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A R T I C L E  I N F O  A B S T R A C T 

The main aim of this study is to construct a new approximation method for 

solving stiff Itô stochastic ordinary differential equations based on explicit 

Milstein scheme. Under the sufficient conditions such as the Lipschitz 

condition and linear growth bound, we prove that split-step (α, β)-Milstein 

method strongly convergence to exact solution with order one. The mean-

square stability of our method for linear stochastic differential equation with 

one-dimensional Wiener process is studied. Stability analysis shows that the 

mean-square stability of our proposed method contains the mean-square 

stability region of linear scalar test equation. Finally, numerical examples 

illustrate the effectiveness of the theoretical results. 
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1. Introduction 

In this work, we look at Itô stochastic ordinary differential equations (SODEs) as 
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Here , : ,d d

qU V   are drift and diffusion functions, respectively. We assume that the initial data is 

independent of the Wiener measure driving the equations and q

t , 1,...,q Q is an one-dimensional Wiener 

process defined on the complete probability space 0( , ,{ } , )t tF F P . We assume the SODE (1) satisfies the 

required conditions of the existence and uniqueness theorems [5]. This type of equation (1) often appears in 

many scientific areas of engineering and applied sciences such as mathematical finance, biology, chemistry, 

medicine, and etc. [1, 2, 5, 9–11]. Hence, the approximate and numerical solutions of SODE (1) have been 

considered by many authors in recent years, for example see [4, 12–14, 17, 19–21]. 

This paper is motivated by the work of Higham et al. [3]. We propose a new Milstein method, and 
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investigate its strong convergence when SDE (1) hold Lipschitz condition and linear growth bound for the drift 

and diffusion terms. Fixed any time 0T   and given a step-size 0T t
h

N


 , 

0lt t lh  , 0,1,...,l N  where 

1,2,...N  , we introduce the split-step (α, β)-Milstein (SSABM) approximation 
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Here , [0,1]    and 1

q q q

l l l     is a Gaussian random variable N(0,h). If choose 0,    we gives 

Milstein method [7]. For  1, 0,    we obtain DSSBM method [18]. Obviously, deterministic two first 

equations in (2) are implicit in 
l

Y  and 
l

Y when , (0,1]   that must be solved in order to obtain the 

intermediate approximation 
l

Y  and 
l

Y , respectively. 

 

The following proposition can be found in [5, 8] when considering the strong convergence properties of the 

numerical methods for SODEs. 

Proposition 1. For any 1 2, ,dz z   the satisfaction of Lipschitz conditions 
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and linear growth bounds 
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hold for positive constants 1  and 2 , where   denote a maximal operator. 

The layout of the paper is as follows. In Section 2, we discuss the strong convergence of the numerical 

method (2). The mean-square stability properties of the SSABM method (2) is analysed in Section 3. Finally, 

we show numerically the accuracy and efficiency of the proposed method applied to SODEs. 

2. Strong convergence properties 

In this section, we prove strong convergence of the SSABM method (2) by Proposition 1, following lemma 

and Milstein approximation step 
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with the local mean error ( )O h  and mean-square error 2( )O h . 

 

Lemma 1. Assume for a one-step discrete time approximation Y that the local mean error and mean-square error 

for all 1,2, ,N   and  0,1,2 , 1N   satisfy the estimates 
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and 

2

1

1

2 2
1| | | | | ( ),

ll t tE Z F O h

  Y                                                                                      (7) 

 

when 2
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 Y holds for each 0,1, , .r N
 

 

Theorem 1. Under the Proposition 1.1, the numerical solution produced by the SSABM method (2) converges 

to the exact solution of SODE (1) in the mean-square sense with strong order of convergence 1. 

 

Proof. For estimation of local mean error of our method, we can write 
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Notice that for obtain of above inequality, we use global Lipschitz condition (3) and [ ] 0q

lE W  . Also, applying 

(2) and Proposition 1 yields 

| | | | | |,l ll l l l
    Y Y Y Y Y Y                                                                   (10) 
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Form above inequalities, we conclude that 

1
2 2 2

1

| | (1 | | ) ,
1

l ll
h

h




  


Y Y Y                                                          (11) 

and 

1
1 2 2

2

1 1

1 (1 )
| | (1 | | ) .

2
(1 )(1 )

2

ll l

h
h

h
h






 
  

 

Y Y Y                                      (12) 

Now for 1 1(1 )(1 ) 0,
2

h
h


     we have from (8)-(12), 

1 2.   Similarly by standard arguments, we can 

prove the following 
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Similarly to (9), by  
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Using two first equations in (2), Proposition 1 and 

2 2 2 2

1 2 1 2( ) ( ),n na a a n a a a        

we can get 
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2 2| | 2 | | 2 | | ,l ll l l l
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Combining (13)-(17), implies that for 
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   Thus, we can choose in Lemma 1 

and 1 2

3
2,

2
    can prove that the strong order of our method is equal one.□ 

3. Linear mean-square stability properties 

Linear mean-square (MS-) stability of SSABM method, studied in this section of paper. For this aim, we 

choose a scalar linear SODE with an one-dimensional Wiener process as a test equation, which is given by 

0, , , .t t t tdZ Z dt Z d t t                                                           (18) 

The zero solution of (18) is said to be MS-stable if 2lim | | 0.t
t

E Z


 It is well known [6, 15] that the zero 

solution of (18) is MS–stable if and only if 

22 0.                                                                                (19) 

Saito and Mitsui [15] introduce the following definition of MS-stability for a numerical scheme. 

Definition 1. The numerical method is said to be MS-stable if 
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2( , , ) [ ( , , , )] 1, N(0,1),l lR h E R h        

where ( , , )R h   is called MS-stability function. 

Applying SSABM method to the linear test equation (18) yields 
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Using Definition 1, the SSABM scheme is MS-stable if 
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This is equivalent to 
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Considering x h  and 2 ,y h  we have drawn the MS-stability regions of the proposed method (2) and test 

equation (18) in Figure 1. Results of this figure show that the method can solve stiff SDEs when , 1.    

4. Numerical results 

In this section, we present some numerical results obtained by our new scheme (2) with different values of 

,  . Comparison of this method with Milstein and DSSBM [18] schemes on the Matlab platform, confirm our 

theoretical conclusion. 
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Figure 1.  MS-stability regions for the SSABM method (2) applied to scalar linear SODE (18). 
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Example 1. Consider the following nonlinear stiff SODE, 
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Figure 2 gives the means square errors (MSE) of the SSABM (2), Milstein and DSSBM [18] methods. From 

Figure 2, it is clear that the SSABM scheme has better accuracy of Milstein and DSSBM methods. 

 

 

Figure 2. MSE estimation of the SSABM (2), Milstein and DSSBM [18] methods for nonlinear SODE (21). 

 

Example 2. We consider the following stiff stochastic system [16] 
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Figure 3 illustrates the numerical simulations of the SSABM and Milstein schemes for step-size h = 0.01. 

From this figures, we can see that the stability properties of the SSABM scheme are better than the Milstein 

scheme for stiff stochastic system (22). 

 

5. Conclusion 

In this article, we applied the new implicit Milstein method to the stochastic differential systems. The split-

step ( , )  -Milstein schemes have strong convergence order of one and are stable in mean-square sense for the 

scalar linear SODE with an one-dimensional Wiener process when , 1   . In numerical results, the presented 

method which is implicit scheme has superior efficiency and accuracy than the Milstein and DSSBM [18] 

methods. 
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Figure 3. Numerical simulation of the Milstein and SSABM (2) methods for SDE system (22) 
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