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A R T I C L E  I N F O  A B S T R A C T 

The stochastic data envelopment analysis (SDEA) is based on treating input 

values and output values as random variables. Typically, in research related to 

stochastic data envelopment analysis, variables are assumed to be independent 

of one another. It is likely that there will be a dependency structure between 

variables. We investigated the dependence structure between input variables 

and between output variables. To estimate this dependence structure, we used 

the Copula approach. Therefore, we have proposed a stochastic DEA model 

with a dependence structure called Copula-SDEA in this study and evaluated 

this model using both input-oriented and output-oriented models. We evaluated 

the proposed models using real data from 10 car companies. The 

implementation of the proposed model showed that, different results can be 

drawn when taking into account the dependence structure between stochastic 

inputs and (or) outputs. Additionally, a comparison of Copula-SDEA models 

with the SDEA model revealed that the evaluation of the efficiency of DMUs 

with Copula-SDEA models differed significantly from the SDEA model. 

Moreover, the results indicate that in both input- and output-oriented models, 

considering the dependence structure between inputs is more important than 

considering the dependence structure between outputs. 
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1. Introduction 

The Data Envelopment Analysis (DEA), introduced by Charnes et al. [3], is a linear programming method for 

computing the relative efficiency of a set of homogeneous units, called Decision Making Units (DMUs). DMUs are 

considered efficient if their efficiency score is equal to one, otherwise, they are considered inefficient. Through the 

use of a ratio of the weighted sum of outputs to the weighted sum of inputs, DEA generalizes the intuitive single-

input single-output ratio efficiency measurement into a multiple-input multiple-output model [25]. DEA is an 

optimization approach that differs from Markowitz by focusing on the objective function of a multi constrained linear 

programming model, as opposed to the mean and variance parameters derived from Markowitz [17, 36]. 
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In classic DEA models, the inputs and outputs are assumed to be deterministic. In real-world applications of 

DEA models, variables are, however, often vague or random. Data uncertainty is the main challenge in the 

application of DEA models. Peykani et al. [28] categorize uncertain DEAs into five categories: Bootstrap DEA, 

Robust DEA, Imprecise DEA, Fuzzy DEA and Stochastic DEA. Fuzzy DEA and stochastic DEA have been 

widely used among these methods. 

 Tavan et al. [34] proposed the fuzzy stochastic data envelopment analysis with an application to base 

realignment and closure. Nasseri et al. [22] proposed the fuzzy stochastic input-oriented primal data 

envelopment analysis models with application to insurance industry. A fuzzy stochastic DEA model with 

undesirable outputs was proposed  in [8, 23]. Pekani et al. [26] conducted a structured literature review of the 

fuzzy chance-constrained data envelopment analysis (FCCDEA) approach and proposed how to use it for stock 

valuation and portfolio selection when data is ambiguous in [27]. In [30], a new method is proposed for solving 

DEA models with intuitionistic fuzzy data. Using an alphabetical approach, the model is transformed into a 

linear programming problem with an intuitive fuzzy objective function. The fuzzy chance-constrained data 

envelopment analysis (FCCDEA) approach is presented in [29] for stock evaluation and portfolio selection 

under data ambiguity. 
In DEA, a probability distribution can be used to model input/output uncertainty by modeling their inherent 

randomness. Stochastic DEA models are constructed by employing these distributions [7, 21, 37]. Banker et al. 

[2] integrated statistical elements into DEA and developed a non-parametric method. A stochastic DEA model 

using chance-constrained programming was proposed by [16, 32] to address the randomness of input and output 

data. The DEA models used in [10, 11, 14, 15, 18, 31] were proposed for stochastic data with normal 

distributions for the input and output variables. The stochastic DEA model of [39] uses a reliability constraint to 

maximize the lower bound of an entity's efficiency score with some predetermined probability. Kheirollahi et al. 

[13] developed a stochastic DEA with a chance-constrained programming approach that uses a relaxed 

combination of inputs to model congestion. The most common stochastic frontier model with an error structure 

was proposed by [12] on the basis of a convolution of the normal and half-normal distributions. In [24], Nazari 

and Behzadi proposed a stochastic DEA with skew-normal (SN) variables as the asymptotic distributions of a 

set of random variables.  

