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A R T I C L E  I N F O  A B S T R A C T 

Conventional mathematical tools which require all inferences to be exact, are 

not always sufficient to handle imprecisions in a wide variety of practical 

fields. Thus, among various developments in fuzzy mathematics, enormous 

efforts have been in process to produce new fuzzy analogues of the classical 

fixed point results and their various applications. Following this line in this 

paper, a new type of set-valued mapping whose range set lies in a family of soft 

sets is examined. To this effect, we introduce a few fixed point theorems which 

are generalizations of several significant fixed point results of point-to-point 

and point-to-set valued mappings in the comparable literature. Some of these 

particular cases are noted and analyzed. Moreover, nontrivial examples are 

provided to support the assumptions of our main results. 
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1. Introduction 

One of the first well-known fixed point theorems in metric space structure appeared explicitly in Banach’s 

thesis in 1922 [4], where it was applied to obtain the existence of a solution to an integral equation. The theorem 

is now popularly known as Banach fixed point theorem (or the contraction mapping principle). As a matter of 

fact, Banach contraction principle [4] is a reformulation of the successive approximation techniques originally 

used by some earlier mathematicians, namely Cauchy, Liouville, Picard, Lipschitz, and so on. The original idea 

of fixed point theorem due to Banach has been developed and applied in different directions. In some 

generalizations of the contraction mapping principle, the contractive inequality is weakened; see, for example, 

[7, 14, 17, 29], and in other, the topology of the ground space is weakened; for example, see [8, 12, 15, 16]. For 

a comprehensive survey in this direction, the interested reader may consult Rhoades [24], Smart [27] or 

Taskovic [28]. 
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The real world is filled with uncertainty, vagueness and imprecision. The notions we meet in everyday life 

are vague rather than precise. In recent time, researchers have developed keen interests in modelling vagueness 

due to the fact that many practical problems within fields such as biology, economics, engineering, 

environmental sciences, medical sciences, philosophy and so on, involve data containing various forms of 

uncertainties. To handle the complexity of vagueness, one cannot successfully employ classical mathematical 

methods due to the presence of different kinds of incomplete knowledge, typical of these mix-ups. Earlier in the 

literature, there were four known theories for dealing with imperfect knowledge, namely, Probability Theory 

(PT), Fuzzy Set Theory (FST) [30] and Rough Set Theory (RST) [23]. All the aforementioned tools require pre-

assignment of some parameters; for example membership function in FST, probability density function in PT 

and equivalent relation in RST. Such pre-specifications, viewed in the backdrop of incomplete knowledge, give 

rise to everyday problems. With this concern, Molodstov [21] initiated the concept of Soft Set Theory (SST) 

with the aim of handling phenomena and notions of ambiguous, undefined and imprecise environments. Hence, 

SST does not need the pre-specifications of a parameter; rather, it accommodates approximate descriptions of 

objects. In other words, one can use any suitable parametrization tool with the help of words, sentences, real 

numbers, mappings, and so on; thereby, making SST an adequate formalism for approximate reasoning. 

Consequently, the arena of applications of mathematics gained tremendous developments as a result of the 

introduction of soft set by Molodstov [21]. Recall that in classical mathematics, to describe any system or 

object, we first construct its mathematical model and then attempt to obtain the exact solution. If the exact 

solution is too complicated, then we define the notion of approximate solution. On the other hand, in soft set 

theory, the initial description of an object takes an approximate nature with no restriction, and the notion of 

exact solution is not essential. In [21], Moldstov pointed out several directions for possible applications of soft 

set, such as in smoothness of functions, game theory, Riemann-integration, operation research, probability and 

so on. Presently, the concept of soft set is receiving more than a handful of extensions in different perspectives. 

For example, see [6, 9, 20, 22, 25] and the references therein. It is well-known that set-valued analysis has 

enormous applications in control theory, game theory, biomathematics, qualitative physics, viability theory, and 

so on. In this continuation, not long ago, Mohammed and Azam [3, 18, 26] studied the concept of soft set-

valued maps and introduced the notions of 𝑒-soft fixed points and 𝐸-soft fixed points of maps whose range set is 

a family of soft sets. Applications in game theoretic approach and investigation of existence of solutions of 

some integro-differential equations have been proposed in [18, 26]. Moreover, it is shown in [18] that every 

fuzzy mapping is a particular kind of soft set-valued map. Since every fuzzy mapping has its corresponding 

multifunction analogue (see [10, Theorem 2]), hence, the idea of 𝑒-soft fixed point theorems is a generalization 

of the concept of fuzzy fixed points and fixed points of multi-valued maps.  

 The main focus of this article is twofold. First, the existence of common fixed points of soft set-valued 

maps is investigated under new generalized contractive inequalities. The second direction deals with applying 

some of the key results obtained herein to deduce their analogues in the setting of fuzzy set-valued and crisp 

multi-valued mappings. Consequently, it is pointed out that our results unify, generalize and complement the 

results established in [1, 2, 5, 11, 18, 26] and some references therein. 

 The paper is organized as follows: Section 2 gathers basic notions, definitions and results needed to 

establish the main results. In Section 3, the main results of the manuscript are presented. Section 4 applies the 

results of Section 3 to derive their fuzzy and classical set-valued versions. Finally, Section 5 contains the 

summary of the paper. 

2. Preliminaries 

In this section, we collect some important notations, useful definitions and basic results coherent with the 

literature. Throughout this paper, we denote by ℕ, ℝ+ , ℝ and 𝕏∗, the sets of all positive integers, non-negative 

reals, real numbers, nonempty closed and bounded subsets of Ψ, respectively. These preliminary concepts are 

recorded from [18, 26, 20, 21]. Let 𝐸 be the parameter set, ∇⊆ 𝐸 and 𝑃(Ψ) represents the power set of an initial 
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universe of discourse Ψ. Molodstov [21] introduced the notion of soft sets with the following definition. 

 

Definition 1. [21] A pair (𝐹, ∇) is called a soft set over 𝛹 under 𝐸, where ∇⊆ 𝐸 and 𝐹 is a mapping given by 

𝐹: ∇⟶ 𝑃(𝛹).  

 In other words, a soft set over Ψ is a parameterized family of subsets of Ψ. For each 𝑒 ∈ 𝐸 , 𝐹(𝑒) is 

considered as the set of 𝑒-approximate elements of (𝐹, ∇). 

 

Example 1. [20] Suppose the following: 

Ψ- is the universal set of all students at a certain university, 

𝐸- is the set of parameters, given as:  

 𝐸 = {intelligent, hardworking, dull, hardworking and intelligent}. 

Assume that they are one hundred students at the university Ψ given as  

 Ψ = {𝚥1, 𝚥2, 𝚥3, 𝚥4, 𝚥5⋯𝚥100},    and    𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}, 

where   

    • 𝑒1= intelligent, 𝑒2 = hardworking,  

    • 𝑒3= dull, 𝑒4= hardworking and intelligent.  

 Then 𝐹: 𝐸 ⟶ 𝑃(Ψ)  defined by 𝐹(𝑒1) = {𝚥1, 𝚥2,⋯ 𝚥10}  means that 𝚥1, 𝚥2,⋯ 𝚥10  are intelligent , 𝐹(𝑒2) =

{𝚥11, 𝚥12,⋯ 𝚥30} means that 𝚥11, 𝚥12,⋯ 𝚥30 are hardworking, 𝐹(𝑒3) = ∅ means that there is no dull student in the 

university in question, 𝐹(𝑒4) = {𝚥15, 𝚥81}  means that the students 𝚥15  and 𝚥81  are both intelligent and 

hardworking. Then we can view the soft set (𝐹, 𝐸)  describing the “kind of students” as the following 

approximations:  

 

(𝐹, 𝐸) = {(intelligent students, {𝚥1, 𝚥2,⋯ 𝚥10}), (hardworking students,

{𝚥11, 𝚥12,⋯ 𝚥30}).

(dull, ∅), (intelligent and hardworking students, {𝚥15, 𝚥81})}.

 

  

 Mohammed and Azam [18] initiated the concepts of soft-valued maps and 𝑒-soft fixed points through the 

following preliminaries.  

 

 Let (Ψ, 𝜚) be a metric space and 𝕏∗ be the set of all nonempty closed and bounded subsets of Ψ. Denote by 

[𝑃(Ψ)]𝐸, the family of soft sets over Ψ. Then consider two soft sets (𝐹, ∇) and (𝐺,△), (𝑎, 𝑏) ∈ ∇ ×△. Assume 

that 𝐹(𝑎), 𝐺(𝑏) ∈ 𝕏∗. For 𝜖 > 0, define 𝑁𝜚(𝜖, 𝐹(𝑎)), 𝑆𝐸𝑋
(𝑎,𝑏)

(𝐹, 𝐺) and 𝐸(𝐹𝑎,𝐺𝑏)
𝜚

, respectively, as follows:  

 𝑁𝜚(𝜖, 𝐹(𝑎)) = {𝚥 ∈ Ψ: 𝜚(𝚥, ℓ) < 𝜖,    for    some    ℓ ∈ 𝐹(𝑎)} 

 

 𝐸(𝐹𝑎,𝐺𝑏)
𝜚

= {𝜖 > 0: 𝐹(𝑎) ⊆ 𝑁𝜚(𝜖, 𝐺(𝑏)),    𝐺(𝑏) ⊆ 𝑁𝜚(𝜖, 𝐹(𝑎))}, 

and  

 𝑆𝐸𝑋
(𝑎,𝑏)

(𝐹, 𝐺) = inf𝐸(𝐹𝑎,𝐺𝑏)
𝜚

, 

Define a distance function 𝑆𝐸𝑋
∞ : [𝑃(Ψ)]𝐸 × [𝑃(Ψ)]𝐸 ⟶ℝ+ by  

 𝑆𝐸𝑋
∞ (𝐹, 𝐺) = sup

(𝑎,𝑏)∈∇×△

𝑆𝐸𝑋
(𝑎,𝑏)

(𝐹, 𝐺),where 

 

 ∇ ×△= {(𝑎, 𝑏) ∈ ∇ ×△:𝐹(𝑎), 𝐺(𝑏) ∈ 𝕏∗}. 

 

Remark 1. Note that in terms of the Hausdorff metric ℵ, the distance function 𝑆𝐸𝑋
(𝑎,𝑏)

(𝐹, 𝐺) reduces to:  

 𝑆𝐸𝑋
(𝑎,𝑏)

(𝐹, 𝐺) = ℵ(𝐹(𝑎), 𝐺(𝑏)) = max { sup
𝚥∈𝐹(𝑎)

𝜚(𝚥, 𝐺(𝑏)), sup
ℓ∈𝐺(𝑏)

𝜚(ℓ, 𝐹(𝑎))}. 

  

Similarly, 𝑆𝐸𝑋
∞ (𝐹, 𝐺) corresponds to the notion of 𝜚∞-metric for fuzzy sets.  

  

Definition 2. [18] A mapping 𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸 is called a soft set-valued map. A point 𝑢 ∈ 𝛹 is called an e-

soft fixed point of 𝑇 if 𝑢 ∈ (𝑇𝑢)(𝑒), for some 𝑒 ∈ 𝐸. This is also written as 𝑢 ∈ 𝑇𝑢, for short. If DomTȷ = E 
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and 𝑢 ∈ (𝑇𝑢)(𝑒) for all 𝑒 ∈ 𝐸, then u is said to be an 𝐸-soft fixed point of 𝑇.  

