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A R T I C L E  I N F O  A B S T R A C T 

Investors are always interested to choose the portfolio with the highest return and 

lowest risk for optimal asset management. A multi-objective portfolio 

optimization problem with cardinality constraint that determines the number of 

assets in a portfolio is considered in this paper. Objectives are maximizing the 

expected value of wealth and minimizing value at risk and conditional value at 

risk. Due to the complexity of the problem, it is necessary to use meta-heuristic 

algorithms. We use multi-objective evolutionary algorithms (Multi-Objective 

Particle Swarm Optimization, Non-Dominated Sorting Genetic Algorithm-II) to 

overcome this problem. In this research, the liquidity constraint and the 

thresholds of investments are considered. We use experts’ opinions in a fuzzy 

method to deal with the uncertainties in the parameters and provide better and 

more quality decisions. Finally, an Iranian stock market case study is presented 

to examine the proposed model in various situations. The results indicate that 

examining uncertainties and other real-world assumptions provides more 

efficient and practical solutions. 
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1. Introduction 

In post-modern portfolio theory, researchers have focused on undesirable risk measures such as value at risk 

(VaR) and conditional-value at risk (CVaR). The VaR of a portfolio is the loss does not exceed 1-α percent 

confidence. The CVaR is the average conditional loss above VaR. The CVaR can be used to balance risk and 

return. Portfolio optimization problems are affected by political, social, environmental, and economic 

uncertainties. The fuzzy approach is a powerful instrument to manage this kind of uncertainty [26-30]. VaR and 

CVaR should be redefined in fuzzy circumstances. In this research fuzzy portfolio optimization problem is 

considered by using credibility theory. Markowitz [21] introduced the modern portfolio theory. He defined 
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portfolio risk as the variance of the expected return on the assets, based on the weighted average expected return 

on each asset. It is based on the assumption that investors have a quadratic utility function or that asset returns 

follow a multivariate elliptical distribution. Variance is introduced as a suitable risk measure in modern portfolio 

theory but in post-modern portfolio theory, undesirable risk measures such as VaR and CVaR are considered [1]. 

It is important to note that this optimization problem is non-convex and its solution is complex in minimizing 

the risk. Therefore, common commercial software cannot be used to solve these models. To solve the problem of 

value optimization at risk, heuristic and metaheuristic methods are suggested, Gilli et al. [9]. In addition, daily 

changes may occur in the parameters of the stock portfolio selection optimization problem. It is related to the 

inherent changes within the parameters, which occur over time due to the dynamic nature of the parameters. This 

uncertainty refers to regions where the frequency is high but the intensity is low in terms of frequency and 

intensity. Considering crisp parameters for input parameters leads to the optimal or low-quality solutions [4, 10]. 

Probability and fuzziness approaches are two important approaches to dealing with uncertainties. However, 

the first approach has weaknesses because it requires parameter distribution information. In many real-world 

problems, there is not enough information about distribution functions. Probability approaches also impose a lot 

of complexity on the problem. On the other hand, the fuzzy approach does not require information from the 

parameter distribution and does not add much complexity to the problem. 

A multi-objective model will be presented in the current research that minimizes VaR and CVaR 

simultaneously. Furthermore, the inherent uncertainties of the parameters are considered by credibility-based 

fuzzy theory. In addition, because the proposed model has a non-convex space and cannot be solved using 

commercial software, two met heuristic methods will be used to solve the problem. The article continues as 

follows: In Section 2, the theoretical foundations and research background are presented. In Section 3, the research 

method introduces a fuzzy probability-based research method for conditional risk value and risk value. Section 4 

introduces the limitations applied to the model. Section 5 describes the research methodology and solution 

approach. The main results obtained are listed in Section 6 and suggest potential developments. 

2. Theoretical Foundations and Research Background 

In this approach, concerning the tendency of the decision-makers (DM) in taking optimistic, pessimistic, and 

compromise attitudes, three measures including the possibility, necessity, and credibility measures are used to 

form the Fuzzy DEA (FDEA) models, respectively. However, decision-makers may have different preferences 

and so it is necessary to customize fuzzy DEA models according to the properties of DMU. Mishra et al. [22] 

used the MOPSO algorithm to solve the stock portfolio optimization problem and compared it with SPFGA, 

NSGAII, and SPEA-II methods. They used standard deviation minimization, return maximization, and return 

optimization to solve the optimization problem, calling risk measurement, and compared it with NSGAII, SPFGA, 

SPEA-II methods. Armananzas & Lorenzo [2] processed three meta-heuristic algorithms SA, GLS, and ACO, 

and showed the best optimizers, which are ACO and SA. Markowitz [21] sought to minimize deviations from the 

standard returns on assets, and deviations from expected returns on risk were called risk. Even though the return 

is higher than the desired average of capitalists, to eliminate it, he later replaced the measure of semi-variance 

[24] for the calculation of negative deviations. Mendelburt [23] and Fama [7] showed for the first time that the 

distribution of return on assets has a wider sequence and a higher peak than the normal distribution. 

Therefore, there was a need for a measure of risk that did not consider the assumption of normality. So, in the 

early 1990s, JP Morgan introduced value at risk (VaR). This measure indicates how much portfolio assets are 

exposed to risk over a given time horizon at a given confidence level. Still, it does not provide information about 

the portfolio's expected losses. To cope with this issue, a conditional risk-based risk measure was later introduced 

by Rockefeller & Oriaso [33] that identifies expected losses at a set confidence level. One of the advantages of 

using this metric is becoming a linear programming model. Fuzzy theories are used to create a model that is 

averaged CVaR. In their study, evolutionary optimization algorithms is described in NSGAII, PESA, and SPEA 

to optimize their portfolio and replaced the mean-variance model with VAR and C-VAR criteria are closer to the 

Pareto optimal level. According to a genetic algorithm, a model developed based on CVaR using fuzzy simulation. 
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Gao et al. [11] developed their model based on CVaR in a fuzzy environment and used hybrid intelligent 

algorithms to solve it. The present paper uses fuzzy validation theory to estimate VaR and CVaR. To make the 

liquidity constraint model more efficient, according to the daily trading volume and the minimum and maximum 

constraints, the investment ratio and cardinality constraint have been added to the model to determine the number 

of assets in the portfolio to be more efficient. In Iranian studies, there is little use of multi-objective evolutionary 

optimization algorithms to solve problems. Derakhshan et al. [5] used the Markowitz model and the combined ant 

community optimization (ACO) algorithm. Gaivoronski, A., & Pflug [8] used a two-objective continuous ant 

algorithm to optimize the risk value as a measure. They showed that the Pareto front obtained by the NSGAII 

method is less extensive and more convergent than that of the NSGAII method [16]. 