Fuzzy stochastic DEA is another concept that has been proposed by many researchers [1, 8, 22, 23, 34, 35, 

38].Assumptions are made in all the SDEA models developed by the researchers that there is no dependency 

between input variables and between output variables. However, there may be dependencies between variables 

in real-world applications. A dependence structure can affect the output of an SDEA model. Our study assumes 

that the random variables follow a normal distribution and considers the dependence structure between them in 

the SDEA model. In order to calculate the dependence structure between variables, we use the Copula approach. 

A copula function is used to represent multivariate dependency. Copula theory is introduced following Sklar’s 

theorem [33], which states that multivariate probability density function can be expressed as the product of its 

marginal density function and the copula density function, which represents the dependency structure among 

random variables. There are several families of Copula functions. Because the variables follow a normal 

distribution, we use the Gaussian copula to estimate the dependence structures between variables. In order to 

discover whether it is more important to consider the dependence structure among inputs or the dependence 

structure among outputs, we examine two input- and output-oriented SDEA models. As a result, we have 

presented input-oriented Copula-SDEA and output-oriented Copula-SDEA models in this research. 

The rest of the paper is organized as follows. In Section 2, the preliminaries including the DEA concepts 

and its stochastic model, along with Copula theory and Copulas family are described. In Section 3, we formulate 

the Copula-SCCR models, and in Section 4, we evaluate them with an example. Finally, the results of the 

proposed models are discussed in Section 5. 
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2. Stochastic DEA 

We assume  1 ,...,j j mjx x x and  1 ,...,j j sjy y y are random inputs and outputs that are related to 

DMU , 1,...,j j n . It has been assumed that these components are normally distributed, i.e.  2,ij ij ijX N   and 

 2,rj rj rjY N   . We also assume that different DMUs' ith input and rth output are independent. Using 

stochastic data, an input-oriented CCR model (SCCR) can be constructed as follows: 
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where   is the level of error between 0 and 1, which has been predetermined. By using the external slack 

variables in the model (1), we convert the inequality constraints to equality constraints according to 

Khodabakhshi and Asgharian [14]. Therefore, we can express the stochastic version of the model (1) as follows: 
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Definition 1. (Efficiency). The DMUo is Pareto efficient if and only if in optimal solution [3]: 

1. 
* 1  . 

2. 0,   ,i rs s i r    . 

In order to convert model (2) to a deterministic form, given that ijX and rjY have a normal distribution, we use 

the expected value and input and output variances as described by Dibachi et al. [6]: 
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Accordingly, the deterministic form of model (2) can be expressed as follows: 
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   where, Φ is the cumulative distribution function (CDF) of the normal distribution.  
 

According to the same procedure, output-oriented SCCR model is derived as follows: 
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3. Dependence structure and copula 

The dependence between random variables is of great significance since it may indicate important statistical 

or causal relationships in real-world systems. Therefore, it is crucial to estimate such dependencies between 

variables. The Copula theory is one of the best approaches to estimating the dependence structure. A Copula (C) 

is multivariate cumulative distribution function with uniform univariate margins on [0, 1], and is defined as 

follows [20]: 

Definition 2. (Copula). Given 2d   random variables  1,
d

dX X X . Consider   , 1, ,i i iu F x i d   to be 



24 S. Balak  et al. / FOMJ 2(4) (2021) 20–37 

a marginal distribution. The d-dimensional copula   : 0,1dC      of X has the following properties: 

 If any of the arguments is zero, the copula is zero;  1 1 1, , ,0, , , 0i i dC u u u u   . 

 If one argument is u and all others are 1, then the copula equals u;  1, ,1, ,1, ,1i iC u u . 

A copula’s application is theoretically based on Sklar's theorem. 