 We shall denote the set of all 𝐸-soft fixed points of a soft set-valued map 𝑇 by 𝐸𝐹𝑖𝑥(𝑇). Here, the domain of 

𝑇, denoted as 𝐷𝑜𝑚𝑇, is given by  

 𝐷𝑜𝑚𝑇 = {𝚥 ∈ Ψ: (𝑇𝚥)(𝑒) ⊆ Ψ, 𝑒 ∈ 𝐸}. 

 

Analogously, we define the image of 𝑇, 𝑖𝑚𝑇 as 𝑖𝑚𝑇 = {ℓ|∃𝚥 ∈ Ψ: ℓ ∈ (𝑇𝚥)(𝑒), 𝑒 ∈ 𝐸}.  

 Notice that if 𝑇:Ψ ⟶ [𝑃(Ψ)]𝐸 is a soft set-valued map, then (𝑇𝚥, 𝐸) is a soft set over Ψ, for all 𝚥 ∈ Ψ. 

Throughout this paper, if 𝑇:Ψ ⟶ [𝑃(Ψ)]𝐸 is a soft set-valued map, then the set (𝑇𝚥)(𝑒) shall also be written as 

(𝑇𝑒𝚥). For simplicity, a soft set (𝐹, 𝐸) in [𝑃(Ψ)]𝐸 shall be indicated as 𝐹 ∈ [𝑃(Ψ)]𝐸(to mean 𝐹: 𝐸 ⟶ 𝑃(Ψ)).  

 

Example 2.  Let 𝛹 = {6,7,8} and 𝐸 = {1,2}. Define 𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸  as follows:  

(𝑇𝑒𝚥) = {
{6,8},  𝑖𝑓   𝑒 = 1
{7,8},  𝑖𝑓  𝑒 = 2.

 

Then 𝑇 is a soft set-valued map.  

 

Notice that 6 ∈ (𝑇𝑒6) for 𝑒 = 1 and 7 ∈ (𝑇𝑒7) for 𝑒 = 2; hence, 6 and 7 are 𝑒-soft fixed points of 𝑇. But, 

7 ∉ (𝑇𝑒7) and 6 ∉ (𝑇𝑒6) for 𝑒 = 1 and 𝑒 = 2, respectively. If follows that 6 and 7 are not 𝐸-soft fixed points of 

𝑇. On the other hand, 8 ∈ (𝑇𝑒8) for all 𝑒 ∈ 𝐸; thus, the set of all 𝐸-soft fixed points of 𝑇 is given by 𝐸𝐹𝑖𝑥(𝑇) =

{8}. The map 𝑇 can be represented as in Figure 1. Notice that in Figure 1, the dots represent other subsets of Ψ. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical representation of the soft set-valued map in Example 2. 

 

3. Main Results  

 We start this section by presenting some auxiliary results as follows.  

 

Lemma 1.  Let (𝛹, 𝜚) be a metric space and 𝐹 ∈ [𝑃(𝛹)]𝐸 . Then, for any 𝚥, ℓ ∈ 𝛹 and 𝑎(𝚥), 𝑎(ℓ) ∈ 𝐸,  

 𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝐹) ≤ 𝜚(𝚥, ℓ) + 𝑝𝐸𝑋
𝑎(ℓ)

(ℓ, 𝐹). 

 

Proof. By definition of 𝑝𝐸𝑋
𝑎(𝚥)

(, ), we have  

 𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝐹) = inf
𝑟∈𝐹(𝑎)

𝜚(𝚥, 𝑟) 

 ≤ inf
𝑟∈𝐹(𝑎)

[𝜚(𝚥, ℓ) + 𝜚(ℓ, 𝑟)] 

 ≤ inf
𝑟∈𝐹(𝑎)

𝜚(𝚥, ℓ) + inf
𝑟∈𝐹(𝑎)

𝜚(ℓ, 𝑟) 

 = 𝜚(𝚥, ℓ) + 𝑝𝐸𝑋
𝑎(ℓ)

(ℓ, 𝐹). 
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Lemma 2.  Let (𝛹, 𝜚) be a metric space, 𝚥, ℓ ∈ 𝛹  and 𝐹 ∈ [𝑃(𝛹)]𝐸 . If {𝚥}  is a subset of 𝐹(𝑎(𝚥))  for any 

𝑎(𝚥) ∈ 𝐸, then for each 𝐺 ∈ [𝑃(𝛹)]𝐸, there exists 𝑎(ℓ) ∈ 𝐸 such that  

 𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝐺) ≤ inf𝐸(𝐹𝑎(𝚥),𝐺𝑎(ℓ))
𝜚

. 

Proof. By definition of 𝑝𝐸𝑋
𝑎(𝚥)

, we have  

 𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝐺) = inf
ℓ∈𝐺(𝑏)

𝜚(𝚥, ℓ) 

 ≤ sup
𝚥∈𝐹(𝑎),ℓ∈𝐺(𝑏)

inf𝜚(𝚥, ℓ) 

 ≤ inf𝐸(𝐹𝑎(𝚥),𝐺𝑎(ℓ))
𝜚

. 

Lemma 3.  Let (𝛹, 𝜚) be a metric space and 𝐹 ∈ [𝑃(𝛹)]𝐸 . Then 𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝐹) = 0 if and only if {𝚥} ⊆ 𝐹(𝑎(𝚥)), 

for any 𝑎(𝚥) ∈ 𝐸.  

Lemma 4.  Let (𝛹, 𝜚) be a metric space and 𝐹 ∈ [𝑃(𝛹)]𝐸 . For any 𝚥 ∈ 𝛹 and 𝑎(𝚥) ∈ 𝐸, if there exists ℓ ∈ 𝛹 

such that ℓ ∈ 𝐹(𝑎(𝚥)), then 𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝐹) ≤ 𝜚(𝚥, ℓ). 

Proof. By Lemma 2, for any 𝚥, ℓ ∈ Ψ and 𝑎(𝚥), 𝑎(ℓ) ∈ 𝐸, we have 𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝐹) ≤ 𝜚(𝚥, ℓ) + 𝑝𝐸𝑋
𝑎(ℓ)

(ℓ, 𝐹). 

If ℓ ∈ 𝐹(𝑎), then by Lemma 3, 𝑝𝐸𝑋
𝑎(ℓ)

(ℓ, 𝐹) = 0. Hence,  𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝐹) ≤ 𝜚(𝚥, ℓ). 

Lemma 5.  Let (𝛹, 𝜚) be a metric space and 𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸  be a soft set-valued map. Assume that for some 

𝚥0 ∈ 𝛹  and 𝑎(𝚥0) = 𝑒 ∈ 𝐸 , (𝑇𝑒𝚥0) is a nonempty compact subset of 𝛹 . Then, there exists 𝚥1 ∈ 𝛹  such that 

𝚥1 ∈ (𝑇𝑒𝚥0).  

 The following Lemma is a direct consequence of the definition of the distance function 𝑆𝐸𝑋
(𝑎,𝑏)

(, ).  

 

Lemma 6.  Let (𝛹, 𝜚) be a metric space and 𝐹, 𝐺 ∈ [𝑃(𝛹)]𝐸. Assume that 𝐹(𝑎) and 𝐺(𝑏) are nonempty closed 

and bounded subsets of 𝛹, for some 𝑎, 𝑏 ∈ 𝐸. Then, for each 𝚥 ∈ 𝐹(𝑎), and all ℓ ∈ 𝐺(𝑏),  

𝜚(𝚥, 𝐺) ≤ 𝑆𝐸𝑋
(𝑎,𝑏)

(𝐹, 𝐺) and 𝜚(𝚥, 𝐺) ≤ 𝜚(𝚥, ℓ). 
 

 In what follows, we present the first main result of this section.  

 

Theorem 1.  Let (𝛹, 𝜚) be a complete metric space and 𝑀,𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸 be soft set-valued maps. Assume 

that for each 𝚥, ℓ ∈ 𝛹, there exist 𝑎(𝚥), 𝑎(ℓ) ∈ 𝐸  with 𝑎(𝚥) ∈ 𝐷𝑜𝑚𝑀𝚥 and 𝑎(ℓ) ∈ 𝐷𝑜𝑚𝑇ℓ such that 𝑀𝚥, 𝑇ℓ ∈

𝕏∗. If  

 inf𝐸(𝑀𝑎(𝚥),𝑇𝑎(ℓ))
𝜚

≤ 𝑙1𝑝𝐸𝑋
𝑎(𝚥)

(𝚥,𝑀𝚥) + 𝑙2𝑝𝐸𝑋
𝑎(ℓ)

(ℓ, 𝑇ℓ)      (1) 

                            +𝑙3𝑝𝐸𝑋
𝑎(ℓ)

(ℓ,𝑀𝚥) + 𝑙4𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝑇ℓ) + 𝑙5𝜚(𝚥, ℓ) 

 where ∑  5
𝑖=𝑖 𝑙𝑖 < 1  and 𝑙3 = 𝑙4 . Then, there exists 𝑢 ∈ Ψ  such that 𝑢 ∈ 𝑀𝑢:= (𝑀𝑢)(𝑎(𝑢))  and 𝑢 ∈ 𝑇𝑢:=

(𝑇𝑢)(𝑎(𝑢)), for some 𝑎(𝑢) ∈ 𝐸.  

Proof. Let 𝚥0 ∈ Ψ ; then, by hypothesis, there exists 𝑎(𝚥0) ∈ 𝐸  with 𝑎(𝚥0) ∈ 𝐷𝑜𝑚𝑀𝚥0  such that 𝑀𝚥0  is a 

nonempty closed and bounded subset of Ψ. Choose 𝚥1 ∈ 𝑀𝚥0; then for this 𝚥1 ∈ Ψ, we can find 𝑎(𝚥1) ∈ 𝐸 with 

𝑎(𝚥1) ∈ 𝐷𝑜𝑚𝑇𝚥1  such that 𝑇𝚥1 ∈ 𝕏
∗ . Then, there exists 𝚥2 ∈ Ψ  such that 𝚥2 ∈ 𝑇𝚥1  and 

𝜚(𝚥1, 𝚥2) ≤ inf𝐸(𝑀𝑎(𝚥0),𝑇𝑎(𝚥1))
𝜚

. On same steps, there exist 𝚥3 ∈ Ψ and 𝑎(𝚥2) ∈ 𝐷𝑜𝑚𝑀𝚥2  such that 𝚥3 ∈ 𝑀𝚥2  and 

𝜚(𝚥2, 𝚥3) ≤ inf𝐸(𝑇𝑎(𝚥1),𝑀𝑎(𝚥2))
𝜚

. Proceeding recursively, one generates a sequence {𝚥𝑛}𝑛∈ℕ in Ψ such that  

 𝚥2𝑛+1 ∈ 𝑀𝚥2𝑛, 𝚥2𝑛+2 ∈ 𝑇𝚥2𝑛+1, 

and  

 𝜚(𝚥2𝑛+1, 𝚥2𝑛+2) ≤ inf 𝐸(𝑀𝑎(𝚥2𝑛),𝑇𝑎(𝚥2𝑛+1))
𝜚

,                                                                (2) 
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 𝜚(𝚥2𝑛+2, 𝚥2𝑛+3) ≤ inf 𝐸(𝑀𝑎(𝚥2𝑛+1)
,𝑇𝑎(𝚥2𝑛+2))

