

the ratio of a linear combination of outputs to a linear combination of inputs. 

To explain the fundamental premise of a DEA model, let there be j independent DMUs whose performance 

must be evaluated relative to each other. One begins with a given set of inputs parameters (M) and a given set of 

output parameters (N) which are common to all J firms. The relative efficiency then measures how well a given 

firm (in the group of J firms) converts its M inputs to the N outputs, which is calculated as the ratio of a specific 

aggregated output measure to a specific aggregated input measure. Such aggregated input (and output) measures 

are computed by taking a non-negative linear combination of the M inputs (and N outputs). Following this idea, 

the input-oriented relative performance (strength or efficiency) fk of some firm k, k = 1,. . . ,J, is then defined as 

the maximized value of the latter ratio, determined over all possible aggregating multipliers such that no firm in 

(6) 
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the group will attain a relative performance measure greater than unity. The CCR model is formulated as 

follows: 
 

 

For firm j, the level of input parameter m is (xi)mj, m = 1, . . ., M, while that of output parameter n is (xo)nj, n 

= 1, . . ., N. The input and output non-negative multipliers for firm k are denoted by the variables umk and vnk, 

respectively. The following model yields the maximum achievable efficiency for firm k, denoted fk, provided 

every other firm is also applying the same aggregating non-negative multipliers in computing their input to 

output conversion ratios. fk is termed the DEA efficiency score of firm k. An efficiency score of less than one is 

indicative that it may be possible to decrease the level of input for the same level of output, while a score of 1 

indicates the firm is DEA-efficient. By applying the following model to each firm independently, the respective 

(maximum) relative efficiency score for each firm is computed. The equivalent linear programming formulation 

of the following model is [21]: 

 

   𝑓𝑘 ≔ max∑ (𝑥𝑜)𝑛𝑘𝑣𝑛𝑘
𝑁
𝑛=1  

  𝑠. 𝑡: 
       ∑ (𝑥𝑖)𝑚𝑘𝑢𝑚𝑘 = 1

𝑀
𝑚=1  

    −∑ (𝑥𝑖)𝑚𝑗𝑢𝑚𝑘 + ∑ (𝑥𝑜)𝑛𝑗𝑣𝑛𝑘 ≤ 0,     𝑗 = 1,… , 𝐽𝑀
𝑚=1

𝑀
𝑚=1  

         𝑢𝑚𝑘 , 𝑣𝑛𝑘 ≥ 0,     𝑚 = 1,… ,𝑀 ,       𝑛 = 1,… ,𝑁.  
 

It is easy to show that 𝑓k = fk holds under the non-negativity of the observed data. More specifically, if (xi)mk 

> 0 for some m = 1, . . ., M, then, 𝑓k = fk holds. Conversely, suppose (xi)mk ≤ 0 for all m = 1, . . ., M. Then, the 

maximization in (7) is not well defined, and (8) is infeasible, in which case, we assign a performance strength of 

𝑓k = 0.  

The issue of negative data stems from the fact that in the application in this paper, the input and output data 

come from financial statements. That is possible for a given firm all input parameters have non-positive values, 

depending on how the input parameters are chosen from financial statements. 

8. Problem Definition 

In this research, according to the main objectives of this study, including increasing the efficiency of the 

model, comprehensive assessments of stocks from different financial aspects and criteria and increasing the 

ability to deal with the uncertainty of the data, using a two-level model, conclude portfolio selection and 

portfolio optimization in the form of two phases. 

In the first phase, entitled portfolio selection, in the first step, using several critical factors in the capital 

market, the priority of investment in each industry and company, based on the expert's opinion, is extracted. In 

the second step of phase 1, financial criteria for evaluation of stocks are chosen from fundamental perspectives 

that contain Debt/asset (DA), Earnings per share (ES), Price/book value (PB), Operating cash flow ratio (OC) 

and Dividend yield (DY). These parameters examine a firm’s fundamental performance through a range of 

performance perspectives. In the third step of phase 1, the data envelopment analysis (DEA) models are chosen 

to evaluate the stocks. In this paper, CCR-IO is selected. In the fourth step of phase 1, the DEA model for all the 

stocks will be run. In addition, by applying the DEA Model, all stocks will be ranked. 