3. Modelling and Research Methodology 

3.1. Credibility-Based Fuzzy Programming 

Based on the epistemic uncertainty we encountered in the problems, it is possible to deal with the imprecise 

parameters. As a result, the epistemic programming method should deal with the epistemic data. The two main 

branches of fuzzy programming are imprecise programming and flexible programming. The first approach is used 

to deal with the lack of knowledge about the exact values of the model parameters (epistemic uncertainty), and 

the second method is used to deal with the control of flexible target values and soft constraints [15, 20]. In the 

proposed model, the credibility-based fuzzy programming approach, Liu and Liu [17] is used as one of the valid 

methods to cope with the ambiguity in the parameters. Credibility fuzzy programming is based on a concept that 

enables the decision-maker to control the degree of confidence in satisfying constraints. It also supports different 

fuzzy data types, including triangular and trapezoidal numbers. It should be noted that, contrary to the criteria of 

possibility and necessity, which do not have a self-dual property, the credibility criterion is a self-dual criterion 

[18]. In other words, if the value of a fuzzy event is one, the decision-maker believes that this fuzzy event will 

happen. However, when the criterion of possibility is one, that fuzzy event may not occur, and when the criterion 

of necessity is zero, a fuzzy event may occur. Pishvaee et al. [32] presented the possibilistic programming method 

to convert the credit, fuzzy planning models, into definitive models. Based on fuzzy axis constraint programming 

and the mean expected value method, epistemic programming combines two criteria. 

Suppose �̄� it is a fuzzy variable with the degree of membership 𝜇(𝑥) and r is a real number. According to Liu 

and Liu [17], the credibility criterion is calculated as follows: 

 

(1)  𝑐𝑟{�̄� ≤ 𝑟} =
1

2
(𝑃𝑜𝑠{�̄� ≤ 𝑟} + 𝑁𝑒𝑐{�̄� ≤ 𝑟})  

 

It should be noted that since 𝑃𝑜𝑠{𝜉 ≤ 𝑟} = 𝑠𝑢𝑝𝑥≤𝑟 𝜇 (𝑥) and 𝑁𝑒𝑐{�̄� ≤ 𝑟} = 1 − 𝑠𝑢𝑝𝑥≻𝑟 𝜇 (𝑥), the credibility 

criterion can also be calculated as follows: 

 

(2) 𝑐𝑟{�̄� ≤ 𝑟} =
1

2
(𝑠𝑢𝑝𝑥≤𝑟 𝜇 (𝑥) + 1 − 𝑠𝑢𝑝𝑥≻𝑟 𝜇 (𝑥)) 

 

The average expected value based on the credibility criterion is calculated as follows: 

 

(3) 𝐸[�̄�] = ∫ 𝐶𝑟{𝜉 ≥ 𝑟}
∞

0

𝑑𝑟 − ∫ 𝐶𝑟{�̄� ≤ 𝑟}
0

−∞

𝑑𝑟 

 

Now suppose that �̄� is a trapezoidal fuzzy number containing points �̄� = (𝜉(1), 𝜉(2), 𝜉(3), 𝜉(4))  in Figure 1 

below shown: 
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1

 

Figure 1- Possibility Distribution of a trapezoidal number 

Based on the expected value equation, it can be calculated as follows: 

 

(4) �̄� =
𝜉(1) + 𝜉(2) + 𝜉(3) + 𝜉(4)

4
 

 

The corresponding credibility criterion can also be calculated as follows: 

 

(5) 𝐶𝑟{𝜉 ≤ 𝑟} =

{
 
 
 
 

 
 
 
 
0, 𝑟 ∈ −∞, 𝜉(1)
𝑟 − 𝜉(1)

2(𝜉(2) − 𝜉(1))
𝑟 ∈ 𝜉(1), 𝜉(2)

1

2
𝑟 ∈ 𝜉(2), 𝜉(3)

𝑟 − 2𝜉(3) + 𝜉(4)

2(𝜉(4) − 𝜉(3))
𝑟 ∈ 𝜉(3), 𝜉(4)

1𝑟 ∈ (𝜉(4), +∞)

 

(6) 𝐶𝑟{𝜉 ≥ 𝑟} =

{
 
 
 
 

 
 
 
 
1𝑟 ∈ −∞, 𝜉(1)
2𝜉(2) − 𝜉(1) − 𝑟

2(𝜉(2) − 𝜉(1))
𝑟 ∈ 𝜉(1), 𝜉(2)

1

2
𝑟 ∈ 𝜉(2), 𝜉(3)

𝜉(4) − 𝑟

2(𝜉(4) − 𝜉(3))
𝑟 ∈ 𝜉(3), 𝜉(4)

0𝑟 ∈ (𝜉(4), +∞)

 

 

Thus, according to the definition, if 𝛼 ≻ 0.5 can be shown [32, 49]: 

 

(7) 𝐶𝑟{𝜉 ≤ 𝑟} ≥ 𝛼 ⇔ 𝑟 ≥ (2 − 2𝛼)𝜉(3) + (2𝛼 − 1)𝜉(4) 

(8) 𝐶𝑟{𝜉 ≥ 𝑟} ≥ 𝛼 ⇔ 𝑟 ≤ (2𝛼 − 1)𝜉(1) + (2 − 2𝛼)𝜉(2) 

 

The above equations can be used directly to convert potential probability inequalities into definite ones. The 

definition of expected value is also used to convert the objective function to its definite form.  