𝜚
.       (3) 

 Taking 𝑛 = 0 in (2), and using (10) together with Lemma 6, in that order, we have  

    

𝜚(𝚥1, 𝚥2) ≤ inf𝐸(𝑀𝑎(𝚥0),𝑇𝑎(𝚥1))
𝜚

               ≤ 𝑙1𝑝𝐸𝑋
𝑎(𝚥0)(𝚥0,𝑀𝑥0) + 𝑙2𝑝𝐸𝑋

𝑎(𝚥1)(𝚥1, 𝑇𝚥1) + 𝑙2𝑝𝐸𝑋
𝑎(𝚥1)(𝚥1,𝑀𝚥0)

+𝑙4𝑝𝐸𝑋
𝑎(𝚥0)(𝚥0, 𝑇𝚥1) + 𝑙5𝜚(𝚥0, 𝚥1)

               ≤ 𝑙1𝜚(𝚥0, 𝚥1) + 𝑙2𝜚(𝚥1, 𝚥2) + 𝑙3𝜚(𝚥1, 𝚥1)

+𝑙4𝜚(𝚥0, 𝚥2) + 𝑙5𝜚(𝚥0, 𝚥1)
               ≤ 𝑙1𝜚(𝚥0, 𝚥1) + 𝑙2𝜚(𝚥1, 𝚥2)

+𝑙4[𝜚(𝚥0, 𝚥1) + 𝜚(𝚥1, 𝚥2)] + 𝑙4𝜚(𝚥0, 𝚥1)

                ≤ (
𝑙1+𝑙4+𝑙5

1−𝑙2−𝑙4
)𝜚(𝚥0, 𝚥1) = 𝜅𝜚(𝚥0, 𝚥1)

                                           (4) 

 where 𝜅 = (
𝑙1+𝑙4+𝑙5

1−𝑙2−𝑙4
) . Notice that ∑  5

𝑖=1 𝑙𝑖 < 1  implies 𝑙1 + 𝑙4 + 𝑙5 < 1 − 𝑙2 − 𝑙3 . So, for 𝑙3 = 𝑙4 , we have 

0 < 𝜅 < 1.  

Again, take 𝑛 = 0 in (3), and using Lemma 6, accordingly, we get  

 

𝜚(𝚥2, 𝚥3) ≤ inf𝐸(𝑀𝑎(𝚥1)
,𝑇𝑎(𝚥2))

𝜚

               ≤ 𝑙1𝑝𝐸𝑋
𝑎(𝚥1)(𝚥1,𝑀𝚥1) + 𝑙2𝑝𝐸𝑋

𝑎(𝚥2)(𝚥2, 𝑇𝚥2) + 𝑙2𝑝𝐸𝑋
𝑎(𝚥2)(𝚥2,𝑀𝚥1)

+𝑙4𝑝𝐸𝑋
𝑎(𝚥1)(𝚥1, 𝑇𝚥2) + 𝑙5𝜚(𝚥1, 𝚥2)

              ≤ 𝑙1𝜚(𝚥1, 𝚥2) + 𝑙2𝜚(𝚥2, 𝚥3) + 𝑙3𝜚(𝚥2, 𝚥2)

+𝑙4𝜚(𝚥1, 𝚥3) + 𝑙5𝜚(𝚥1, 𝚥2)
              ≤ 𝑙1𝜚(𝚥1, 𝚥2) + 𝑙2𝜚(𝚥1, 𝚥3)

+𝑙4[𝜚(𝚥1, 𝚥2) + 𝜚(𝚥2, 𝚥3)] + 𝑙4𝜚(𝚥1, 𝚥2)

              ≤ (
𝑙1+𝑙4+𝑙5

1−𝑙2−𝑙4
)𝜚(𝚥1, 𝚥2)

              ≤ (
𝑙1+𝑙4+𝑙5

1−𝑙2−𝑙4
)
2
𝜚(𝚥0, 𝚥1) = 𝜅

2𝜚(𝚥0, 𝚥1).

    (5) 

 Letting 𝑛 = 1 in (4), and using Lemma 6, we have  

              

𝜚(𝚥3, 𝚥4) ≤ inf 𝐸(𝑀𝑎(𝚥2),𝑇𝑎(𝚥3))
𝜚

                ≤ 𝑙1𝑝𝐸𝑋
𝑎(𝚥2)(𝚥2,𝑀𝚥2) + 𝑙2𝑝𝐸𝑋

𝑎(𝚥3)(𝚥3, 𝑇𝚥3) + 𝑙2𝑝𝐸𝑋
𝑎(𝚥3)(𝚥3,𝑀𝚥2)

+𝑙4𝑝𝐸𝑋
𝑎(𝚥2)(𝚥2, 𝑇𝚥3) + 𝑙5𝜚(𝚥2, 𝚥3)

               ≤ 𝑙1𝜚(𝚥2, 𝚥3) + 𝑙2𝜚(𝚥3, 𝚥4) + 𝑙3𝜚(𝚥3, 𝚥3)

+𝑙4𝜚(𝚥1, 𝚥3) + 𝑙5𝜚(𝚥1, 𝚥2)
              ≤ 𝑙1𝜚(𝚥2, 𝚥3) + 𝑙2𝜚(𝚥2, 𝚥4)

+𝑙4[𝜚(𝚥2, 𝚥3) + 𝜚(𝚥3, 𝚥4)] + 𝑙4𝜚(𝚥2, 𝚥3)

              ≤ (
𝑙1+𝑙4+𝑙5

1−𝑙2−𝑙4
)𝜚(𝚥2, 𝚥3)

              ≤ (
𝑙1+𝑙4+𝑙5

1−𝑙2−𝑙4
)
3
𝜚(𝚥0, 𝚥1) = 𝜅

3𝜚(𝚥0, 𝚥1).

     (6) 

 

 By continuing in this fashion for all 𝑛 ∈ ℕ, we have  

 𝜚(𝚥𝑛, 𝑛𝑛+1) ≤ 𝜅
𝑛𝜚(𝚥0, 𝚥1).         (7) 

 On similar arguments as above, one can see that 0 < 𝜅𝑛 < 1. Furthermore, for 𝑚, 𝑛 ∈ ℕ, with 𝑚 > 𝑛, by 

triangle inequality,  

 𝜚(𝚥𝑛, 𝚥𝑚) ≤ 𝜚(𝚥𝑛, 𝚥𝑛+1) + 𝜚(𝚥𝑛+1, 𝚥𝑛+2) +⋯+ 𝜚(𝚥𝑚−1, 𝚥𝑚) 

 ≤ (𝜅𝑛 + 𝜅𝑛+1 +⋯+ 𝜅𝑚−1)𝜚(𝚥0, 𝚥1) 
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 ≤
𝜅𝑛

1−𝜅
𝜚(𝚥0, 𝚥1) ⟶ 0 as 𝑛 ⟶ ∞. 

 This proves that {𝚥𝑛}𝑛∈ℕ is a Cauchy sequence in  Ψ. By completeness of  Ψ, there exists 𝑢 ∈ Ψ such that 

𝚥𝑛 ⟶ 𝑢 as 𝑛 ⟶ ∞.  

Now, applying lemmas 4, 5 and 6, in that order, we obtain  

 𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢) ≤ 𝜚(𝑢, 𝚥2𝑛+1) + 𝑝𝐸𝑋
𝑎(𝚥2𝑛+1)(𝚥2𝑛+1,𝑀𝑢) 

 ≤ 𝜚(𝑢, 𝚥2𝑛+1) + inf𝐸(𝑀𝑎(𝑢),𝑇𝑎(𝚥2𝑛))
𝜚

 

 ≤ 𝜚(𝑢, 𝚥2𝑛+1) + 𝑙1𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢) + 𝑙2𝑝𝐸𝑋
𝑎(𝚥2𝑛)(𝚥2𝑛, 𝑇𝑥2𝑛) 

 +𝑙3𝑝𝐸𝑋
𝑎(𝚥2𝑛)(𝚥2𝑛,𝑀𝑢) + 𝑙4𝑝𝐸𝑋

𝑎(𝑢)
(𝑢, 𝑇𝚥2𝑛) + 𝑙5𝜚(𝑢, 𝚥2𝑛) 

 ≤ 𝜚(𝑢, 𝚥2𝑛) + 𝑙1𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢) + 𝑙2𝜚(𝚥2𝑛, 𝚥2𝑛+1) 

 +𝑙3𝑝𝐸𝑋
𝑎(𝚥2𝑛)(𝚥2𝑛,𝑀𝑢) + 𝑙4𝜚(𝑢, 𝚥2𝑛+1) + 𝑙5𝜚(𝑢, 𝚥2𝑛).      (8) 

 Notice that by Lemma 6, for 𝑢 ∈ Ψ, we get  

 𝑝𝐸𝑋
𝑎(𝚥2𝑛)(𝚥2𝑛,𝑀𝑢) ≤ 𝜚(𝚥2𝑛, 𝑢) + 𝑝𝐸𝑋

𝑎(𝑢)
(𝑢,𝑀𝑢). 

Therefore, becomes  

 

𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢) ≤ 𝜚(𝑢, 𝚥2𝑛) + 𝑙1𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢) + 𝑙2𝜚(𝚥2𝑛 , 𝚥2𝑛+1)

+𝑙3[𝜚(𝚥2𝑛, 𝑢) + 𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢)]

+𝑙4𝜚(𝑢, 𝚥2𝑛) + 𝑙5𝜚(𝑢, 𝚥2𝑛).

     (9) 

 Letting 𝑛 ⟶ ∞ in (9), gives  

 𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢) ≤ (𝑙1 + 𝑙3)𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢). 

The above expression implies that (1 − 𝑙1 − 𝑙3)𝑝𝐸𝑋
𝑎 (𝑢,𝑀𝑢) ≤ 0. Hence, by Lemma 6, 𝑢 ∈ 𝑀𝑢. On similar 

steps, one can show that 𝑝𝐸𝑋
𝑎(𝑢)

(𝑢, 𝑇𝑢) = 0. Consequently, 𝑢 ∈ 𝑇𝑢.  

 

Example 3.  Let 𝛹 = {0,1,2,3,4,5} and for all 𝚥, ℓ ∈ 𝛹, defined 𝜚:𝛹 × 𝛹 ⟶ ℝ+ by  

 𝜚(𝚥, ℓ) =

{
 
 
 
 
 

 
 
 
 
 
0,  𝑖𝑓   𝚥 = ℓ
1

16
,  𝑖𝑓   𝚥 ≠ ℓ and 𝚥, ℓ ∈ {1,2}

1

8
,  𝑖𝑓   𝚥 ≠ ℓ and 𝚥, ℓ ∈ {4,5}

1

14
,  𝑖𝑓   𝚥 ≠ ℓ and 𝚥, ℓ ∈ {1,5}

1

24
,  𝑖𝑓   𝚥 ≠ ℓ and 𝚥, ℓ ∈ {1,3}

1

18
,  𝑖𝑓   𝚥 ≠ ℓ and 𝚥, ℓ ∈ {1,4}

1

4
,  𝑖𝑓  𝚥 ≠ ℓ and 𝚥, ℓ ∈ {2,3,5}.