(7) 

(8) 
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 In the second phase, in the first step, Risk and return as uncertainty criteria in addition to the mentioned 

criteria are selected and weighted. In the second step of phase 2, Fuzzy Weighted Goal programming (FWGP) 

will be proposed as a portfolio optimization model. This step is the most important in the second phase. Finally, 

in the third step of phase 2, the FWGP model for all the top-ranked stocks in phase 1 will be run. A testing 

period of 15 days, in October 2010 (450 observations), is used for testing the resultant portfolios. A concept 

image of the proposed model is presented as Figure 2. 

 

 

Figure 2. Concept image of the proposed model 

 

 First Phase: Portfolio Selection 

In this phase the performance of all stocks that investors can invest in them, are evaluated and measured. At 

the end of this phase, only the stocks that pass the filter of the investor are qualified to be a candidate that can be 

invested in the second phase. Financial criteria for evaluation of stocks are chosen from fundamental 

perspectives. 

Various experiments carried out for the model and their results are provided. The data are from the 30 

stocks of the DJIA index (Table 2). The experiments use a constructing period of 102 days, from September 

2010 to December 2010 (3060 observations). 

 

 

 

 

 

 

 

 

Frist phase: 

Portfolio Selection 
Selection DEA model 

Portfolio selection by applying DEA 

Stocks Selection from top industries 

Selection and evaluation financial criteria 
based on fundamental analysis 

Step 1-2: 

Step 1-3: 

Step 1-4: 

Step 1-1:  

 

Portfolio optimization by applying FWGP 

FWGP model definition 

 Criteria selection and weighing Step 2-1: 

Step 2-2: 

Step 2-3: 

Second phase: 

Portfolio optimization 
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Table 2. Financial criteria’ data 

DEA Input (1) Input (2) output (1) output (2) output (3) 
 

Debt/asset 
Price / 

book value 

Earnings 

per share 

Operating cash 

flow ratio 

Dividend 

yield 

Alcoa 0.5634 1.27 -1.06 0.337 0.91 

American Express Co. 0.8811 3.35 1.54 0.485 1.70 

Boeing 0.9627 19.23 1.87 0.200 2.42 

Bank of America 0.9091 0.67 -0.29 0.306 0.35 

Caterpillar 0.8377 4.07 1.43 0.292 2.21 

Cisco Systems 0.4399 2.95 1.33 0.638 0.00 

Chevron 0.4333 1.68 5.24 0.647 3.51 

El DuPont de Nemours 0.7822 4.36 1.92 0.490 3.46 

Walt Disney 0.4390 1.47 1.76 2.125 0.97 

General Electric 0.8400 1.38 1.03 0.138 3.01 

The Home Depot 0.5257 2.45 1.57 0.481 3.00 

Hewlett-Packard 0.6416 2.83 3.14 0.342 0.75 

IBM 0.7834 7.55 10.10 0.632 1.81 

Intel Corporation 0.2102 2.69 0.77 1.630 3.12 

Johnson & Johnson 0.4327 3.51 4.40 0.606 3.38 

JP Morgan Chase 0.9500 1.04 2.24 0.358 0.54 

Kraft Foods 0.6102 1.55 2.03 0.406 3.64 

The Coca-Cola Co. 0.4774 5.29 2.93 0.497 2.85 

McDonald’s Corp. 0.5253 4.79 4.11 4.462 3.11 

3M Co. 0.5000 4.60 4.52 1.293 2.48 

Merck & Co. 0.4489 1.92 5.65 0.149 4.15 

Microsoft Corp. 0.4634 4.32 2.10 1.116 2.34 

Pfizer Inc. 0.5728 1.63 1.23 0.643 4.13 

Procter & Gamble 0.5203 2.85 4.11 0.649 3.01 

AT&T 0.6190 1.62 2.12 1.015 5.81 

The Travelers C. 0.7649 0.02 6.33 11.260 0.59 

United Technologies 0.6015 3.24 4.12 0.221 2.26 

Verizon Communications 0.6287 2.26 1.29 1.279 5.95 

Wal-Mart Stores 0.5698 2.86 3.70 0.430 2.21 

Exxon Mobil Corp. 0.5006 2.92 3.98 0.573 2.59 

 

Now, according to the existing models in the field of data envelopment analysis, the CCR input-oriented 

(CCR-OO) model was selected for this research. According to the studies, debt-to-asset ratio and price-to-book 

value ratio are selected as model inputs and earnings per share criteria, operating cash flow ratio, and dividend 

return as the output of the DEA model. 