Theorem 1. (Sklar’s Theorem). Given 2d   random variables  1,
d

dX X X , its cumulative distribution 

function (CDF) F(x) can be written as follow: 

 

   1, , .dC u uF x                                                                                                                                               (8) 

where    0,1iu  are marginal distribution functions of X. if  iF are continuous, then C is unique. 

Researchers have developed several families of copulas. The Gaussian and the Archimedean copulas are the 

most widely used Copula functions. Archimedean copulas are a class of associative copulas, which include 

several families of Copula functions, such as the Frank, Joe, Gumbel, and Clayton functions. Due to the normal 

distribution of the stochastic variables, the Gaussian copula was used in this study. Following is a brief 

explanation of this copula. 

 

3.1. Gaussian Copula 

A Gaussian copula is a distribution over a unit hyper cube  0,1
d

. Bivariate Gaussian copulas can be 

constructed using a bivariate normal distribution with unit variances, zero means, and correlation ρ. The 

Gaussian copula can be expressed as follows for a given correlation parameter ρ: 
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    where 
1  is the inverse cumulative distribution function of a standard normal and 

  denote the joint 

cumulative distribution function of a bivariate normal distribution with the mean vector zero and covariance 

matrix equal to the correlation ρ. The corresponding copula density can be expressed as [20], 
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     where  1

1 1x u   and  1

2 2x u . Kendall’s τ of Gaussian copula is as follow, 
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3.2. Estimating Copulas 

Several methods can be used to estimate copulas, including maximum likelihood estimation (MLE), Pseudo-

MLE, and Moment-matching. We estimate Copulas using maximum likelihood estimation (MLE). Based on 

Hofert et al. [9], given realizations  , 1, ,iu i d  of a random sample  , 1, ,iU i d , and the copula C, the log-

likelihood is defined by, 
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The ML estimator n is obtained by numerically maximizing (12) with respect to : 

 1argsupln , , ; .n du u                                                                                                                               (13) 
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4. Formulation of the SCCR models with dependence structure 

There may be a dependence structure between random variables, as was mentioned earlier. Analysis of 

SDEA models without taking this dependence structure into account can give incorrect results and result in 

incorrect decisions. We consider separately the dependence structure between input variables and the 

dependence structure between output variables. To evaluate the impact of these dependence structures, we 

presented two models: 1- input-oriented SCCR model with dependence structure, and 2- output-oriented SCCR 

model with dependence structure. Since we estimate the dependence structure using copula, we call these 

models input-oriented copula-SCCR (IO-Copula-SCCR) and output-oriented copula-SCCR (OO-Copula-

SCCR). 

Let us consider m random variables with normal distributions 1, , mx x . The pairwise dependence values of 

these variables are represented by , 1, , ; 1, , ;
i jx x i m j n i j      (

i j j ix x x x  ). We define the new variables as 

follows: 
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variables. In general, it can be said that the new variable is equal to its sum with the weighted sum of the other 

variables, where the weights are equal to the values of the dependence of the distribution of the variables.  

 

Theorem 2. (Dependence structure). The dependence structure causes changes in the mean (  ) and variance ( 2 ) 

of any random variable with a normal distribution. 
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 new i j i j

m m

i i x x j i x x j

i j i j

E x E x x     
 

 
      

 
                                                                                 (15) 

 

   

   

   

2

new

2

2

1

     var var ,

var var +2cov , ,

cov , +2cov , .

i j

i j i j

i j i k i j

m

i i x x j

i j

m m

i x x j i x x j

i j i j

m m m

i x x x x j k i x x j

i j k i j

x x x

x x x x

x x x x

  

   

     



 

  

 
   

 

   
      

   

 
    

 



 

 

                                                             (16) 

This completes the proof. 

4.1. IO-Copula-SCCR model with input dependence structure 

Let the distributions of input variables be dependent, but let the output variables be independent. The IO-

Copula-SCCR model is expressed as follows, taking into account the model (2) and the dependence between the 

distributions of input variables: 
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In order to convert inequality constraints into equality constraints in model (17), there exists 0is   , and 0rs 
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Therefore, model (17) can be rewritten as follows: 
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
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1

   

                           ,...,

 

,

,           .   1,2.., 0  1,2,. ., ,  1,2,., , .. .,j i r

r s

s mns r sj i  



  

                                 (20) 

 

Definition 3. (Stochastic Efficiency). DMUo is Pareto efficient for every significance level , if and only if in the 

optimal solution, 
 

1. * 1  . 