 

Then (Ψ, 𝜚) is a complete metric space. Let 𝐸 = [0,1] and 𝑎(𝚥) = 𝑒 ∈ 𝐸 for 𝚥 ∈ Ψ. Then, consider two soft set-

valued maps 𝑀,𝑇:Ψ ⟶ [𝑃(Ψ)]𝐸 defined by  

 (𝑀𝑒𝚥):= 𝑀𝚥 =

{
 
 

 
 {0},  𝑖𝑓   𝚥 = 0 and 0 ≤ 𝑒 <

1

10

{1},  𝑖𝑓   𝚥 ∈ {1,2,3,4} and 
1

10
≤ 𝑒 <

1

5

{1,2,3,4},  𝑖𝑓  𝚥 = 5 and 
1

5
≤ 𝑒 ≤ 1,

 

and  

 (𝑇𝑒𝚥):= 𝑇𝚥 =

{
 
 

 
 {0},  𝑖𝑓   𝚥 = 0 and 0 ≤ 𝑒 <

1

10

{1},  𝑖𝑓   𝚥 ∈ {1,2,3,4} and 
1

10
≤ 𝑒 <

1

5

{2,3,4},  𝑖𝑓  𝚥 = 5 and 
1

5
≤ 𝑒 ≤ 1.
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Then, consider the following cases:   

    • For 𝚥 = 1 and ℓ = 5, we have inf𝐸
(𝑀𝑎(1),𝑇𝑎(5))

𝜚
=

1

16
, 𝑃𝐸𝑋

𝑎(1)
(1,𝑀1) = 0, 𝑃𝐸𝑋

𝑎(5)
(5, 𝑇5) =

1

8
, 𝑃𝐸𝑋

𝑎(5)
(5,𝑀1) =

1

14
, 𝑃𝐸𝑋

𝑎(1)
(1, 𝑇5) =

1

16
 and 𝜚(1,5) =

1

14
. Therefore, by taking 𝑙1 = 𝑙3 = 𝑙4 = 𝑙5 = 0 and 𝑙2 =

1

2
, we have  

 inf𝐸
(𝑀𝑎(1),𝑇𝑎(5))

𝜚
=

1

16
≤

1

2
𝑝𝐸𝑋
𝑎(5)

(5, 𝑇5) 

 ≤ 𝑙1𝑃𝐸𝑋
𝑎(1)

(1,𝑀1) + 𝑙2𝑃𝐸𝑋
𝑎(5)

(5, 𝑇5) + 𝑙3𝑃𝐸𝑋
𝑎(5)

(5,𝑀1) 

 +𝑙4𝑃𝐸𝑋
𝑎(1)

(1, 𝑇5) + 𝑙5𝜚(1,5). 

  

    • For 𝚥 = 5 and ℓ = 1, we have inf𝐸
(𝑀𝑎(5),𝑇𝑎(1))

𝜚
=

1

16
, 𝑃𝐸𝑋

𝑎(5)
(5,𝑀5) =

1

8
, 𝑃𝐸𝑋

𝑎(1)
(1, 𝑇1) = 0, 𝑃𝐸𝑋

𝑎(1)
(1,𝑀5) =

0, 𝑃𝐸𝑋
𝑎(5)

(5, 𝑇1) =
1

14
 and 𝜚(5,1) =

1

14
. Therefore, by putting 𝑙2 = 𝑙3 = 𝑙4 = 𝑙5 = 0 and 𝑙1 =

1

2
, we have  

 inf𝐸
(𝑀𝑎(5),𝑇𝑎(1))

𝜚
=

1

16
≤

1

2
𝑝𝐸𝑋
𝑎(5)

(5,𝑀5) 

 ≤ 𝑙1𝑃𝐸𝑋
𝑎(5)

(5,𝑀5) + 𝑙2𝑃𝐸𝑋
𝑎(1)

(1, 𝑇1) + 𝑙3𝑃𝐸𝑋
𝑎(1)

(1,𝑀5) 

 +𝑙4𝑃𝐸𝑋
𝑎(5)

(5, 𝑇1) + 𝑙5𝜚(5,1). 

  

    • For 𝚥 = 2 and ℓ = 5, we have inf𝐸
(𝑀𝑎(2),𝑇𝑎(5))

𝜚
=

1

16
, 𝑃𝐸𝑋

𝑎(2)
(2,𝑀2) =

1

16
, 𝑃𝐸𝑋

𝑎(5)
(5, 𝑇5) =

1

18
, 𝑃𝐸𝑋

𝑎(5)
(5,𝑀2) =

1

14
, 𝑃𝐸𝑋

𝑎(2)
(2, 𝑇5) = 0 and 𝜚(2,5) =

1

4
. Therefore, by taking 𝑙1 = 𝑙2 = 𝑙3 = 𝑙4 = 0 and 𝑙5 =

1

4
, we have  

 inf𝐸
(𝑀𝑎(2),𝑇𝑎(5))

𝜚
=

1

16
≤

1

4
𝜚(2,5) 

 ≤ 𝑙1𝑃𝐸𝑋
𝑎(2)

(2,𝑀2) + 𝑙2𝑃𝐸𝑋
𝑎(5)

(5, 𝑇5) + 𝑙3𝑃𝐸𝑋
𝑎(5)

(5,𝑀2) 

 +𝑙4𝑃𝐸𝑋
𝑎(2)

(2, 𝑇5) + 𝑙5𝜚(2,5). 

  

    • For 𝚥 = 5 and ℓ = 2, we have inf𝐸
(𝑀𝑎(5),𝑇𝑎(2))

𝜚
=

1

16
, 𝑃𝐸𝑋

𝑎(5)
(5,𝑀5) =

1

8
, 𝑃𝐸𝑋

𝑎(2)
(2, 𝑇2) =

1

16
, 𝑃𝐸𝑋

𝑎(2)
(2,𝑀5) =

0, 𝑃𝐸𝑋
𝑎(5)

(5, 𝑇2) =
1

14
 and 𝜚(5,2) =

1

4
. Therefore, by putting 𝑙1 = 𝑙2 = 𝑙3 = 𝑙4 = 0 and 𝑙5 =

1

4
, we have  

 inf𝐸
(𝑀𝑎(5),𝑇𝑎(2))

𝜚
=

1

16
≤

1

4
𝜚(5,2) 

 ≤ 𝑙1𝑃𝐸𝑋
𝑎(5)

(5,𝑀5) + 𝑙2𝑃𝐸𝑋
𝑎(2)

(2, 𝑇2) + 𝑙3𝑃𝐸𝑋
𝑎(2)

(2,𝑀5) 

 +𝑙4𝑃𝐸𝑋
𝑎(5)

(5, 𝑇2) + 𝑙5𝜚(5,2). 

  

    • For 𝚥 = 3 and ℓ = 5, we have inf𝐸
(𝑀𝑎(2),𝑇𝑎(5))

𝜚
=

1

16
, 𝑃𝐸𝑋

𝑎(3)
(3,𝑀3) =

1

24
, 𝑃𝐸𝑋

𝑎(5)
(5, 𝑇5) =

1

8
, 𝑃𝐸𝑋

𝑎(5)
(5,𝑀3) =

1

14
, 𝑃𝐸𝑋

𝑎(3)
(3, 𝑇5) = 0 and 𝜚(3,5) =

1

4
. Therefore, by taking 𝑙1 = 𝑙2 = 𝑙3 = 𝑙4 = 0 and 𝑙5 =

1

4
, we have  

 inf𝐸
(𝑀𝑎(3),𝑇𝑎(5))

𝜚
=

1

16
≤

1

4
𝜚(3,5) 

 ≤ 𝑙1𝑃𝐸𝑋
𝑎(3)

(3,𝑀3) + 𝑙2𝑃𝐸𝑋
𝑎(5)

(5, 𝑇5) + 𝑙3𝑃𝐸𝑋
𝑎(5)

(5,𝑀3) 

 +𝑙4𝑃𝐸𝑋
𝑎(3)

(3, 𝑇5) + 𝑙5𝜚(3,5). 

  

    • For 𝚥 = 5 and ℓ = 3, we have inf𝐸
(𝑀𝑎(5),𝑇𝑎(3))

𝜚
=

1

16
, 𝑃𝐸𝑋

𝑎(5)
(5,𝑀5) =

1

8
, 𝑃𝐸𝑋

𝑎(3)
(3, 𝑇3) =

1

24
, 𝑃𝐸𝑋

𝑎(3)
(3,𝑀5) =

0, 𝑃𝐸𝑋
𝑎(5)

(5, 𝑇3) =
1

14
 and 𝜚(5,3) =

1

4
. Therefore, by putting 𝑙1 = 𝑙2 = 𝑙3 = 𝑙5 = 0 and 𝑙1 =

1

2
, we have  

 inf𝐸
(𝑀𝑎(5),𝑇𝑎(2))

𝜚
=

1

16
≤

1

2
𝑃𝐸𝑋
𝑎(5)

(5,𝑀5) 
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 ≤ 𝑙1𝑃𝐸𝑋
𝑎(5)

(5,𝑀5) + 𝑙2𝑃𝐸𝑋
𝑎(3)

(3, 𝑇3) + 𝑙3𝑃𝐸𝑋
𝑎(3)

(3,𝑀5) 

 +𝑙4𝑃𝐸𝑋
𝑎(5)

(5, 𝑇3) + 𝑙5𝜚(5,3). 

  

    • For 𝚥 = 4 and ℓ = 5, we have inf𝐸
(𝑀𝑎(4),𝑇𝑎(5))

𝜚
=

1

16
, 𝑃𝐸𝑋

𝑎(4)
(4,𝑀4) =

1

18
, 𝑃𝐸𝑋

𝑎(5)
(5, 𝑇5) =

1

8
, 𝑃𝐸𝑋

𝑎(5)
(5,𝑀4) =

1

14
, 𝑃𝐸𝑋

𝑎(4)
(4, 𝑇5) = 0 and 𝜚(4,5) =

1

8
. Therefore, by taking 𝑙1 = 𝑙2 = 𝑙3 = 𝑙4 = 0 and 𝑙5 =

1

2
, we have  

 inf𝐸
(𝑀𝑎(4),𝑇𝑎(5))

𝜚
=

1

16
≤

1

2
𝜚(4,5) 

 ≤ 𝑙1𝑃𝐸𝑋
𝑎(4)

(4,𝑀4) + 𝑙2𝑃𝐸𝑋
𝑎(5)

(5, 𝑇5) + 𝑙3𝑃𝐸𝑋
𝑎(5)

(5,𝑀4) 

 +𝑙4𝑃𝐸𝑋
𝑎(4)

(4, 𝑇5) + 𝑙5𝜚(4,5). 