3.2. Conditional Value at Risk (CVaR) 

The VaR estimates the maximum possible loss at a given confidence level but does not determine how bad 

the loss is. Therefore, the VaR can be defined by the following relation: 
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(9) 𝑝(𝐿 ≻ 𝑉𝑎𝑅𝛼) = 1 − 𝛼  

 

But the conditional value at risk (CVaR) estimates the expected loss at a set confidence level. The use of 

CVaR makes the stock portfolio selection model a linear programming model. Also, since CVaR≥VaR, the 

minimum VaR is obtained by solving this model. Accordingly, suppose f(x, ԑ) is a loss function of a stock 

portfolio. For a guaranteed level 𝛼, the CVaR is equal to the average of 𝛼 -1% of losses, which can be calculated 

using the following function: 

 

(10) 𝐶𝑉𝑎𝑅(𝑥, 𝜂) = 𝜂 + (1 − 𝛼)−1 ∫ [𝑓(𝑋, 𝜉)]
𝜉∈𝑅𝑛

+
𝑝(𝜉)𝑑𝜉  

 

Where  𝜉  is a random variable, 𝜂 is the value at risk Var and 𝑍+ = 𝑚𝑎𝑥{𝑍, 0} 

3.3. CVaR under Credibility Theory 

Suppose 𝜉 is a fuzzy variable and 𝛼 ∈ 0,1 is the risk confidence level. In this case, the value at risk under 

credit theory for 𝜉   is expressed as a function 𝜉𝑉𝑎𝑅: 0,1 and is calculated as follows: 

 

(11) 𝜉𝑉𝑎𝑅(𝛼) = − 𝑠𝑢𝑝{𝑥|𝐶𝑟{𝜉 ≤ 𝑥} ≤ 𝛼}  

 

Equally, we will also have 0 ≤ 𝛼 ≤ 1  for a given level of risk confidence: 

 

 

 

Where −𝜙−1(𝛼) is the generalized inverse function of𝜙(𝑥). The CVaR under the theory of credit for 𝜉 is 

expressed as the function of  𝜉𝐶𝑉𝑎𝑅: 0,1 → 𝑅 and is calculated as: 

 

(13) 𝜉𝐶𝑉𝑎𝑅 =
1

1 − 𝛼
∫ 𝜉𝑉𝑎𝑅(𝑟)
1

𝛼

𝑑𝑟 

 

Given the above relationships, the VaR and the CVaR can be obtained for a triangular fuzzy variable with 

parameters 𝜉 = (𝑟1, 𝑟2, 𝑟3)at the confidence level𝛼 ∈ 0,1 : 

 

(14)                                                     𝜉𝑉𝑎𝑅(𝛼) = {
2(𝑟1 − 𝑟2)𝛼 − 𝑟1𝛼 ≺ 0.5
2(𝑟2 − 𝑟3)𝛼 + 𝑟3 − 2𝑟2𝛼 ≥ 0.5

 

(15)                                                                                                                   𝜉𝐶𝑉𝑎𝑅(𝛼) = {
𝛼𝑟1 − (1 + 𝛼)𝑟2𝛼 ≤ 0.5
(𝛼 − 1)𝑟2 − 𝛼𝑟3𝛼 ≻ 0.5

 
 

A more than 50% confidence level is usually considered when estimating VaR and CVaR. Therefore, the case 

that 𝛼 ≺ 0.5  is usually used. 

3.4. Liquidity Constraint 

Given the proximity to a real problem, daily trading volume is considered a trapezoidal fuzzy number, and 

liquidity constraints are obtained by fuzzy credit theory. Accordingly, the confidence level β determines the 

potential constraint on the credibility of a fuzzy event where the portfolio liquidity is higher than or equal to L, 

and is defined as follows: 

(16)  𝐶𝑟[𝐿1𝑥1 + 𝐿2𝑥2+. . . +𝐿𝑛𝑥𝑛 ≥ 𝐿] ≥ 𝛽 

(12) 𝜉𝑉𝑎𝑅(𝛼) = −𝜙
−1(𝛼)                                                                          
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Note that any confidence level 𝛽≤0.5 may be meaningless in the real world because of its negligible value. 

Based on the topics we discussed earlier, if 𝜉 = (𝑎, 𝑏, 𝑐, 𝑑) where 𝑎 ≺ 𝑏 ≺ 𝑐 ≺ 𝑑, we will have: 

 

(17) 𝐶𝑟{𝜉 ≥ 𝑟} ≥ 𝜆 ⇔ 𝑟 ≤ (2𝜆 − 1)𝑎 + 2(1 − 𝜆)𝑏 

 

If the trading volume of assets is in the form of a trapezoidal fuzzy number with (𝐿𝑎𝑖, 𝐿𝑏𝑖, 𝐿𝑐𝑖, 𝐿𝑑𝑖)   

parameters, then the liquidity limit will be the following: 

 

(18) ∑((2𝛽 − 1)𝐿𝑎𝑖 + (2 − 2𝛽)𝐿𝑏𝑖)

𝑛

𝑖=1

𝑥𝑖 ≥ 𝐿𝑞0 

 

where β is confidence level, and L is minimum portfolio liquidity. The investor determines this amount 

according to his/her expectations. 

3.5. Cardinality Constraint 

This limitation specifies the number of portfolio assets. For instance, it can be determined that there are exactly 

five assets in the investor's portfolio. This constraint is as follows: 

 

(19) ∑𝑦𝑖 =

𝑛

𝑖=1

ℎ 

 

Where h is the number of assets in the portfolio and 𝑦𝑖 is a zero-one variable. 

3.6. Minimum and Maximum Investment Ratio Constraint 

This constraint determines the maximum and minimum investment ratios for each asset and is defined as 

follows: 

 

(20) 𝐿𝑂𝑖𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑂𝑖𝑦𝑖 

 

In the above relation, 𝑙𝑜𝑖  is the minimum investment ratio and 𝑢𝑜𝑖 is the maximum investment ratio for the 

ith asset. 