2. 0,   ,i rs s i r    . 

In order to obtain the deterministic form of the model (20), we consider ih as follows: 

 

       
1

.
i k i kj oj o

n m m

i j ij iok kx x x x
j i k i k

h X X X X   
  

   
      

   
                                                                              (21) 

 

Since ijX  and rjY  are assumed to have normal distributions, ih  will also have a normal distribution

  2
, , ,i i ih N      . Where, 
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         
1

.
i k i kj oj o

n m m

i i j ij iok kx x x x
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                                                                               (22) 
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2
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                  var var 2cov , ,
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

 

  

 
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 
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

 

 

                                           (23) 

     where, 
i k

m

j i x x k

i k j

A X X


 
  
 

 , and
i k

m

o i x x k

i k o

B X X


 
  
 

 .  

Given the stochastic variable ih , the first inequality of model (20) can be rewritten in the following form: 

 

 
   

1 1 .
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i i
i
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P sh P
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       




 
  


 



    


                                                                            (24) 

 

Taking 
 , ,

i i

i

i

h
Z



   


 and iZ to be normally distributed, we get: 

 

     
1 .

, , , , , ,
   i i i

i i

i i

i i

i

is s s
P Z ZP
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  

           

     
  

   
  


    


   

  
                                      (25) 

 

where   is the standard normal cumulative distribution function. Thus: 

 

 
     1 1 , , 0.

, ,

i
i i

i
i

i

s
s


      

   





                                                                               (26) 

 
As a result, the probability constraint for the i-th input in model (20) can be expressed in the following 
deterministic form: 

 

   1

1

, ,
n

j ij i io

j

is        



                                                                                                             (27) 

       where    i k jj

m

ij ij kx x
i k

   


  , and    
.

i k oo

m

io io kx x
i k

   


   

Similarly, the deterministic form of the probability constraint for the r-th output in model (20) is given by: 

 

   1

1

.
n

j rj r r ro

j

s      



                                                                                                                      (28) 

       where  

 .rj rjE y                                                                                                                                                         (29) 

       
2

1 1 1

cov , var 2 cov , .
n n n

r j k rj rk ro j rj ro

j k j

y y y y y    
  

                                                                      (30) 
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Accordingly, the deterministic form of the IO-Copula-SCCR model (20) with input dependence structure is as 

follows: 

 

   

   
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1

1

1 1
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



 
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 
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





 

 1,2,..., ,  1,2,..., .               1,2..., ,j i sn m r  

                          (31) 

 
Theorem 3. For every level  , model (31)  is feasible. 

Proof. Let 1o  , 1  , 0j  , j o and also 0i rs s   , 1,2, ,i m , 1,2, ,r s .              

 Clearly, if we do not take the dependence between the input distributions into account ( 0  ) in the model (31), 

then it results in a SCCR model. 

 

4.2. IO-Copula-SCCR model with output dependence structure 

Let the distributions of output variables be dependent, but let the input variables be independent. The IO-

Copula-SCCR model is expressed as follows, taking into account the model (2) and the dependence between 

the distributions of output variables: 

 

 

       

*

1

1
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s.t.

         1 ,                                                         1, 2, , ,

         1 ,     1
j or g r gj o

n

j ij io

j
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

  


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 
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

   , 2, , ,
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s
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                             (32) 

 
In order to convert inequality constraints into equality constraints in model (32), there exists 0is   , and 0rs 

such that: 

 

       
1

1 .
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n s s
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1

1 .
n

j ij io i

j

P X X s  



 
     

 
                                                                                                                     (34) 

 
Therefore, model (32) can be rewritten as follows: 
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       
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
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                           (35) 

 
According to definition 3, DMUo is Pareto efficient at any significance level   if and only if: 

1. * 1  . 