  

    • For 𝚥 = 5 and ℓ = 4, we have inf𝐸
(𝑀𝑎(5),𝑇𝑎(4))

𝜚
=

1

16
, 𝑃𝐸𝑋

𝑎(5)
(5,𝑀5) =

1

8
, 𝑃𝐸𝑋

𝑎(4)
(4, 𝑇4) =

1

18
, 𝑃𝐸𝑋

𝑎(4)
(4,𝑀5) =

0, 𝑃𝐸𝑋
𝑎(5)

(5, 𝑇4) =
1

14
 and 𝜚(5,4) =

1

4
. Therefore, by setting 𝑙2 = 𝑙3 = 𝑙4 = 𝑙5 = 0 and 𝑙1 =

1

2
, we have  

 inf𝐸
(𝑀𝑎(5),𝑇𝑎(4))

𝜚
=

1

16
≤

1

2
𝑃𝐸𝑋
𝑎(5)

(5,𝑀5) 

 ≤ 𝑙1𝑃𝐸𝑋
𝑎(5)

(5,𝑀5) + 𝑙2𝑃𝐸𝑋
𝑎(4)

(4, 𝑇4) + 𝑙3𝑃𝐸𝑋
𝑎(4)

(4,𝑀5) 

 +𝑙4𝑃𝐸𝑋
𝑎(5)

(5, 𝑇4) + 𝑙5𝜚(5,4). 

 Thus, all the conditions of Theorem 1 are satisfied. Consequently, one can see that 0 and 1 are the common 𝑒-

soft fixed points of 𝑀 and 𝑇 in Ψ. 

Corollary 1.  Let (𝛹, 𝜚) be a complete metric space and 𝑀,𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸 be soft set-valued maps. Assume 

that for each 𝚥, ℓ ∈ 𝛹, there exist 𝑎(𝚥), 𝑎(ℓ) ∈ 𝐸  with 𝑎(𝚥) ∈ 𝐷𝑜𝑚𝑀𝚥 and 𝑎(ℓ) ∈ 𝐷𝑜𝑚𝑇ℓ such that 𝑀𝚥, 𝑇ℓ ∈

𝕏∗. If  

 𝑆𝐸𝑋
∞ (𝑀𝚥, 𝑇ℓ) ≤ 𝑙1𝑝𝐸𝑋

𝑎(𝚥)
(𝚥,𝑀𝚥) + 𝑙2𝑝𝐸𝑋

𝑎(ℓ)
(ℓ, 𝑇ℓ)       (10) 

  +𝑙3𝑝𝐸𝑋
𝑎(ℓ)

(ℓ,𝑀𝚥) + 𝑙4𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝑇ℓ) + 𝑙5𝜚(𝚥, ℓ) 

 for all 𝚥, ℓ ∈ Ψ, where ∑  5
𝑖=𝑖 𝑙𝑖 < 1 and 𝑙3 = 𝑙4. Then, there exists 𝑢 ∈ Ψ such that 𝑢 ∈ 𝑀𝑢 ∩ 𝑇𝑢.  

Proof. Since 𝑆𝐸𝑋
∞ (𝑀𝚥, 𝑇ℓ) = sup(𝑎(𝚥),𝑎(ℓ))∈𝐸×𝐸inf𝐸(𝑀𝑎(𝚥),𝑇𝑎(ℓ))

𝜚
, therefore, Theorem 1 can be applied to obtain 

𝑢 ∈ Ψ such that 𝑢 ∈ 𝑀𝑢 ∩ 𝑇𝑢.  

Corollary 2.  Let (𝛹, 𝜚) be a complete metric space and 𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸 be a soft set-valued map. Assume 

that for each 𝚥 ∈ 𝛹, there exists 𝑎(𝚥) ∈ 𝐸 with 𝑎(𝚥) ∈ 𝐷𝑜𝑚𝑀𝚥 such that 𝑇𝚥 ∈ 𝕏∗. If there exists 𝛾 ∈ (0,1) such 

that 𝑆𝐸𝑋
∞ (𝑀𝚥, 𝑇ℓ) ≤ 𝛾𝜚(𝚥, ℓ) for all 𝚥, ℓ ∈ Ψ, then, there exists 𝑢 ∈ Ψ such that 𝑢 ∈ 𝑀𝑢 ∩ 𝑇𝑢.  

  

Proof. Put 𝑀 = 𝑇, 𝑙1 = 𝑙2 = 𝑙3 = 𝑙4 and 𝑙5 = 𝛾 in Corollary 1.  

Corollary 3.  Let (𝛹, 𝜚) be a complete metric space and 𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸 be a soft set-valued map. Assume 

that for each 𝚥 ∈ 𝛹, there exists 𝑎(𝚥) ∈ 𝐷𝑜𝑚𝑇𝚥 such that 𝑇𝚥 ∈ 𝕏∗. If for all 𝚥, ℓ ∈ 𝛹,  

 inf𝐸(𝑇𝑎(𝚥),𝑇𝑎(ℓ))
𝜚

≤ 𝑙1𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝑇𝚥) + 𝑙2𝑝𝐸𝑋
𝑎(ℓ)

(ℓ, 𝑇ℓ) +𝑙3𝑝𝐸𝑋
𝑎(ℓ)

(ℓ, 𝑇𝚥) + 𝑙4𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝑇ℓ) + 𝑙5𝜚(𝚥, ℓ) 

 where ∑  5
𝑖=1 𝑙𝑖 < 1 and 𝑙3 = 𝑙4 (𝑙𝑖 ≥ 0), then there exists 𝑢 ∈ Ψ such that 𝑢 ∈ 𝑇𝑢.  

  

Proof. Put 𝑀 = 𝑇 in Theorem 1.  

 The following is the main result of Mohammed and Azam [18, Theorem 12] with 𝑓 = 𝐼Ψ, the identity mapping 

on Ψ.  

Corollary 3. [18] Let (𝛹, 𝜚)  be a complete metric space and 𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸  be a soft set-valued map. 

Assume that for each 𝚥 ∈ 𝛹, there exists 𝑎(𝚥) ∈ 𝐷𝑜𝑚𝑇𝚥 such that 𝑇𝚥 ∈ 𝕏∗. If there exists 𝑙 ∈ (0,1) such that  

 𝑆𝐸𝑋
(𝑎(𝚥),𝑎(ℓ))

(𝑇𝚥, 𝑇ℓ) ≤ 𝑙𝑑(𝚥, ℓ) 
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for all 𝚥, ℓ ∈ Ψ, then there exists 𝑢 ∈ Ψ such that 𝑢 ∈ 𝑇𝑢.  

Proof. Take 𝑙1 = 𝑙2 = 𝑙3 = 𝑙4 = 0 and 𝑙5 = 𝑙 in Corollary 2.   

  

Theorem 2.  Let (𝛹, 𝜚) be a complete metric space and 𝑀,𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸 be soft set-valued maps. Assume 

that for each 𝚥, ℓ ∈ 𝛹, there exists 𝑎(𝚥) ∈ 𝐷𝑜𝑚𝑀𝚥 and 𝑎(ℓ) ∈ 𝐷𝑜𝑚𝑇𝑒𝑙𝑙 such that 𝑀𝚥, 𝑇𝑒𝑙𝑙 ∈ 𝕏∗. If there exist 

𝛾 ∈ (0,1) such that  

 

inf𝐸(𝑀𝑎(𝚥),𝑇𝑎(ℓ))
𝜚

≤ 𝛾max{𝜚(𝚥, ℓ), 𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝑀𝚥), 𝑝𝐸𝑋
𝑎(ℓ)

(ℓ, 𝑇ℓ),

𝑝𝐸𝑋
𝑎(𝚥)

(𝚥,𝑇𝑒𝑙𝑙)+𝑝𝐸𝑋
𝑎(ℓ)

(ℓ,𝑀𝚥)

2
}

     (11) 

 Then, there exists 𝑢 ∈ Ψ such that 𝑢 ∈ 𝑀𝑢 ∩ 𝑇𝑢.  

Proof. For 𝚥0 ∈ Ψ, by hypothesis, there exists 𝑎(𝚥0) ∈ 𝐷𝑜𝑚𝚥0 such that 𝑀𝚥0 ∈ Ψ
∗. Let 𝚥1 ∈ 𝑀𝚥0 and on same 

steps, 𝚥2 ∈ 𝑇𝚥1; then, 𝜚(𝚥1, 𝚥2) ≤ inf𝐸(𝑀𝑎(𝚥0),𝑇𝑎(𝚥1))
𝜚

. Hence, using (16) and Lemma 6 in that order, we have  

 𝜚(𝚥1, 𝚥2) ≤ inf𝐸(𝑀𝑎(𝚥0),𝑇𝑎(𝚥1))
𝜚

 

 ≤ 𝛾max{𝜚(𝚥0, 𝚥1), 𝑝𝐸𝑋
𝑎(𝚥0)(𝚥0,𝑀𝚥0), 𝑝𝐸𝑋

𝑎(𝚥1)(𝚥1, 𝑇𝚥1), 

 
𝑝𝐸𝑋
𝑎(𝚥0)(𝚥0,𝑇𝚥1)+𝑝𝐸𝑋

𝑎(𝚥1)(𝚥1,𝑀𝚥0)

2
} 

 ≤ 𝛾max{𝜚(𝚥0, 𝚥1), 𝜚(𝚥0, 𝚥1), 𝜚(𝚥1, 𝚥2), 

 
𝜚(𝚥0,𝚥2)+𝜚(𝚥1,𝚥1)

2
} 

 ≤ 𝛾max{𝜚(𝚥0, 𝚥1), 𝜚(𝚥1, 𝚥2),
𝜚(𝚥0,𝚥1)+𝜚(𝚥1,𝚥2)

2
} 

 ≤ 𝛾max{𝜚(𝚥0, 𝚥1), 𝜚(𝚥1, 𝚥2)}. 

 If max{𝜚(𝚥0, 𝚥1), 𝜚(𝚥1, 𝚥2)} = 𝜚(𝚥1, 𝚥2), then  

 𝜚(𝚥1, 𝚥2) ≤ 𝛾𝜚(𝚥1, 𝚥2) < 𝜚(𝚥1, 𝚥2) 

is a contradiction. It follows that  

 𝜚(𝚥1, 𝚥2) ≤ 𝛾𝜚(𝚥0, 𝚥1).          (12) 

 Similarly, for 𝚥1 ∈ Ψ, by assumption, there exists 𝑎(𝚥1) ∈ 𝐷𝑜𝑚𝑀𝚥1 such that 𝑀𝚥1 ∈ Ψ
∗. Take 𝚥2 ∈ 𝑀𝚥1, for this 

𝚥2, there exists 𝑎(𝚥2) ∈ 𝑇𝚥2 such that 𝑇𝚥2 ∈ Ψ
∗. Choose 𝚥3 ∈ 𝑇𝚥2 so that 𝜚(𝚥2, 𝚥3) ≤ inf𝐸(𝑀𝑎(𝚥1)

,𝑇𝑎(𝚥2))
𝜚

. Therefore, 

(16) and Lemma 6 yield:  

 𝜚(𝚥2, 𝚥3) ≤ inf𝐸(𝑀𝑎(𝚥1),𝑇𝑎(𝚥2))
𝜚

 

 ≤ 𝛾max{𝜚(𝚥1, 𝚥2), 𝑝𝐸𝑋
𝑎(𝚥1)(𝚥1,𝑀𝚥1), 𝑝𝐸𝑋

𝑎(𝚥2)(𝚥2, 𝑇𝚥2), 

 ≤
𝑝𝐸𝑋
𝑎(𝚥1)(𝚥1,𝑇𝚥2)+𝑝𝐸𝑋

𝑎(𝚥2)(𝚥2,𝑀𝚥1)

2
} 

 ≤ 𝛾max{𝜚(𝚥1, 𝚥2), 𝜚(𝚥1, 𝚥2), 𝜚(𝚥2, 𝚥3), 

 
𝜚(𝚥1,𝚥3)+𝜚(𝚥2,𝚥2)

2
} 

 ≤ 𝛾max{𝜚(𝚥1, 𝚥2), 𝜚(𝚥2, 𝚥3),
𝜚(𝚥1,𝚥2)+𝜚(𝚥2,𝚥3)

2
} 

 ≤ 𝛾max{𝜚(𝚥1, 𝚥2), 𝜚(𝚥2, 𝚥3)}. 