4. Conceptual Model and Research Variables 

According to the topics discussed, the mathematical model can be presented as follows. The objective function 

(21) minimizes the VaR. The objective function (22) minimizes the CVaR. The constraint (23) is the minimum 

return expected by the investor from the portfolio. Constraint (24) indicates the amount of liquidity based on the 

investor's wishes. Constraint (25) shows the cardinality limitation. Constraint (26) states the minimum and 

maximum investment ratio. Constraint (27) states that the total ratio of investment types equals one. Limits (28) 

and (29) show the problem decision variables. 

 

(21) 𝑀𝑖𝑛  𝑉𝐴𝑅 =∑𝑥𝑖[2(𝑟𝑖1 − 𝑟𝑖2)𝛼 − 𝑟𝑖1]

𝑛

𝑖=1
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(22) 𝑀𝑖𝑛  𝐶𝑉𝐴𝑅 =∑𝑥𝑖[𝛼𝑟𝑖1 − (1 + 𝛼)𝑟𝑖2]

𝑛

𝑖=1

 

 s.t. 

(23)        ∑𝑥𝑖 (
𝑟𝑖1 + 2𝑟𝑖2 + 𝑟𝑖3

4
) ≥ 𝑅

𝑛

𝑖=1

 

(24)         ∑𝑥𝑖[(2𝛽 − 1)𝐿𝑎𝑖 + (2 − 2𝛽)𝐿𝑎𝑖] ≥ 𝐿

𝑛

𝑖=1

 

(25)         ∑𝑦𝑖

𝑛

𝑖=1

= ℎ 

(26)            𝐿𝑂𝑖𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑂𝑖𝑦𝑖 

(27)            ∑𝑥𝑖 = 1

𝑛

𝑖=1

 

(28)            𝑦𝑖 = {0,1} 

(29)            𝑥𝑖 = {0,1}, 𝑖 = 1,2, . . . , 𝑛 

 

The case study of the presented problem consists of 20 companies selected from all Tehran Stock Exchange-

listed companies under the following conditions: 
1. Select a company from each industry for which 30 more active stock exchange industries were considered. 

2. Companies that have at least 50% of trading days each year 

3. Elimination of companies from 50 more active stock exchange companies that have not entered in the three 

quarterly periods. 

We explain and implement the multi-objective portfolio optimization problem based on a case study and 

analyze and evaluate the results. In other words, the designed algorithms are explained first, and then the results 

are presented based on them 

5. Solution Approach 

Some risk measures add to the problem's complexity. Computational complexity is, therefore, a major barrier 

to solving these problems. This section uses the MOPSO and NSGA2 algorithms described below to find quality 

answers promptly. Several authors have used these methods in the relevant literature, including Yang [46] and 

Lin and Liu [19]. 

5.1. Multi-Objective Non-Dominated Sorting Genetic Algorithm-II (NSGAII) 

The NSGAII algorithm is based on the genetic algorithm used for situations where problems have multiple 

objective functions. A genetic algorithm was presented by Holland [14] and later used in optimization and 

machine learning problems [41]. This algorithm is the most famous evolutionary algorithm inspired by Darwin's 

theory Vidal & Goetschalckx [44]. Traditionally, this algorithm was used for binary representations, but today it 

is also used for other representations [41]. This algorithm starts with a set of candidate answers (population) and 

selects the best ones (parents) to generate new answers (children). New responses are made either by the 

combination (intersection operator 25) or by modification (mutation operator 26). Then, the children produced 

are replaced with weaker answers (placement).  
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This algorithm repeatedly generates better answers and uses them to generate new answers. The target population 

evolves in this way, similar to what happens in nature. 

Figure 2 below shows: illustrates the evolution process of the proposed algorithm.  
 

 
 

Figure 2. Graphic representation of the presented algorithm 

 

According to the figure above, the offspring and mutated populations are first created using the intersection 

and mutation operators. In the next step, the three main populations, the offspring, and the mutant are merged. 

Then, the answers are evaluated and ranked. It should be noted when there are several objective functions, and 

as a result, the NSGAII algorithm is used. To evaluate and rank the answers, we use Non-dominated Sorting and 

Crowding distance, as described below. Finally, the number of other populations of the algorithmations I 

populations are this process will be repeated to stop the algorithm. 

5.1.2. Structure of the NSGAII Algorithm 

This section presents the structure of the NSGAII algorithm. In the proposed algorithm, three populations are 

considered: the main population, offspring, and mutants, whose number of members is NOr, NCh, and NMu, 

respectively. The values of NCh and NMu are 2 × [
𝑁𝑂𝑟×𝑃𝑟𝐶𝑟

2
] and [𝑁𝑂𝑟 × 𝑃𝑟𝑀𝑢], respectively. It should be noted 

that [•] converts the value of a real number to its previous integer. 

5.1.3. Evaluation of Answers 

To evaluate and rank the answers in the NSGAII algorithm, two criteria are used: 

1- Pareto Front Answer 

2- Order on the Pareto front 

Non-dominated Sorting algorithm is used to differentiate Pareto fronts. Different types of Pareto fronts can 

be detected using this algorithm. The second criterion, the order on the Pareto front, is done using Crowding 

distance. In the NSGAII algorithm, the answers are first ranked based on the Pareto front rank using Non-

dominated Sorting. The Crowding distance algorithm ranks answers that have the same Pareto front. The 

following two methods are explained. 

 

Main population 

Children population Integrated population 

Integrating 

populations 

 

Implementation of 

NS algorithm 

 

Organized Integrated population 

Create a new 

population 

 

Mutated population 

New Main population 



49 M. Miraboalhassani et al. / FOMJ 3(1) (2022) 41–63 

 

5.1.4. Non-dominated Sorting Algorithm 

As previously explained, this algorithm is used to rank the Pareto front types. The symbols used are defined 

as follows: 

S p: The set of members of the population that are defeated by p. 

N p: The number of times p is defeated by others. 

According to this algorithm, the answers that are not defeated by any answer are placed in the first Pareto 

Front. This answer is then deleted, and the answers that are not defeated by any other answer are placed in the 

second Pareto Front. This process is repeated for all answers, thus identifying all Pareto fronts. 