Now, before applying the DEA model, we evaluate the number of selected stocks for the model based on 

the following equation. According to this equation, for selecting the number of DMUs in the model, the number 

of inputs and outputs should be considered: 
 

DMUs ≥ 3 × (N.O. inputs + N.O. outputs) 

 

Criteria 

Stocks 
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Ignoring the following equation may repeal the validation of the model and the ability to identify inefficient 

units. The reason for the mentioned problem is a large number of units with efficiency equal to one.  

Considering that the research model has 2 input and 3 output variables, the minimum number of stocks 

required is 15 shares to satisfy the following equation and, in this research, 30 stocks are used to describe the 

model. 

Finally, according to the previous information, the DEA model for the mentioned stocks is in Lingo.18.0 

software designed and applied in a system with 8GB installed RAM and Intel core i5-8100 CPU Processor. The 

efficiency ratio of each stock was obtained as described in Table 3. 

According to Table 3, 8 stocks used in the DEA model (green cases) have a performance of more than 0.8, 

which is considered as the selected stock portfolio in the first phase of the research (Figure 3). 

Table 3. DEA efficiency Result 

# Stocks efficiency # Stocks efficiency # Stocks efficiency 

1 Alcoa 100% 11 The Home Depot 55% 21 Merck & Co. 90% 

2 American Express 23% 12 Hewlett-Packard 12% 22 Microsoft Corp. 40% 

3 Boeing 23% 13 IBM 18% 23 Pfizer Inc. 88% 

4 Bank of America 58% 14 Intel Corporation 100% 24 Procter & Gamble 53% 

5 Caterpillar 29% 15 Johnson & Johnson 63% 25 AT&T 100% 

6 Cisco Systems 20% 16 JP Morgan Chase 15% 26 The Travelers Co. 100% 

7 Chevron 81% 17 Kraft Foods 65% 27 United Technologies 35% 

8 El DuPont de Nemours 42% 18 The Coca-Cola Co. 43% 28 Verizon Comm. 100% 

9 Walt Disney 56% 19 McDonald’s Corp. 76% 29 Wal-Mart Stores 36% 

10 General Electric 76% 20 3M Co. 40% 30 Exxon Mobil Corp. 47% 

 
Figure 3. DEA efficiency chart 

 Second Phase: Portfolio optimization 

In this phase, we run a portfolio optimization with an FWGP approach with the above-mentioned criteria in 

addition to risk and return. According to mentioned equation, the model used for this research is the weighted 

ideal planning (WGP) model. 
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min
𝛼𝑅𝐸
𝑘𝑅𝐸

𝑛𝑅𝐸 +
𝛼𝐷𝐴
𝑘𝐷𝐴

𝑛𝐷𝐴 +
𝛼𝐸𝑆
𝑘𝐸𝑆

𝑛𝐸𝑆 +
𝛼𝑃𝐵
𝑘𝑃𝐵

𝑛𝑃𝐵 +
𝛼𝑂𝐶
𝑘𝑂𝐶

𝑛𝑂𝐶 +
𝛼𝐷𝑌
𝑘𝐷𝑌

𝑛𝐷𝑌 +
𝛼𝑅𝐼
𝑘𝑅𝐼

𝑝𝑅𝐼 +
𝛼𝐷𝐴
𝑘𝐷𝐴

𝑝𝐷𝐴 

𝑠. 𝑡. 