 

 If max{𝜚(𝚥1, 𝚥2), 𝜚(𝚥2, 𝚥3)} = 𝜚(𝚥2, 𝚥3), then 𝜚(𝚥2, 𝚥3) ≤ 𝛾𝜚(𝚥2, 𝚥3) < 𝜚(𝚥2, 𝚥3)yields a contradiction. Hence,  

𝜚(𝚥2, 𝚥3) ≤ 𝛾𝜚(𝚥1, 𝚥2) ≤ 𝛾
2𝜚(𝚥0, 𝚥1). 

 By continuing recursively, we generate a sequence {𝚥𝑛}𝑛∈ℕ such that 𝚥2𝑛+1 ∈ 𝑀𝚥2𝑛 and 𝚥2𝑛+2 ∈ 𝑇𝚥2𝑛+1 such 

that  
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𝜚(𝚥𝑛, 𝚥𝑛+1) ≤ inf𝐸(𝑀𝑎(𝚥𝑛−1),𝑇𝑎(𝚥𝑛))
𝜚

                   ≤ 𝛾max{𝜚(𝚥𝑛−1, 𝚥𝑛), 𝑝𝐸𝑋
𝑎(𝚥𝑛−1)(𝚥𝑛−1,𝑀𝚥𝑛−1), 𝑝𝐸𝑋

𝑎(𝚥𝑛)(𝚥𝑛, 𝑇𝚥𝑛),

         
𝑝𝐸𝑋
𝑎(𝚥𝑛−1)(𝚥𝑛−1,𝑇𝚥𝑛)+𝑝𝐸𝑋

𝑎(𝚥𝑛)(𝚥𝑛,𝑀𝚥𝑛−1)

2
}.

    (13) 

 By Lemma 6, the inequality (13) reduces to  

 

𝜚(𝚥𝑛, 𝚥𝑛+1) ≤ 𝛾max{𝜚(𝚥𝑛−1, 𝚥𝑛), 𝜚(𝚥𝑛−1, 𝚥𝑛), 𝜚(𝚥𝑛, 𝚥𝑛+1),
𝜚(𝚥𝑛−1,𝚥𝑛+1)+𝜚(𝚥𝑛,𝚥𝑛)

2
}

                    ≤ 𝛾max{𝜚(𝚥𝑛−1, 𝚥𝑛), 𝜚(𝚥𝑛, 𝚥𝑛+1),
𝜚(𝚥𝑛−1,𝚥𝑛)+𝜚(𝚥𝑛,𝚥𝑛+1)

2
}

                   ≤ 𝛾max{𝜚(𝚥𝑛−1, 𝚥𝑛), 𝜚(𝚥𝑛, 𝚥𝑛+1)}.

 

 If max{𝜚(𝚥𝑛−1, 𝚥𝑛), 𝜚(𝚥𝑛, 𝚥𝑛+1)} = 𝜚(𝚥𝑛, 𝚥𝑛+1) , then 𝜚(𝚥𝑛, 𝚥𝑛+1) ≤ 𝛾𝜚(𝚥𝑛, 𝚥𝑛+1) < 𝜚(𝚥𝑛, 𝚥𝑛+1) gives a 

contradiction. Therefore,  

𝜚(𝚥𝑛, 𝚥𝑛+1) ≤ 𝛾𝜚(𝚥𝑛−1, 𝚥𝑛) 

≤ 𝛾2𝜚(𝚥𝑛−2, 𝚥𝑛−1) 

≤ 𝛾3𝜚(𝚥𝑛−3, 𝚥𝑛−2) 

⋮ 

≤ 𝛾𝑛𝜚(𝚥0, 𝚥1). 

 

    From here, one can follow the steps in Theorem 2 to conclude that {𝚥𝑛}𝑛∈ℕ is a Cauchy sequence in Ψ; and 

the completeness of Ψ implies that there exists 𝑢 ∈ Ψ such that 𝚥𝑛 ⟶ 𝑢 as 𝑛 ⟶ ∞. 

 

Now, assume that 𝑢 ∉ 𝑀𝑢. Then, by applying lemmas 4, 5 and 6, accordingly, one gets  

 

     

𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢) ≤ 𝜚(𝑢, 𝚥2𝑛+1) + 𝑝𝐸𝑋
𝑎(𝚥2𝑛+1)(𝚥2𝑛+1,𝑀𝑢)

                         ≤ 𝜚(𝑢, 𝚥2𝑛+1) + inf𝐸(𝑀𝑎(𝑢),𝑇𝑎(𝚥2𝑛))
𝜚

                         ≤ 𝜚(𝑢, 𝚥2𝑛+1) + 𝛾max{𝜚(𝑢, 𝚥2𝑛), 𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢), 𝑝𝐸𝑋
𝑎(𝚥2𝑛)(𝚥2𝑛, 𝑇𝚥2𝑛),

𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑇𝚥2𝑛)+𝑝𝐸𝑋
𝑎(𝚥2𝑛)(𝚥2𝑛,𝑀𝑢)

2
}

                        ≤ 𝜚(𝑢, 𝚥2𝑛+1) + 𝛾max{𝜚(𝑢, 𝚥2𝑛), 𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢), 𝜚(𝚥2𝑛, 𝚥2𝑛+1),

𝜚(𝑢,𝚥2𝑛+1)+𝑝𝐸𝑋
𝑎(𝚥2𝑛)(𝚥2𝑛,𝑀𝑢)

2
}

                       ≤ 𝜚(𝑢, 𝚥2𝑛+1) + 𝛾max{𝜚(𝑢, 𝚥2𝑛), 𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢), 𝜚(𝚥2𝑛, 𝚥2𝑛+1),

                        
𝜚(𝑢,𝚥2𝑛+1)+𝜚(𝚥2𝑛,𝑢)+𝑝𝐸𝑋

𝑎(𝑢)
(𝑢,𝑀𝑢)

2
}.

   (14) 

 Letting 𝑛 ⟶ ∞ in (14), yields  

 𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢) ≤ 𝛾max{𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢), 𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢)} 

                          ≤ 𝛾𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢) < 𝑝𝐸𝑋
𝑎(𝑢)

(𝑢,𝑀𝑢), 

 This is a contradiction. Therefore, 𝑢 ∈ 𝑀𝑢. On similar arguments, one can show that 𝑢 ∈ 𝑇𝑢. Consequently, 

𝑢 ∈ 𝑀𝑢 ∩ 𝑇𝑢.  

Corollary 4.  Let (𝛹, 𝜚) be a complete metric space and 𝑀,𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸 be soft set-valued maps. Assume 

that for each 𝚥, ℓ ∈ 𝛹, there exist 𝑎(𝚥) ∈ 𝐷𝑜𝑚𝑀𝚥 and 𝑎(ℓ) ∈ 𝐷𝑜𝑚𝑇𝑒𝑙𝑙 such that 𝑀𝚥, 𝑇ℓ ∈ 𝕏∗. If there exists 

𝛾 ∈ (0,1) such that  
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𝑆𝐸𝑋
∞ (𝑀𝚥, 𝑇ℓ) ≤ 𝛾max{𝜚(𝚥, ℓ), 𝑝𝐸𝑋

𝑎(𝚥)
(𝚥, 𝑀𝚥), 𝑝𝐸𝑋

𝑎(ℓ)
(ℓ, 𝑇ℓ),

𝑝𝐸𝑋
𝑎(𝚥)

(𝚥,𝑇ℓ)+𝑝𝐸𝑋
𝑎(ℓ)

(ℓ,𝑀𝚥)

2
}

     (15) 

 then, there exists 𝑢 ∈ Ψ such that 𝑢 ∈ 𝑀𝑢 ∩ 𝑇𝑢.  

  

Proof. The proof follows as in Corollary 3.  

  

Corollary 5.  Let (𝛹, 𝜚) be a complete metric space and 𝑇:𝛹 ⟶ [𝑃(𝛹)]𝐸  be a soft set-valued mapping. 

Assume that for each 𝚥 ∈ 𝛹, there exists 𝑎(𝚥) ∈ 𝐷𝑜𝑚𝑇𝚥 such that 𝑇𝚥 ∈ 𝕏∗. If there exist 𝛾 ∈ (0,1) such that  

 

inf𝐸(𝑇𝑎(𝚥),𝑇𝑎(ℓ))
𝜚

≤ 𝛾max{𝜚(𝚥, ℓ), 𝑝𝐸𝑋
𝑎(𝚥)

(𝚥, 𝑇𝚥), 𝑝𝐸𝑋
𝑎(ℓ)

(ℓ, 𝑇ℓ),

𝑝𝐸𝑋
𝑎(𝚥)

(𝚥,𝑇ℓ)+𝑝𝐸𝑋
𝑎(ℓ)

(ℓ,𝑇𝚥)

2
}

     (16) 

 Then, there exists 𝑢 ∈ Ψ such that 𝑢 ∈ 𝑇𝑢.  

 Proof. Put 𝑀 = 𝑇 in Theorem 2.  

 

 

4. Consequences in fuzzy set-valued and multivalued maps  

In this section, we apply the 𝑒-soft fixed point results of the previous section to derive some fixed point 

theorems in the framework of fuzzy set-valued and multivalued mappings. To this end, we recall a few 

preliminaries that will be used hereafter. 

 

 Let (Ψ, 𝜚) be a metric space and 𝕏∗ be the family of nonempty closed and bounded subsets of Ψ. For 

∇,△∈ 𝕏∗, the Hausdorff -Pompeiu metric ℵ on 𝕏∗ induced by 𝜚 is defined as  

 ℵ(∇,△) = max{sup
𝚥∈∇

𝜚(𝚥,△), sup
ℓ∈△

𝜚(ℓ, ∇)} 

where 𝜚(𝚥, ∇) = inf𝚥∈∇𝜚(𝚥, ℓ).  

A fuzzy set in Ψ is a function with domain Ψ and values in [0,1] = 𝐼. If ∇ is a fuzzy set in Ψ and 𝚥 ∈ Ψ, 

then the function value ∇(𝚥) is called the degree of membership of 𝚥 in ∇. The 𝛼-level set of ∇, denoted by [∇]𝛼, 

is defined as follows:  

 [∇]𝛼 = {𝚥 ∈ Ψ: ∇(𝚥) ≥ 𝛼}, if 𝛼 ∈ (0,1], 

 

 [∇]0 = {𝚥 ∈ Ψ: ∇(𝚥) > 0}. 

Here, 𝑀 represents the closure of a nonfuzzy set 𝑀. We shall denote the collection of all fuzzy sets in Ψ by 𝐼Ψ. 