5.1.5. Crowding Distance Algorithm 

The Pareto fronts will be ordered using the Crowding distance method. Answers in which the Parthian front 

rank is the same are ranked by the Crowding distance method. This way, we try to have a representative all over 

the Pareto front. More precisely, it prevents the answers from concentrating on one part of the Pareto front. Figure 

3 shows a Pareto mantle based on two objective functions. 

 

 

Figure 3. Pareto optimal solutions 

In Figure 3, for an answer like i the Crowding distance is calculated as follows: 

 
(30) 

𝑑𝑖
1 =

|𝑓1
𝑖+1 − 𝑓1

𝑖−1|

𝑓1
𝑚𝑎𝑥1

𝑚𝑖𝑛  

(31) 

𝑑𝑖
2 =

|𝑓2
𝑖+1 − 𝑓2

𝑖−1|

𝑓2
𝑚𝑎𝑥2

𝑚𝑖𝑛  

(33)  𝑑𝑖 = 𝑑𝑖
1 + 𝑑𝑖

2
  

 

Based on the above relation, the number of objective functions is calculated at different distances, and then 

the final crowding distance is obtained from the sum of different dimensions. The greater the Crowding distance 

for the answer in example i, the lower the concentration of the answers in that part of the Pareto front. Hence, that 

answer is more desirable on the Pareto front. In general, if we have M dimensions, this criterion for each answer 

i is calculated as follows: 
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(34) 𝑑𝑖
𝑚 =

|𝑓1
𝑏𝑒𝑓𝑜𝑟

− 𝑓1
𝑛𝑒𝑥𝑡|

𝑓1
𝑚𝑎𝑥1

𝑚𝑖𝑛
 

(35) 𝑑𝑖 = 𝑑𝑖
1 + 𝑑𝑖

2+. . . +𝑑𝑖
𝑚 =∑𝑑𝑖

𝑗

𝑚

𝑗=1

 

 

 

5.1.6. Display and Evaluation of the Answers 

 The answer to the problem is represented by a vector containing n cells that n is the number of stocks 

considered in the problem. For each cell, a random number between zero and one is generated as Figure 4: 

 

44 3 4 30.23 0.523 0.876 0.8550.22340.961 40.452 40.638 40.654

(n)          

 
Figure 4. Schematic of the initial answer to the problem  

 

 

Then, to make the sum of the weights equal to one, each weight is divided by the sum of the weights: 

 

(36) 𝑤𝑖
𝑛𝑒𝑤 =

𝑤𝑖
𝑜𝑙𝑑

∑ 𝑤𝑗
𝑜𝑙𝑑𝑛

𝑗=1

∀𝑖 = 1,2, . . . , 𝑛 

 

So that 𝑤𝑖
𝑜𝑙𝑑 and 𝑤𝑖

𝑛𝑒𝑤 are the current weights and the new weights of the ith stock, respectively. See Figure 

5. 

 

44 3 4 30.042 0.096 0.161 0.1570.04140.177 40.083 40.117 40.120

(n)           

 

Figure 5. Schematic of the initial answer to the problem  
 

In the above vector, the sum of the weights will equal one. 

5.1.7. Intersection operator 

The information from the two genotypes is combined with the intersection operator to make a new offspring. 

A special intersection operator is defined for each of the defined matrices in the wing.  

Here, the sum of the weighted averages for the intersection operator is used. More precisely, a number between 

Number of shares (n) 

Number of shares (n) 
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zero and one is generated, and two child vectors are generated based on it. The offspring cells are produced based 

on the following relation: 

 
(37) 𝑤𝑖

𝑜1 = 𝛼𝑤𝑖
𝑝1 + (1 − 𝛼)𝑤𝑖

𝑝2 

(38) 𝑤𝑖
𝑜2 = (1 − 𝛼)𝑤𝑖

𝑝1 + 𝛼𝑤𝑖
𝑝2 

 

Where 𝑤𝑖
𝑜1  and 𝑤𝑖

𝑜2  are the ith yield vector weights for the first and second children. 𝑤𝑖
𝑝1

  And 𝑤𝑖
𝑝2  are the 

ith yield vector weights for the first and second parents. 𝛼 is the number produced between zero and one. 

Figure 6 shows an example of an intersection assuming that the alpha is 0.35. Offspring vectors are obtained 

from the weighted sums of the parent vectors. 

44 3 4 30.042 0.096 0.161 0.1570.04140.177 40.083 40.117 40.120

44 3 4 30.070 0.077 0.049 0.1820.07640.092 40.201 40.205 40.044

      

44 3 4 30.060 0.083 0.089 0.1730.06340.122 40.160 40.174 40.071

44 3 4 30.052      0 122           4     4     4     4     

     1

     2

      1

      2
 

Figure 6. The intersection in the first vector  

5.1.8. Mutation Operator 

The purpose of the mutation operator is to generate variability in the algorithm that escapes the optimal local 

response. The mutation operator is used to modify one or more genes on one or more chromosomes for this 

purpose. In the present research, two cells are selected from a vector, changing their positions. Figure 7 shows an 

example of a mutation. As can be seen, the third and sixth positions are selected, and the positions are changed. 

 

44 3 4 30.042 0.096 0.161 0.1570.04140.177 40.083 40.117 40.120

   

44 3 4 30.042 0.096 0.041 0.1570.16140.177 40.083 40.117 40.120

 
Figure 7. Mutations  

Parent 1 

Parent 2 

Child 1 

Child 2 

Intersection 

Mutation 
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5.1.9. New Population Selection 

 If a fixed population, one decision is which members will be allowed to go to the next stage. Normally, this 

is based on the value of the objective function. The present study involves first integrating the main population, 

offspring, and mutants and then selecting “Nor” numbers from the best population for the new population 

5.2. Multi-Objective Particle Swarm Optimization (MOPSO) 

The particle swarm optimization algorithm is a probabilistic optimization algorithm that employs a 

population-based approach. This algorithm was first proposed by Eberhard and Kennedy [6]. This algorithm 

simulates the social behavior of animals such as insects, birds, and fish. The algorithm is very similar to other 

evolutionary algorithms, such as genetic algorithms. These algorithms usually generate random answers and 

search for the optimal answer. However, unlike the genetic algorithm, the particle swarm optimization algorithm 

does not use intersection and mutation operators. According to a particle swarm optimization algorithm, potential 

solutions called particles are searched according to the position of the best particles at each level of the problem.  