2. 0,   ,i rs s i r    . 

Using the procedure outlined in the previous section, the first and second constraints on model (36) take the 

following forms, respectively: 
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   where, 

 .ij ijE X                                                                                                                                                         (38) 
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Accordingly, the deterministic IO-Copula-SCCR model with output dependence is as follows 
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Theorem 4. Model (42) is feasible for every significant level  . 

Proof. Same as Theorem 2. 

4.3. OO-Copula-SCCR model with input dependence structure 

Considering the dependence structure between input variables, we can write the output-oriented SCCR model 

(7) as follows: 
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By following the same procedure described in Section 4.1, we are able to write the deterministic form of the 

OO-Copula-SCCR model (43) with input dependence structure is as follows: 
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Theorem 5. For every level , model (44) is feasible. 

Proof. The proof is same as Theorem 2. 
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4.4. OO-Copula-SCCR model with output dependence structure 

Considering the dependence structure between output variables, we can write the output-oriented SCCR model 

(7) as follows: 
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                             (45) 

By following the same procedure described in Section 4.2, we are able to write the deterministic form of the 

OO-Copula-SCCR model (45) with output dependence structure is as follows: 
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Theorem 6. For every level , model (46) is feasible. 

Proof. The proof is same as Theorem 2. 

5. Numerical example 

In this section, we demonstrate the performance of our proposed models using real-world data. Consider 10 car 

companies with two stochastic inputs and two stochastic outputs. In this model, ‘‘construction costs (x1)”, and 

‘‘after-sales service costs (x2)’’ are inputs and ‘‘0 to 100 km/h acceleration (y1)’’, and ‘‘maximum required 

power (H.P) at 6000 rpm (y2)’’ are outputs. According to the goodness of fit test, the input and output data have 

normal distributions. The estimates are shown in Table 1.  
 

The proposed models were solved numerically using MATLAB software. Tables 2-7 provide the relative 

efficiency of 10 car companies and the numerical values for shortage and surplus variables at the significant level 

of 0.05 for these models. There are significant differences between the results of the SCCR model and the 

Copula-SCCR model. Therefore, some DMUs that have been evaluated by the SCCR model as efficient, taking 

into consideration the structure of dependency between variables, are stochastically inefficient. Also, there are 

DMUs that are stochastically inefficient when analysed by the SCCR model, but are stochastically efficient 

when analysed by the Copula-SCCR model. It highlights the importance of considering the dependency 

structure and the strength of Copula's approach in estimating these dependencies. 
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Table 1. Estimated input and output parameters 

DMUs  2

1 ,x N     2

2 ,x N     2

1 ,y N     2

2 ,y N    

DMU1 N(1001.04, 588.71) N(96.8643, 0.23) N(11.42045, 0.06) N(9.0008, 96.03) 

DMU2 N(9975.08,1263.88) N(103.7031, 0.25) N(11.17942, 0.30) N(9.40659, 105.62) 

DMU3 N(10017.94, 273.32) N(98.6785, 0.02) N(9.90928, 0.20) N(10.14612, 17.41) 

DMU4 N(10029.88, 382.65) N(98.1702, 0.07) N(9.55627, 0.25) N(10.54101, 8.67) 

DMU5 N(9981.57, 881.34) N(105.022, 0.54) N(11.93626, 0.15) N(8.507416, 35.24) 

DMU6 N(10017.25, 2697.64) N(105.6178, 0.57) N(11.42497, 0.21) N(9.0617, 18.31) 

DMU7 N(10025.56, 268.25) N(90.4922, 0.02) N(9.96474, 0.04) N(10.39814, 730.76) 

DMU8 N(9131.6, 7082547.56) N(100.4313, 0.04) N(9.77114, 0.18) N(10.3222, 5.99) 

DMU9 N(9986.84, 920.7) N(99.8109, 0.74) N(11.28765, 1.21) N(9.25204, 46.76) 

DMU10 N(19014.39, 728917699.53) N(98.1506, 0.01) N(10.04604, 0.05) N(10.70154, 14.27) 

 