 ∑ 𝑅�̃�𝑗𝑥𝑗 + 𝑛𝑅𝐼 − 𝑝𝑅𝐼 = 𝑏𝑅𝐼
30
𝑗=1  

 ∑ 𝑅�̃�𝑗𝑥𝑗 + 𝑛𝑅𝐸 − 𝑝𝑅𝐸 = 𝑏𝑅𝐸
30
𝑗=1  

 ∑ 𝐷𝐴𝑗𝑥𝑗 + 𝑛𝐷𝐴 − 𝑝𝐷𝐴 = 𝑏𝐷𝐴
30
𝑗=1  

 ∑ 𝐸𝑆𝑗𝑥𝑗 + 𝑛𝐸𝑆 − 𝑝𝐸𝑆 = 𝑏𝐸𝑆
30
𝑗=1  

 ∑ 𝑃𝐵𝑗𝑥𝑗 + 𝑛𝑃𝐵 − 𝑝𝑃𝐵 = 𝑏𝑃𝐵
30
𝑗=1  

 ∑ 𝑂𝐶𝑗𝑥𝑗 + 𝑛𝑂𝐶 − 𝑝𝑂𝐶 = 𝑏𝑂𝐶
30
𝑗=1  

 ∑ 𝐷𝑌𝑗𝑥𝑗 + 𝑛𝐷𝑌 − 𝑝𝐷𝑌 = 𝑏𝐷𝑌
30
 𝑗=1  

 ∑ 𝑥𝑗 = 1,
30
𝑗=1    𝑥𝑗 ≥ 0      𝑗 = 1,… , 30 

The final outputs of the stock selection model, which are 8 stocks, are considered as the inputs of the FWGP 

model. The significant point in this phase is to consider the variable Risk and Return as a variable with fuzzy 

uncertainty in the GP model. The reason that we use triangular fuzzy numbers to demonstrate uncertainty in the 

model is the period used for extracting uncertainty data from the target market, which is 3 terms. The values of 

the mentioned criteria, as well as the weighted used in the model, are given In Table 4: 
 

Table 4. FWGP Input data 

Criteria RĨ RẼ DA PB ES OC DY Eff 

Penalty factor 0 6 1 3 5 4 2 - 

incentive factor 7 0 1 0 0 0 0 - 

Goal 0.000 0.300 0.615 3.379 2.840 1.123 2.609 100% 

Alcoa 0.013 0.025 0.037 0.002 0.003 0.005 0.563 1.270 -1.060 0.337 0.910 100% 

Chevron 0.010 0.015 0.020 0.038 0.043 0.049 0.433 1.680 5.240 0.647 3.510 81% 

Intel Co. 0.018 0.019 0.020 -0.14 -0.113 -0.08 0.210 2.690 0.770 1.630 3.120 100% 

Merck & Co. 0.008 0.013 0.018 0.055 0.071 0.093 0.449 1.920 5.650 0.149 4.150 90% 

Pfizer Inc. 0.008 0.015 0.022 0.024 0.036 0.051 0.573 1.630 1.230 0.643 4.130 88% 

AT&T 0.009 0.010 0.011 0.116 0.129 0.14 0.619 1.620 2.120 1.015 5.810 100% 

Travelers Co. 0.004 0.013 0.030 0.037 0.049 0.057 0.765 0.020 6.330 11.26 0.590 100% 

Verizon Com. 0.003 0.012 0.200 0.147 0.152 0.155 0.629 2.260 1.290 1.279 5.950 100% 

 

 The risk variable is applied as a triangular fuzzy number with the Jimmens defuzzification approach 

in the model. 

 Considering that the desired values related to risk and return criteria are at the lowest and highest 

possible, the incentive factor for the risk criterion and the penalty factor for the return criterion are 

set to zero. 

 The only debt-to-assets ratio (DA) variable has both penalty and incentive factors, which means that 

any amount more or less than the goal number causes disadvantage of the desired stock score. 

To solve the mentioned FWGP model the Jimenez approach and Lingo.18.0 software have been used and 

the results of solving the model under various α are as given in Table 5 and Figure 5. 