The main advantage of this algorithm is its ease of implementation instead of genetic algorithms. Furthermore, 

this algorithm has a small number of input parameters that can be easily adjusted. This algorithm has been used 

well in various fields such as function optimization, training of artificial neural  

Networks, fuzzy system control, etc. 

In general, artificial life can be divided into two areas: 

1- Artificial life focuses on how computational techniques can study biological phenomena. 

2- Artificial life focuses on how biological techniques can solve computational problems. 

Here the focus is on the second part. There are many computational techniques based on biological systems. 

For example, an artificial neural network is a simplified human brain model. We also discuss another biological 

system (i.e., social system) with the genetic algorithm based on human evolution developed here. This algorithm 

specifically emphasizes the swarm behavior of individuals, which is called swarm intelligence. All simulations 

use local processes, such as cellular automata models, and may overshadow social behavior. Some well-known 

examples in this field are Floy and Bid. Both simulations are designed to interpret the motion of organisms in a 

group of birds or fish. These simulations are also commonly used in computer animation or computer design. 

Two popular inspirational methods have been developed based on the swarm behavior of individuals and in 

the fields of intelligent computing, including ant colony optimization and particle swarm optimization. It is based 

on the behavior of ants and has a very good performance in optimizing discrete optimization problems. 

The particle swarm optimization algorithm is derived from the simulation of social systems.  Initially, the 

main purpose of this algorithm was to simulate the movements of birds or fish graphically. However, it was later 

found that the particle swarm optimization algorithm could also be used to optimize various problems. 

As mentioned earlier, the particle swarm optimization algorithm simulates bird behavior. Let's assume a 

scenario as follows: A group of birds randomly search an area. There is only one food unit in the area. None of 

the birds know where the food is. They only know how far away they are from food in each iteration. Therefore, 

the best strategy is to follow the birds that are closest to the food. 

The particle swarm optimization algorithm is based on the memory of past movements and uses it to solve 

optimization problems. In this algorithm, each bird is considered as an answer. Here, each answer is referred to 

as a "particle". All particles have a fit of life that is evaluated and must be optimized. Moreover, each particle has 

a specific velocity that determines its path. It should be noted that the particles in each movement also pay attention 

to the position of the best particle. 

A particle swarm optimization algorithm starts from a group of answers and searches for the optimal answer 

using a special update formula. As shown in Figure 8, in each iteration of the algorithm, the update formula based 

on the three vectors updates the position of each particle. The first component of the velocity vector in the previous 

period of each particle is denoted by the symbol Vit for its particle in the tth stage. This means that each particle 
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believes in the path it has taken and moves in its path. The second part is based on the movement to the best 

position ever achieved for its particle in the tth phase, which is represented by the Pit symbol. This movement 

means that the particle tends to move in the direction of its best memory. Up to the t th stage, the third component 

moves in the direction of the best particle obtained across the whole algorithm, which is marked with the symbol 

Gt Effect of current velocity. 

 

Figure 8. Movement of each particle in the particle swarm optimization algorithm 

According to the figure, each particle will update its speed according to the following formula: 

 

 𝑉𝑖
𝑡+1 ← ω 𝑉𝑖

𝑡+ φp rp (𝑝𝑖
𝑡-𝑌𝑖,𝑑

𝑡 )+ φgrg (𝐺𝑡-𝑌𝑖
𝑡)                                                                               (39) 

 

Where Yi
t is the position of the i particle in the tth stage. Furthermore, ω, φp and φg are the best personal 

memory and the most accurate measures of the importance of moving to the previous speed. These parameters 

are calculated as the input of the algorithm. It should be noted that rp and rg are random numbers between zero 

and one. The position of each particle is now updated according to the velocity formula described above: 

𝑌𝑖
𝑡+1  𝑌𝑖

𝑡 + 𝑉𝑖
𝑡+1                                                                                                                                 (40) 

 

Most steps of the multi-objective particle swarm optimization algorithm are clear. Nevertheless, in the next 

section of the tabulation, each repository's best personal memory and leader will be described.  

Figure 9 illustrates how the response space is first divided into different sections to create order in the Pareto 

Front and distribute the answer evenly throughout the Pareto Front. In other words, the sections with less focus in 

terms of answers are given more weight than those with more answers. 
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Figure 9. Tabulation in the MOPSO algorithm 

The importance of each section means choosing them to lead each repository. According to Boltzmann's 

relation, any part where there is less focus on the answers is more likely to be chosen to lead each repository. The 

Boltzmann relation is as follows. 

(41)    𝑝𝑖𝛼 𝑒𝑥𝑝( − 𝛽𝑛𝑖)  

(42) 
  

𝑝𝑖 =
𝑒−𝛽𝑛𝑖

∑ 𝑒−𝛽𝑛𝑖𝑗

𝛽 ≥ 0 

Based on the above relation, the sections with fewer answers (n) are more likely to be selected 

According to the particle swarm optimization algorithm, if one of the new answers defeats the best individual 

memory, the new answer is considered the best individual memory. If two answers do not defeat each other, one 

is selected randomly.  

The answer is represented as a vector containing n cells, where n equals the number of stocks considered in 

the problem. Each cell generates a random number between zero and one at the beginning (Figure 10): 

44 3 4 30.23 0.523 0.876 0.8550.22340.961 40.452 40.638 40.654

             (n)   

 
Figure 10. The initial answer to the problem 

Each weight is divided by the sum of the weights to make the sum equal to one: 

𝑤𝑖
𝑛𝑒𝑤 =

𝑤𝑖
𝑜𝑙𝑑

∑ 𝑤𝑗
𝑜𝑙𝑑𝑛

𝑗=1

∀𝑖 = 1,2, . . . , 𝑛                                                                                                    (43) 

So that 𝑤𝑖
𝑜𝑙𝑑  and 𝑤𝑖

𝑛𝑒𝑤 are the current weights and the new weights of the stock i, respectively. Then, the 

new vector will be as Figure 11. 