If there exists an 𝛼 ∈ [0,1] such that [∇]𝛼 , [△]𝛼 ∈ Ψ
∗, then define  

 𝑝𝛼(∇,△) = inf{𝜚(𝚥, ℓ): 𝚥 ∈ [∇]𝛼 , ℓ ∈ [△]𝛼}, 

 

 𝐷𝛼(∇,△) = ℵ([∇]𝛼, [△]𝛼), 

 

 𝑝(∇,△) = sup
𝛼
𝑝𝛼(∇,△), 

 𝜚∞(∇,△) = sup
𝛼
𝐷𝛼(∇,△). 

Definition 3. Let 𝛹 be an arbitrary set and Y a metric space. A mapping ∇:𝛹 ⟶ 𝐼𝑌 is called a fuzzy set-valued 

map. A fuzzy set-valued map ∇ is a fuzzy subset of 𝛹 × 𝑌 with membership function ∇(𝚥)(ℓ). The function 

value ∇(𝚥)(ℓ) is the grade of membership of ℓ in ∇(𝚥).  

  

Definition 4. Let ∇,△:𝛹 ⟶ 𝐼𝛹 be fuzzy set-valued maps. A point 𝑢 ∈ 𝛹 is called fuzzy fixed point of ∇ if 

𝑢 ∈ [∇𝑢]𝛼. The point u is called a common fuzzy fixed point of ∇ and △ if 𝑢 ∈ [∇𝑢]𝛼 ∩ [△ 𝑢]𝛼.  

 Now, we deduce some consequences of our results.  
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Corollary 6. [2, Theorem 5] Let (𝛹, 𝜚) be a complete metric space and ∇,△:𝛹 ⟶ 𝐼𝛹 be fuzzy set-valued maps. 

Assume that for each 𝚥 ∈ 𝛹, there exists 𝛼(𝚥) ∈ (0,1] such that [∇𝚥]𝛼(𝚥), [△ 𝚥]𝛼(𝚥) ∈ 𝕏
∗, and  

 ℵ([∇𝚥]𝛼(𝚥), [△ ℓ]𝛼(ℓ)) ≤ 𝑙1𝜚(𝚥, [∇𝚥]𝛼(𝚥)) + 𝑙2𝜚(ℓ, [△ ℓ]𝛼(ℓ)) 

 +𝑙3𝜚(𝚥, [△ ℓ]𝛼(ℓ)) + 𝑙4𝜚(ℓ, [∇𝚥]𝛼(𝚥)) + 𝑙5𝜚(𝚥, ℓ) 

 for all 𝚥, ℓ ∈ Ψ , with ∑  5
𝑖=1 𝑙𝑖 < 1 (𝑙𝑖 ≥ 0)  and 𝑙1 = 𝑙2  or 𝑙3 = 𝑙4 . Then there exists 𝑢 ∈ Ψ  such that 

𝑢 ∈ [∇𝑢]𝛼(𝑢) ∩ [△ 𝑢]𝛼(𝑢).  

  

Proof. Let 𝑎∗(𝚥), 𝑎∗(ℓ) ∈ 𝐸 with 𝑎∗(𝚥) = 𝛼(𝚥) and 𝑎∗(ℓ) = 𝛼(ℓ), for all 𝚥, ℓ ∈ Ψ. Consider two soft set-valued 

maps Θ∇, Λ△: Ψ ⟶ [𝑃(Ψ)]𝐸, respectively defined by  

Θ∇(𝚥(𝑎
∗(𝚥)) = {𝑡 ∈ Ψ: (∇𝚥)(𝑡) ≥ 𝑎∗(𝚥)} = [∇𝚥]𝛼(𝚥) 

and  

 Λ△(ℓ(𝑎
∗(ℓ)) = {𝑡 ∈ Ψ: (△ ℓ)(𝑡) ≥ 𝑎∗(ℓ)} = [△ ℓ]𝛼(ℓ). 

Then,  

𝜚(𝚥, [∇𝚥]𝛼(𝚥)) = inf{𝜚(𝚥, 𝑞1): 𝑞1 ∈ [∇𝚥]𝛼(𝚥)} 

= inf{𝜚(𝚥, 𝑞1): 𝑞1 ∈ Θ∇(𝚥(𝑎
∗(𝚥)))} 

= 𝑝𝐸𝑋
𝑎∗(𝚥)

(𝚥, Θ∇(𝚥(𝑎
∗(𝚥)))), 

  

 𝜚(ℓ, [△ ℓ]𝛼(ℓ)) = inf{𝜚(ℓ, 𝑞2): 𝑞2 ∈ [△ ℓ]𝛼(ℓ)} 

 = inf{𝜚(ℓ, 𝑞2): 𝑞2 ∈ Λ△(ℓ(𝑎
∗(ℓ)))} 

 = 𝑝𝐸𝑋
𝑎∗(ℓ)

(ℓ, Λ△(ℓ(𝑎
∗(ℓ)))). 

 Similarly,  

𝜚(𝚥, [△ ℓ]𝛼(ℓ)) = 𝑝𝐸𝑋
𝑎∗(ℓ)

(𝚥, Λ△(ℓ(𝑎
∗(ℓ)))). 

 

𝜚(ℓ, [∇𝚥]𝛼(𝚥)) = 𝑝𝐸𝑋
𝑎∗(ℓ)

(ℓ, Θ∇(ℓ(𝑎
∗(ℓ)))). 

Therefore,  

inf𝐸(Θ∇(𝑎∗(𝚥)),Λ△(𝑎∗(ℓ)))
𝜚

= ℵ([∇𝚥]𝛼(𝚥), [△ ℓ]𝛼(ℓ)) 

≤ 𝑙1𝜚(𝚥, [∇𝚥]𝛼(𝚥)) + 𝑙2𝜚(ℓ, [△ ℓ]𝛼(ℓ)) + 𝑙3𝜚(𝚥, [△ ℓ]𝛼(ℓ)) 

+𝑙4𝜚(ℓ, [∇𝚥]𝛼(𝚥)) + 𝑙5𝜚(𝚥, ℓ) 

= 𝑙1𝑝𝐸𝑋
𝑎∗(𝚥)

(𝚥, Θ∇(𝚥(𝑎
∗(𝚥)))) + 𝑙2𝑝𝐸𝑋

𝑎∗(ℓ)
(ℓ, Λ△(ℓ(𝑎

∗(ℓ)))) 

+𝑙3𝑝𝐸𝑋
𝑎∗(𝚥)

(𝚥, Λ△(𝚥(𝑎
∗(𝚥)))) 

+𝑙4𝑝𝐸𝑋
𝑎∗(ℓ)

(ℓ, Θ∇(𝚥(𝑎
∗(𝚥)))) + 𝑙5𝜚(𝚥, ℓ). 

 

 Consequently, Theorem 12 can be applied to find 𝑢 ∈ Ψ such that 𝑢 ∈ Θ∇𝑢 ∩ Λ△𝑢 = [∇𝑢]𝛼(𝑢) ∩ [△ 𝑢]𝛼(𝑢). 

 

Definition 5. [11] Let 𝛹 be a reference set and ∇ be a fuzzy set in 𝛹. Then, ∇ is called an approximate quantity 

if and only if its α-level set is a compact convex subset of 𝛹 for each 𝛼 ∈ [0,1] and 𝑠𝑢𝑝𝚥∈𝛹∇(𝚥) = 1. The set of 

all approximate quantities in 𝛹 is denoted by �̃�.  

 

Corollary 7. [5] Let (𝛹, 𝜚) be a complete metric space and ∇,△:𝛹 ⟶ �̃� be fuzzy set-valued maps. Assume 

that for all 𝚥, ℓ ∈ 𝛹,  

 𝜚∞(∇(𝚥),△ (ℓ)) ≤ 𝑙1𝑝(𝚥, ∇(𝚥)) + 𝑙2𝑝(ℓ,△ (ℓ)) + 𝑙3𝑝(𝚥,△ (ℓ)) 

 +𝑙4𝑝(ℓ, ∇(𝚥)) + 𝑙5𝜚(𝚥, ℓ) 

 where ∑  5
𝑖=1 𝑙𝑖 < 1 (𝑙𝑖 ≥ 0) and either 𝑙1 = 𝑙2 or 𝑙3 = 𝑙4. Then, there exists 𝑢 ∈ Ψ such that {𝑢} ⊂ ∇(𝑢) and 

{𝑢} ⊂△ (𝑢). 

 

Proof. For 𝚥 ∈ Ψ, let Θ∇𝚥, Λ△𝚥 ∈ [𝑃(Ψ)]
𝐸. Then, following the proof of Corollary 6, one deduces that  
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 [∇𝚥]1 = Θ∇𝚥(1) ⊆ �̃� and [△ 𝚥]1 = Λ△𝚥(1) ⊆ �̃�, 

for some 𝑎∗(𝚥) = 1 ∈ 𝐸. Now, by Lemma 5, there exists 𝚥1 ∈ Ψ such that {𝚥1} ⊂ Θ∇𝚥(1) = [∇𝚥]1 and 𝚥2 ∈ Ψ 

such that {𝚥2} ⊂ Λ△𝚥(1) = [△ 𝚥]1. By definition of inf𝐸(∇𝑎,△𝑏)
𝜚

 for soft sets and 𝜚∞-metric for fuzzy sets, for all 

𝚥, ℓ ∈ Ψ, we have  

 inf𝐸(∇𝚥(1),△ℓ(1))
𝜚

= ℵ([∇𝚥]𝛼(𝚥), [△ ℓ]𝛼(ℓ)) 

 ≤ 𝜚∞(∇(𝚥),△ (ℓ)). 
Hence,  

 inf𝐸(∇𝚥(1),△ℓ(1))
𝜚

≤ 𝑙1𝑝(𝚥, ∇(𝚥)) + 𝑙2𝑝(ℓ,△ (ℓ)) + 𝑙3𝑝(𝚥,△ (ℓ))     (17) 

                                    +𝑙4𝑝(ℓ, ∇(𝚥)) + 𝑙5𝜚(𝚥, ℓ).       (18) 

 Since [∇𝚥]1 ⊆ [∇𝚥]𝛼(𝚥) for each 𝛼 ∈ [0,1], thus  

 𝜚(𝚥, [∇𝚥]𝛼(𝚥)) ≤ 𝜚(𝚥, [∇𝚥]1) = 𝑝𝐸𝑋
1 (𝚥, Θ∇(𝚥(1))). 

That is, 𝑝(𝚥, ∇(𝚥)) ≤ 𝑝𝐸𝑋
1 (𝚥, Θ∇(𝚥(1))). Similarly, 𝑝(𝚥,△ (𝚥)) ≤ 𝑝𝐸𝑋

1 (𝚥, Λ△(𝚥(1))). Therefore,  

 inf𝐸(∇𝚥(1),△ℓ(1))
𝜚

≤ 𝑙1𝑝𝐸𝑋
1 (𝚥, Θ∇𝚥(1)) + 𝑙2𝑝𝐸𝑋

1 (ℓ, Λ△ℓ(1)) + 𝑙3𝑝𝐸𝑋
1 (𝚥, Λ△(ℓ(1))) 

 +𝑙4𝑝𝐸𝑋
1 (ℓ, Θ∇(𝚥(1))) + 𝑙5𝜚(𝚥, ℓ). 

Consequently, Theorem 2 can be applied to obtain 𝑢 ∈ Ψ such that {𝑢} ⊂ {∇𝑢} and {𝑢} ⊂△ (𝑢).  