(9) 
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Table 5. FWGP Result 

# Stocks α = 0.2 α = 0.4 α = 0.6 α = 0.8 

1 Alcoa 0% 0% 0% 0% 

2 Chevron 0% 0% 0% 0% 

3 Intel Corporation 0% 33% 58% 61% 

4 Merck & Co. 33% 39% 41% 34% 

5 Pfizer Inc. 0% 0% 0% 0% 

6 AT&T 0% 0% 0% 0% 

7 The Travelers Companies 2% 0% 1% 5% 

8 Verizon Communications 65% 28% 0% 0% 

- Z 0.442 0.452 0.466 0.489 

 

 

Figure 5. FWGP Result pie chart 

 

In Table 5, the weight value of each stock is obtained in two different values of the confidence level. The 

value of the objective function, which is a combination of return and risk and fundamental criteria, is also shown 

in this table. It should be noted that the cardinality constraint as well as the maximum number of selected stocks 

(3 in this case) has been applied to the issue. 

In the following, various experiments carried out for the models stated above and their results are provided. 

The data, as mentioned, are from the 30 stocks of DJIA index. The experiments use a constructing period of 102 

days, from September 2010 to December 2010 (3060 observations). To assess the efficiency of the research 

model outcomes, Markowitz, Konno and Yamazaki, GP, DEA and DJIA profitability methods were used as 

given in Table 6. 

 

 

 

FWGP solving under α = 0.2 

1 2 3 4 5 6 7 8 

FWGP solving under α = 0.4 

1 2 3 4 5 6 7 8 

FWGP solving under α = 0.6 

1 2 3 4 5 6 7 8 

FWGP solving under α = 0.8 

1 2 3 4 5 6 7 8 
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Table 6. The overall results for experiments 

method No. of stocks selected Overall risk Overall return (%) 

DJIA 30 0.0061 0.121 

Markowitz 6 0.0043 0.063 

Konno and Yamazaki 24 0.0061 0.104 

GP 3 0.0079 0.077 

DEA 8 0.0057 0.041 

FWGP (α = 0.2) 3 - 0.1569 

FWGP (α = 0.4) 3 - 0.1225 

FWGP (α = 0.6) 3 - 0.0966 

FWGP (α = 0.8) 3 - 0.1010 

9. Conclusion and Future Research Directions 

In this study, a novel approach for the portfolio construction problem is proposed to deal with data 

uncertainty, increasing conservatism levels of the investment process, and assessing the comprehensive of 

stocks. Accordingly, this study presents using a two-level model, concluding portfolio selection and portfolio 

optimization in the form of two phases. It is worth mentioning, the past information is the basic data entered in 

this research, similar to other research, and the environmental changes and fluctuations of stocks price can be 

strong in a different timeline, so to encounter to mentioned problems, the issue is analysed in an uncertain space. 

to be specific, the amount of risk and return criteria is considered as a variable with fuzzy uncertainty. To deal 

with this uncertainty, we used the Jimmens’s defuzzification approach in the model.  

In portfolio selection, using financial criteria which are chosen from fundamental perspectives and contain 

Debt/asset (DA), Earnings per share (ES), Price/book value (PB), Operating cash flow ratio (OC) and Dividend 

yield (DY), the DEA CCR-IO model for all the stocks will be run and by applying the DEA Model, all stocks 

will be ranked.  

In Portfolio optimization, Risk and return as uncertainty criteria in addition to the mentioned criteria are 

selected and weighted. Then, the proposed FWGP model is applied for all the top-ranked stocks in portfolio 

selection. Finally, a testing period of 15 days, in October 2010 (450 observations), was used for testing the 

resultant portfolios. 

The results of the experimentations in this paper show promising signs for exploiting portfolio selection and 

optimization problems. This paper shows that for the data used and factors investigated some of the constructed 

portfolios, with a much smaller number of constituents, could potentially outperform DJIA in terms of their 

performance measured by risk and return. 

For future studies, uncertainty programming approaches such as robust mathematical programming and 

chance-constrained programming can be applied to deal with another type of data uncertainty. Moreover, an 

extended DEA approach for dealing with data uncertainty can be employed for proposing uncertain portfolio 

selection models [24-34]. 

Conflict of interest: The authors declare that they have no known competing financial interests or personal 
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