 

6.2.1. Computational Results   

This section presents various experiments to evaluate the model and algorithm. MATLAB R2014a software 

is used to encode the genetic algorithm, and a personal laptop with a 2.93 GHz CPU and 8 GB of RAM is used to 

Number of shares (n) 
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solve the examples.  

An example is solved five times, and its average is reported. It should be noted that time is reported here in 

seconds. 

6.2.2. Parameter Setting 

The performance of meta-heuristic algorithms is significantly dependent on the values of their parameters. 

For this purpose, we used the Taguchi experiment design method to adjust the algorithm's parameters [3]. This 

method is based on two types of factors, including controllable and disorder (uncontrollable) factors. This method 

establishes the process by identifying the control factor and minimizing the effects of process disorders [13]. With 

a small number of experiments, the Gucci method studies the full range of parameters using a special orthogonal 

arrays design. In addition, the amount of deviation in the response is measured by the signal-to-noise (S/N) ratio, 

and the goal is to maximize it. 

S/N ratio = −10 (
1

𝑛
∑ log10 𝑅𝐸𝑗

2𝑛
𝑗=1 )                                                                                                    (44) 

Where n is the number of iterations and REj is the number of repetitions in iteration j. In the present study, 

we have two objective functions. This objective function is considered in the Taguchi model when we have one 

function. But when we have two functions (OF1 and OF2), we have to convert these functions into objective 

functions. To determine the final criterion for applying the Taguchi method, we should consider the following 

criteria. 

6.2.3. Taguchi Methods 

Taguchi Methods Statistical methods, also called robust design methods, developed by Genichi Taguchi to 

improve the quality of manufactured goods and now used in engineering in biotechnology, marketing, and 

advertising, have been widely welcomed. 

Taguchi's work includes three principal contributions to statistics: 

 A specific loss function 

 Off-line quality control 

 And Innovations in the design of experiments 

Design of experiments 

Taguchi independently developed her theories and in 1954, following Fisher, proposed  

Taguchi's designs aimed to allow a greater understanding of variation than did many of the traditional designs 

from the analysis of variance (following Fisher). Taguchi contended that conventional sampling is inadequate 

here as there is no way of obtaining a random sample of future conditions. [9, 31] In Fisher's design of experiments 

and analysis of variance, experiments aim to reduce the influence of nuisance factors to allow comparisons of the 

mean treatment effects. Variation becomes even more central in Taguchi's thinking. 

Taguchi proposed extending each experiment with an "outer array" (possibly an orthogonal array); the "outer 

44 3 4 30.042 0.096 0.161 0.1570.04140.177 40.083 40.117 40.120

             (n)   

 
Figure 11. The final answer to the problem  

 

Number of shares (n) 
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array" should simulate the random environment in which the product would function. This is an example of 

judgmental sampling. Many quality specialists have been using "outer arrays". 

Later innovations in outer arrays resulted in "compounded noise." This involves combining a few noise factors 

to create two levels in the outer array: First, noise factors that drive output lower, and second, noise factors that 

drive output higher. "Compounded noise" simulates the extremes of noise variation but uses fewer experimental 

runs than would previous Taguchi designs. 

 

6.2.4. Mean Ideal Distance (MID) 

 

𝑀𝐼𝐷 =

∑ √(
𝑓1𝑖−𝑓1

𝑏𝑒𝑠𝑡

𝑓1,𝑡𝑜𝑡𝑎𝑙
𝑀𝑎𝑥 −𝑓1,𝑡𝑜𝑡𝑎𝑙

𝑀𝑖𝑛
)

2

+(
𝑓2𝑖−𝑓2

𝑏𝑒𝑠𝑡

𝑓2,𝑡𝑜𝑡𝑎𝑙
𝑀𝑎𝑥 −𝑓2,𝑡𝑜𝑡𝑎𝑙

𝑀𝑖𝑛
)

2

𝑛
𝑖=1

𝑛
                                                                                   (45) 

Where n represents the number of non-defeated solutions. 𝑓𝑡𝑜𝑡𝑎𝑙
𝑀𝑖𝑛    And 𝑓𝑡𝑜𝑡𝑎𝑙

𝑀𝑎𝑥    represent the minimum and 

maximum OFi in all iterations. It is clear that the lower the MID value, the better the algorithm performance. 

6.2.5. Diversification Metric (DM) 

This index shows the diversification of Pareto solutions and is defined as the following equation: 

 

𝐷𝑀 = ∑ √(
𝑀𝑎𝑥(𝑓1𝑖)−𝑀𝑖𝑛(𝑓1𝑖)

𝑓1,𝑡𝑜𝑡𝑎𝑙
𝑀𝑎𝑥 −𝑓1,𝑡𝑜𝑡𝑎𝑙

𝑀𝑖𝑛 )
2

+ (
𝑀𝑎𝑥(𝑓2𝑖)−𝑀𝑖𝑛(𝑓2𝑖)

𝑓2,𝑡𝑜𝑡𝑎𝑙
𝑀𝑎𝑥 −𝑓2,𝑡𝑜𝑡𝑎𝑙

𝑀𝑖𝑛 )
2

𝑛
𝑖=1                                                              (46) 

One of the advantages of the proposed algorithm is the variability of the solutions produced. Therefore, the 

larger DM is preferred 

6.2.6. Spacing Metric (SM) 

This index shows the uniformity of the set of non-dominant solutions and is defined as below: 

𝑆𝑀 =
∑ |𝑑𝑖−�̄�|
𝑛−1
𝑖=1

(𝑛−1)�̄�
                                                                                                                                          (47) 

Where, n represents the number of non-defeated solutions, 𝑑𝑖 represents the Euclidean distance of uccessive 

non-defeated solutions, and �̄� is the mean of𝑑𝑖. The lower the value of this index, the higher its desirability. 

This section seeks to adjust the parameters of two algorithms, NSGA-II and MOPSO, to obtain the 

best performance. In NSGA-II, the maximum number of iteration (Maxit), the combined probability of 

crossover (Pcrossover), the probability of mutation (Pmutation), and the rate of mutation (Mu) are considered as basic 

parameters, and in MOPO, the maximum number of iteration (Maxit) is considered. Population number (nPop), 

leader selection pressure (Beta), and leader selection pressure (Gamma) are considered as basic parameters. 