Table 2. The efficiency and slacks of DMUs for Input-Oriented SCCR model 

2s
 1s

 2s
 1s

  DMUs  

0.000 0.000 0.000 0.000 1.000 DMU1 * 
0.018 0.000 0.000 0.000 0.730 DMU2  
0.000 0.000 0.000 0.000 0.998 DMU3  
0.002 0.000 0.000 0.000 1.000 DMU4  
0.000 0.000 0.000 0.000 1.000 DMU5 * 
0.000 0.000 0.000 0.000 1.000 DMU6 * 
0.037 0.001 0.000 0.000 0.821 DMU7  
0.000 0.000 0.000 0.000 1.000 DMU8 * 
0.000 0.001 0.000 0.000 0.786 DMU9  
0.000 0.000 0.000 0.000 1.000 DMU10 * 

 

Table 3. The efficiency and slacks of DMUs for Output-Oriented SCCR model 

2s
 1s

 2s
 1s

  DMUs  

0.061 0.530 0.472 0.001 0.896 DMU1  

0.109 0.487 0.007 0.012 0.838 DMU2  

0.000 0.000 0.000 0.000 1.000 DMU3 * 

0.000 0.000 0.000 0.000 1.000 DMU4 * 

0.059 0.479 0.016 0.000 0.901 DMU5  

0.086 0.506 0.005 0.000 0.928 DMU6  

0.065 0.385 0.135 0.008 0.895 DMU7  

0.141 0.563 0.013 0.152 0.909 DMU8  

0.045 0.494 0.002 0.008 0.898 DMU9  

0.000 0.000 0.000 0.000 1.000 DMU10 * 

Table 4. The efficiency and slacks of DMUs for IO-Copula-SCCR model with input dependence structure 

2s
 1s

 2s
 1s

  DMUs  

0.000 0.000 0.000 0.000 1.000 DMU1 * 
0.000 0.000 0.006 0.000 0.895 DMU2  
0.000 0.000 0.006 0.000 0.794 DMU3  
0.000 0.000 0.006 0.000 0.740 DMU4  
0.000 0.000 0.000 0.000 1.000 DMU5 * 
0.000 0.000 0.000 0.000 1.000 DMU6 * 
0.131 0.000 0.006 0.000 0.748 DMU7  
0.000 0.000 0.000 0.531 0.650 DMU8  
0.000 0.001 0.007 0.000 0.831 DMU9  
0.000 0.000 0.000 0.507 0.132 DMU10  
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Table 5. The efficiency and slacks of DMUs for OO-Copula-SCCR model with input dependence structure 

2s
 

1s
 

2s
 

1s
  DMUs  

0.010 0.062 0.000 0.007 0.823 DMU1  
0.009 0.012 0.000 0.002 0.891 DMU2  
0.006 0.004 0.000 0.001 0.873 DMU3  
0.000 0.000 0.000 0.000 1.000 DMU4 * 
0.055 0.500 0.005 0.000 0.032 DMU5  
0.055 0.500 0.008 0.000 0.022 DMU6  
0.047 0.473 0.005 0.000 0.105 DMU7  
0.035 0.357 0.000 0.008 0.177 DMU8  
0.000 0.000 0.000 0.000 1.000 DMU9 * 
0.000 0.000 0.000 0.000 1.000 DMU10 * 

 

Table 6. The efficiency and slacks of DMUs for IO-Copula-SCCR model with output dependence structure 

2s
 1s

 2s
 1s

  DMUs  

0.000 0.000 0.000 0.000 1.000 DMU1 * 
0.000 0.003 0.000 0.000 0.710 DMU2  
0.000 0.003 0.005 0.000 0.803 DMU3  
0.000 0.008 0.000 0.000 0.701 DMU4  
0.018 0.000 0.000 0.000 0.879 DMU5  
0.000 0.000 0.000 0.000 1.000 DMU6 * 
0.207 0.000 0.000 0.000 1.000 DMU7  
0.000 0.010 0.000 0.000 0.687 DMU8  
0.004 0.000 0.001 0.000 0.784 DMU9  
0.000 0.000 0.000 0.000 1.000 DMU10 * 