  

Corollary 8. [2] Let (𝛹, 𝜚) be a complete metric space and ∇,△:𝛹 ⟶ 𝕏∗ be multivalued mappings. Assume 

that for all 𝚥, ℓ ∈ 𝛹,  

 ℵ(∇𝚥,△ ℓ) ≤ 𝑙1𝜚(𝚥, ∇𝚥) + 𝑙2𝜚(ℓ,△ ℓ) + 𝑙3𝜚(𝚥,△ ℓ) 

 +𝑙4𝜚(ℓ, ∇𝚥) + 𝑙5𝜚(𝚥, ℓ) 

 where ∑  5
𝑖=1 𝑙1 < 1 and either 𝑙1 = 𝑙2 or 𝑙3 = 𝑙4. Then there exists 𝑢 ∈ Ψ such that 𝑢 ∈ ∇𝑢 ∩△ 𝑢.  

  

Proof. For 𝚥, ℓ ∈ Ψ, let 𝐸 = {𝑎∗(𝚥), 𝑎∗(ℓ)} and consider two soft set-valued maps Θ, Λ:Ψ ⟶ [𝑃(Ψ)]𝐸, defined 

by  

Θ𝑒(𝚥) = {
∇𝚥,  𝑖𝑓   𝑒 = 𝑎∗(𝚥)
Ψ,  𝑖𝑓  𝑒 = 𝑎∗(ℓ).

 

  

Λ𝑒(𝚥) = {
Ψ,  𝑖𝑓   𝑒 = 𝑎∗(𝚥)
△ 𝚥,  𝑖𝑓  𝑒 = 𝑎∗(ℓ).

 

 Then,  

𝜚(𝚥, ∇𝚥) = inf{𝜚(𝚥, 𝑟1): 𝑟1 ∈ ∇𝚥} 

= inf{𝜚(𝚥, 𝑟1): 𝑟1 ∈ Θ𝑒(𝚥)} 

= 𝑝𝐸𝑋
𝑎∗(𝚥)

(𝚥, Θ(𝚥)). 

  

𝜚(ℓ,△ ℓ) = inf{𝜚(ℓ, 𝑟2): 𝑟2 ∈△ ℓ} 

= inf{𝜚(ℓ, 𝑟2): 𝑟2 ∈ Λ𝑒(𝚥)} 

= 𝑝𝐸𝑋
𝑎∗(ℓ)

(ℓ, Λ(𝚥)). 

Similarly, 𝜚(𝚥,△ ℓ) = 𝑝𝐸𝑋
𝑎∗(𝚥)

(𝚥, Λℓ), and 𝜚(ℓ, ∇𝚥) = 𝑝𝐸𝑋
𝑎∗(ℓ)

(ℓ, Θ𝚥). Therefore, for all 𝚥, ℓ ∈ Ψ,  

inf𝐸(Θ𝑎∗(𝚥),Λ𝑎∗(ℓ))
𝜚

= ℵ(∇𝚥,△ ℓ) 

             ≤ 𝑙1𝜚(𝚥, ∇𝚥) + 𝑙2𝜚(ℓ,△ ℓ) + 𝑙3𝜚(𝚥,△ ℓ) 

                       +𝑙4𝜚(ℓ, ∇𝚥) + 𝑙5𝜚(𝚥, ℓ) 

 = 𝑙𝑎𝑝𝐸𝑋
𝑎∗(𝚥)

(𝚥, Θ𝚥) + 𝑙2𝑝𝐸𝑋
𝑎∗(ℓ)

(ℓ, Λℓ) + 𝑙3𝑝𝐸𝑋
𝑎∗(𝚥)

(𝚥, Λℓ) 

                      +𝑙4𝑝𝐸𝑋
𝑎∗(ℓ)

(ℓ, Θ𝚥) + 𝑙5𝜚(𝚥, ℓ). 

 

 Consequently, Theorem 2 can be applied to obtain 𝑢 ∈ Ψ such that 𝑢 ∈ Θ𝑢 ∩ Λ𝑢 = ∇𝑢 ∩△ 𝑢.  
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Corollary 9. [10, Theorem 12] Let (𝛹, 𝜚) be a complete metric space and 𝑇:𝛹 ⟶ 𝕏∗ be a multivalued map. 

Assume that there exists 𝛾 ∈ (0,1) such that for all 𝚥, ℓ ∈ 𝛹, we have  

 
ℵ(𝑇𝚥, 𝑇ℓ) ≤ 𝛾max{𝜚(𝚥, ℓ), 𝜚(𝚥, 𝑇𝚥), 𝜚(ℓ, 𝑇ℓ),

1

2
[𝜚(𝚥, 𝑇ℓ) + 𝜚(ℓ, 𝑇𝚥)].

 

 

 Then, there exists 𝑢 ∈ Ψ such that 𝑢 ∈ 𝑇𝑢. 

 

Proof. By using Corollary 8, the proof follows the idea of Corollary 9.  

 

 

5. Conclusion 

In this research, a novel type of multi-valued map whose range set is a family of soft sets has studied. 

Specifically, a few fixed point theorems which are generalizations of some known fixed point results of single-

valued and set-valued mappings in the corresponding literature have presented. Some of these special cases have 

highlighted and discussed. Moreover, nontrivial examples have constructed to validate the assumptions of the 

obtained results. It is known that the notion of cut sets in the study of fuzzy fixed point theorems is one of the 

elegant ways of connecting fixed point results of contractive multi-valued mappings with fuzzy set-valued 

maps. Hence, the missing of this concept in fixed point theory of soft set-valued maps is an enormous limitation. 

Along this line, it is important to point out that the ideas of this paper, being established in the framework of 

metric space is fundamental. Hence, it can be improved upon when examined in the setting of quasi or pseudo 

metric spaces. In addition, the soft set-valued component can be examined in other hybrid models such as fuzzy 

soft sets, 𝑁-soft sets, intuitionistic fuzzy soft sets, rough sets, and so on. From application viewpoint, the new 

contractions in this work can be employed to analyses solvability criteria of some classes of differential and 

integral inclusions of either integer or non-integer type. 

Conflict of interest: The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

References 

1.   Alansari, Monairah, Shehu Shagari Mohammed, and Akbar Azam. (2020). Fuzzy Fixed Point Results in ℱ-Metric Spaces 

with Applications. Journal of Function Spaces, Article ID 5142815.  

2. Azam, A., & Beg, I. (2013). Common fuzzy fixed points for fuzzy mappings. Fixed Point Theory and Applications, 2013(1), 1-

11. 

3. Azam, A. and M.S. Shagari, (2020). Variants of Meir-Keeler Fixed Point Theorem And Applications of Soft Set-Valued Maps. 

Applications and Applied Mathematics, 15(1) 256-272.  

4. Banach, S. (1922). Sur les operations dans les ensembles abstraits et leur application aux Ãxquations integrales. Fundamenta 

Mathematicae, 3(1), 133-181.  

5. Bose, R. K., and Sahani, D. (1987). Fuzzy mappings and fixed point theorems. Fuzzy sets and Systems, 21(1), 53-58.  

6. Cagman, N., KarataÅŸ, S., and Enginoglu, S. (2011). Soft topology. Computers and Mathematics with Applications, 62(1), 

351-358.  

7. Ciric, L. B. (1974). A generalization of Banach’s contraction principle. Proceedings of the American Mathematical society, 

45(2), 267-273. 

8. Di Bari, C., and Vetro, P. (2012). Common fixed points in generalized metric spaces. Applied Mathematics and Computation, 

218(13), 7322-7325.  

9. Fatimah, F., Rosadi, D., Hakim, R. F., & Alcantud, J. C. R. (2018). N-soft sets and their decision making algorithms. Soft 

Computing, 22(12), 3829-3842. 

10. Frigon, M., and O’Regan, D. (2002). Fuzzy contractive maps and fuzzy fixed points. Fuzzy Sets and Systems, 129(1), 39-45.  

11. Heilpern, S. (1981). Fuzzy mappings and fixed point theorem. Journal of Mathematical Analysis and Applications, 83(2), 566-

569.  



16 M.S. Shagari et al. / FOMJ 2(3) (2021) 1–16 

12. Jleli, M., and Samet, B. (2018). On a new generalization of metric spaces. Journal of Fixed Point Theory and Applications, 

20(3), 1-20.  

13. Kaneko, H., and Sessa, S. (1989). Fixed point theorems for compatible multi-valued and single-valued mappings. International 

Journal of Mathematics and Mathematical Sciences, 12(2), 257-262.  

14. [14]  Kirk, W. A. (2003). Fixed points of asymptotic contractions. Journal of Mathematical Analysis and Applications, 277(2), 

645-650.  

15. Kirk, W. A., & Shahzad, N. (2013). Generalized metrics and Caristi’s theorem. Fixed Point Theory and Applications, 2013(1), 

1-9.  

16. Lakzian, H., and Samet, B. (2012). Fixed points for (𝜓, 𝜑)-weakly contractive mappings in generalized metric spaces. Applied 

Mathematics Letters, 25(5), 902-906. 

17. Meir, A., and Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 

28(2), 326-329.  

18. Mohammed, S. S., and Azam, A. (2019). Fixed points of soft-set valued and fuzzy set-valued maps with applications. Journal 

of Intelligent and Fuzzy Systems, 37(3), 3865-3877. 

19. Mohammed, S. S., and Azam, A. (2019). Integral type contractions of soft set-valued maps with application to neutral 

differential equation. AIMS Mathematics, 5(1), 342-358.  

20. Mohammed, S. S. and Azam, A. (2020). An Algorithm for Fuzzy Soft Set Based Decision Making Approach. Yugoslav 

Journal of Operations Research, 30(1), 59-70.  

21. Molodtsov, D. (1999). Soft set theoryâ€”first results. Computers and Mathematics with Applications, 37(4-5), 19-31.  

22. Mostafa, S. M., Kareem, F. F., and Jad, H. A. (2020). Brief review of soft set and its application in coding theory. Journal of  

New Theory, (33), 95-106.  

23. Pawlak, Z. (1982). Rough sets. International journal of computer and information sciences, 11(5), 341-356.  

24. Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American 

Mathematical Society, 226, 257-290.  

25. Riaz, M., Cagman, N., Zareef, I., and Aslam, M. (2019). 𝑁-soft topology and its applications to multi-criteria group decision 

making. Journal of Intelligent and Fuzzy Systems, 36(6), 6521-6536.  

26. Shagari, M. S. and Azam, A. (2020). Fixed point theorems of fuzzy set-valued maps with applications, Problemy Analiza, 

9(27), 2.  

27. Smart, D. R. (1974). Fixed Point Theorems. Cambridge University Press.  

28. Taskovic,M. R. (2012). Some new principles in fixed point theory. Mathematica Japonica, 35, 645-666, (1990).  

29. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and 

Applications, 2012(1), 1-6.  

30. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.  

 

 

 

Shagari, M. S., Fulatan, I. A., & Sirajo, Y. (2021). On Fixed Points of Soft Set-Valued 
Maps. Fuzzy Optimization and Modelling Journal, 2 (3), 1-16. 

https://doi.org/0.30495/fomj.2021.1938962.1034 

Received: 20 August 2021 Revised: 31 August 2021 Accepted: 3 September 2021 

 

Licensee Fuzzy Optimization and Modelling Journal. This article is an open access 
article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

https://doi.org/?
https://doi.org/?