According to the literature and expert opinions for the introduced parameters, three suggested levels are 

considered, which are presented in Table 1. 
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Table 1. Algorithm parameters level  

NSGA-II MOPSO 

Level 1 2 3 Level 1 2 3 

Maxit 100 150 200 Maxit 100 200 300 

Pcrossover 0.4 0.5 0.6 nPop 100 150 200 

Pmutation 0.6 0.65 0.7 Beta 1 1.5 2 

Mu 0.2 0.25 0.3 Gamma 1 1.5 2 

 

According to the level set for the basic parameters, Designs L9 was performed by minitab19 software 

and the results are reported in Figures 12 and 13:  

 

Figure 12- The initial answer to the problem 
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Figure 13- The initial answer to the problem  

 

According to Figures 12 and 13, since the response variable is considered to be the maximum, the "S / N: 

Bigger is Better" mode in TM needs to be considered. Finally, the optimal levels for each basic parameter are 

defined as Table 2. 
 

Table 2. The optimal value of the parameters 

NSGA-II MOPSO 

Optimum Level Optimum Level 

Maxit 100 Maxit 300 

Pcrossover 0.4 nPop 200 

Pmutation 0.7 Beta 2 

Mu 0.25 Gamma 2 

 

As discussed in the previous section, the optimal level of NSGA-II and MOPSO basic parameters was 

determined. In this section, the aim is to compare the performance of the two proposed algorithms. As in the 

previous section, SM, DM, and MID markers were used to evaluate the performance of the two proposed 

algorithms. In addition to the introduced indicators, we can also use the variable quality metric (QM). This index 

means that all the best Pareto solutions from each algorithm must be put together and compared. Dominant 

solutions should be eliminated, and the ratio of the number of responses remaining to the number of initial 

responses indicates quality. An algorithm performs better with more QM. Lastly, two algorithms are implemented 

with optimal levels of basic parameters, and the results are reported in Table 3. 
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Figure 14. Pareto optimal solutions for MOSO algorithm 

 

Figure 15. Pareto optimal solutions in NSGA2 algorithm 

 

Table 3. NSGA2 versus MOPSO Algorithm 

Algorithm Index 

QM MID DM SM Final Score 

NSGA-II 0.725 0.0627 1.4142 0.64 0.5799 

MOPSO 1 0.0599 0.5343 0.9713 0.36 

MOPSO outperforms NSGA-II in terms of QM because it has not mastered any of Pareto's optimal solutions, 

as shown in Table 9. Also, MOPSO has performed better in MID than NSGA-II. That is, MOPSO shows Pareto 

optimal solutions to be close to more ideal ones. But in DM, NSGA-II performs better than MOPSO, and it can 

be seen that the diversification of Pareto optimal solutions in NSGA-II is performed. Also, the SM index shows 

the superiority of NSGA-II over MOPSO. In light of the issues raised, it can be concluded that MOPSO has better 

performance than NSGA-II in terms of quality, while on the other hand, NSGA-II has better performance diversity 

than MOPSO. 
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6. Results Analysis 

Different points can be chosen in the optimal Pareto diagram based on the decision maker's preferences. The 

chart below shows the percentage of assets invested in 20 different companies. Table 10 also shows the share of 

each company. It can be seen that the answers obtained for the two methods are almost identical. The results show 

that Ghadir Leasing with 0.4 shares and Fars Cement with 0% shares has the lowest investment share. 
 

 

Figure 16. NSGA2 and MOPSO algorithms 

 
Table 4. Percentage of investment on assets with NSGA2 and MOPSO algorithms  

Percentage of Investments in 

Assets by NSGA2 Method 

Percentage of Investment in 

Assets by MOPSO Method 
Company Name No. 

0.0184 0.0272 Bafgh Mines 1 

0 0.0240 Building investment 2 

0.0178 0.0173 Eghtesad Novin Bank 3 

0 0.0276 Shipping 4 

0.0512 0.0318 Mapna 5 

0.0198 0 Saipa 6 

0 0.0149 Informatics services 7 

0.3984 0.4000 Ghadir Leasing 8 

0 0.0390 Melat Investment 9 

0 0 Fars Cement 10 

0.0509 0 Oil industry investment 11 

0.0158 0.0716 Isfahan Mobarakeh Steel 12 

0.0176 0.0355 Iran porcelain 13 

0.0566 0.0149 Iran Telecommunication 14 

0.1881 0.1236 Gas pipe 15 

0.0434 0.1180 Tractor manufacturing 16 

0.0210 0 Iran Transfo 17 

0.0176 0.0286 Abadan Petrochemical 18 

0.0334 0 Behshahr Industries Development 19 

0.0501 0.0260 Razak 20 

1 1                                Total weight percentage 
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In the present paper, a model is presented that minimizes the value at risk (VaR) and the conditional value at 

risk (CVaR) simultaneously and as a multi-objective model. The inherent uncertainties of the parameters were 

also taken into account, and the feasibility planning approach was used to deal with them. In addition, because 

the proposed model has a non-convex space and cannot be solved using commercial software, two meta-heuristic 

methods will be used to solve it. Accordingly, the research methodology presented in the present study consisted 

of the following four steps. To optimize the stock portfolio selection problem, a multi-objective optimization 

model was first proposed. The method of dealing with uncertainty was explained and based on that, the uncertain 

model became definite. Due to the complexity of these problems, two meta-heuristic methods including MOPSO 

and NSGAII were used to solve the proposed model. Finally, based on the proposed algorithms, the optimal Pareto 

answer was obtained. The results show that MOPSO outperforms NSGA-II in terms of quality, whereas NSGA-

II outperforms MOPSO in terms of performance diversity. For the future research, robust optimization, interval 

programming, and uncertainty theory can be used in order to deal with data uncertainty [26-30]. Additionally, 

data envelopment analysis approach can be employed for stock evaluation [12, 33-49]. 
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