 

Table 7. The efficiency and slacks of DMUs for OO-Copula-SCCR model with output dependence structure 

2s
 1s

 2s
 1s

  DMUs  

0.057 0.476 0.010 0.004 0.375 DMU1  
0.000 0.000 0.000 0.000 1.000 DMU2 * 
0.059 0.470 0.004 0.011 0.132 DMU3  
0.060 0.470 0.005 0.013 0.199 DMU4  
0.000 0.000 0.000 0.000 1.000 DMU5 * 
0.000 0.000 0.000 0.000 1.000 DMU6 * 
0.000 0.000 0.000 0.000 1.000 DMU7 * 
0.003 0.001 0.000 0.007 0.865 DMU8  
0.052 0.471 0.005 0.001 0.294 DMU9  
0.000 0.000 0.000 0.000 1.000 DMU10 * 

The Figures 1 and 2 compare the assessed efficiencies for input- and output-oriented models, respectively. 

As shown in the figures, input- and output-oriented Copula-SCCR models have different estimated efficacies 

compared to the SCCR model. To better compare Copula-SCCR and SCCR models, Figures 3 and 4 show the 

differences between the estimated efficiency of input- and output-oriented Copula-SCCR models and SCCR 

models. As shown in Figure 3, the difference between input-oriented Copula-SCCR and SCCR models is 

impressive, with an average of 20.5% for input dependence case, and 11.8% for output dependence case. The 

Figure 4 also shows an average difference of 40% between the output-oriented Copula-SCCR and SCCR 

models for input dependence, and 34.7% for output dependence (Table 8). Consequently, output-oriented 

models have greater effects from dependencies than input-oriented models. In addition, the mean differences 

between the models in both input- and output-oriented cases indicate that in both input- and output-oriented 

cases, the Copula-SCCR model with input dependence structure differs the most from the SCCR model. A very 

important finding reveals that considering the dependence structure between inputs is more important than 

considering the dependence structure between outputs in both input- and output-oriented models. 
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Figure 1. Performance of DMUs in input-oriented models. 

 

 

Figure 2. Performance of DMUs in output-oriented models. 

 

 

Figure 3. The difference between input-oriented Copula-SCCR models and input-oriented SCCR models  
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Figure 4. The difference between output-oriented Copula-SCCR models and output-oriented SCCR models 

 

Table 8. Differences in mean values between the Copula-SCCR model and the SCCR model 

Model 
Mean Difference with SCCR Model (%) 

Input-Oriented Output-Oriented 

Copula-SCCR with input dependence structure 20.546 40.140 

Copula-SCCR with output dependence structure 11.764 34.696 

6. Conclusion 

When the input and output variables are not deterministic, but stochastic, DEA with stochastic data provides 

a powerful method for determining the efficiency of homogenous decision-making units. Probability 

distributions play a key role in analysing such data. There may be a dependence structure in stochastic variables. 

Failure to consider a dependence structure leads to incorrect results, and consequently to erroneous decisions in 

stochastic data envelopment analysis.  

We assumed that the inputs and outputs are normally distributed in this study. Input- and output-oriented 

Copula-SCCR models were presented considering the dependence structure between the random variables. As 

the variables are normally distributed, we used the Gaussian copula to estimate the dependence structure. We 

evaluated the proposed models using the real data of 10 car companies. This study shows that, first, input-

oriented and output-oriented Copula-SCCR models have different estimated efficiencies compared with the 

SCCR model. Second, in the output-oriented model, considering the dependence structure is far more important 

than considering the input-oriented model. Third, for both input- and output-oriented models, the Copula-SCCR 

model with an input dependence structure showed the most difference from the SCCR model. This is the very 

important finding that shows both in input- and output-oriented models, it is more important to account for the 

dependence structure between inputs than to consider the dependence structure between outputs. We 

recommended for future work to consider the dependence structure for other distributions, such as skew normal 

distribution, and also use these models in fuzzy DEA to get more accurate results. 
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