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A R T I C L E  I N F O  A B S T R A C T 

In this study, we consider solving the second kind Volterra Fuzzy Integral 

Equations System in two cases of linear and nonlinear by using a semi-analytic 

method, called Differential Transform Method(DTM). In this algorithm the first 

we convert a Volterra Fuzzy Integral Equations System into two crisp Integral 

Equations Systems of Volterra; then we solve each of them via DTM. If the 

equation has a solution in terms of the series expansion of known functions; 

this powerful method will catch the exact solution. Moreover the ability and 

efficiency of the algorithm are shown by solving some numerically examples. 
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1. Introduction 

One of the important subjects in applied mathematics is Integral equations, which applied in several fields of 

sciences and engineering as: numerical analysis, biology, medical, pharmacy and etc; therefore many Scientists 

presented several methods to solve Integral equations. Often, in many applications some of the parameters in 

our problems are represented by fuzzy number rather than crisp, and also it is important to develop 

mathematical models and numerical procedures that would appropriately treat general fuzzy integral equations 

and solve them. 

The concept of fuzzy number and arithmetic operations on them was first introduced by Zadeh [12], and 

later this topic was spreader by Mizumoto and Tanaka [18]. Dubios and Prade [8], had an important role in 

defining of fuzzy number concept and presented of fuzzy computational operations. Later they [9], introduced 

the fuzzy functions integration which has interested by many several scientists as: Goetschel and Voxman [11], 

Kalva [14]. Recently several numerical methods have been introduced to solve some models of linear and 
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nonlinear fuzzy integral equations by Behzadi et al. [3], Zarebnia [24], Mirzaee et al. [17], Mohseni Moghadam 

and Saeedi [19], and others [5,6,7,25,26]. 

The concept of differential transform was first proposed and applied to solve linear and nonlinear equations 

in electric circuit analysis by Zhou [27]. The DTM obtains an analytical solution in the form of a polynomial. It 

is different from the traditional high-order Taylor series method, which requires symbolic computation of the 

necessary derivatives of the data functions and is computationally expensive for high order. In the DTM, the 

derivative is not computed directly; instead, the relative derivatives are calculated by an iteration procedure. 

New equations are obtained from the original equations by applying differential transform method. 

The integral equations systems are important for studying and solving a large proportion of the problems in 

many topics in applied mathematics, mathematical economics and optimal control theory. Because these 

integral equations systems are often complex to solve explicitly, hence we require to obtain approximate 

solutions. Recently many Scientists have applied numerical algorithms to obtain the solution of integral 

equation systems, such as: Babolian et al. [1] applied the decomposition method to solve Ferdholm integral 

equations systems, Biazar et al. [4] to obtain solution of Volterra integral equations systems by Adomian 

method, Maleknejad and Shahrezaee [15] used Runge-Kutta method to solve Volterrea integral equations 

systems, Yusufoglu [23] applied Homotopy perturbation method to solve Ferdholm-Volterra integral equations 

system, and other works. Jafarian et al. [13] presented fuzzy form of integral equation systems; then they 

applied Taylor expansions Method to solve it. Now in this study, we consider solving Fuzzy Volterra Integral 

Equations System via Differential Transform Method (DTM).  

The organization of this paper is as follows: In Section 2, we briefly recall the mathematical foundations of 

fuzzy calculus and required definitions of fuzzy setting theory; in Section 3 we explain Volterra integral 

equations system in two cases of crisp and fuzzy; the Differential Transform Method is introduced in Section 4; 

in Section 5 , we survey error estimation and convergence of the method; in section 6, we illustrate some 

numerical examples for this method; finally, conclusion are given in the end section. 

 

2. Preliminaries  

In this section some the basic notions used in fuzzy calculus are introduced. We start with definition a fuzzy 

number. 

Definition 1. A arbitrary fuzzy number is represented by a fuzzy set 𝑢: 𝑅1 → [0,1]  which satisfies into 

following conditions  

a: 𝑢 is upper semicontinuous.  

b: 𝑢(𝑥) = 0 outside some interval [𝑐, 𝑑].  

c: There are real numbers 𝑎 and 𝑏, 𝑐 ≤ 𝑎 ≤ 𝑏 ≤ 𝑑, for which  

  i) 𝑢(𝑥) is monotonically increasing on [𝑐, 𝑎],  

ii) 𝑢(𝑥) is monotonically decreasing on [𝑏, 𝑑],  

iii) 𝑢(𝑥) = 1 for 𝑎 ≤ 𝑥 ≤ 𝑏.  

The set of all fuzzy numbers are denoted by 𝐸1. An alternative definition or parametric form of a fuzzy number 

which yields the same as 𝐸1 is given by Kaleva [14]. 

 

Definition 2. The parametric form of a fuzzy number �̃� for 0 ≤ 𝑟 ≤ 1 is an ordered pair function (𝑢(𝑟), 𝑢(𝑟)), 

which satisfies the following requirements: 

a: 𝑢(𝑟) is a bounded, continuous, monotonic increasing function,  

b: 𝑢(𝑟) is a bounded, continuous, monotonic decreasing function,  

c: 𝑢(𝑟) ≤ 𝑢(𝑟) , 0 ≤ 𝑟 ≤ 1.  

(𝑢(𝑟), 𝑢(𝑟)) , for all 0 ≤ 𝑟 ≤ 1, are called the 𝑟-cut sets of �̃�. 

 

Definition 3. For arbitrary Fuzzy numbers �̃� = (𝑢(𝑟), 𝑢(𝑟)) , �̃� = (𝑣(𝑟), 𝑣(𝑟)) and 𝑘 > 0, we define addition, 

subtraction, scalar product by 𝑘 and multiplication are as following: 
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Subtraction: 

{
(𝑢 + 𝑣)(𝑟) = 𝑢(𝑟) + 𝑣(𝑟),

(𝑢 + 𝑣)(𝑟) = 𝑢(𝑟) + 𝑣(𝑟),
 

 and  

{
(𝑢 − 𝑣)(𝑟) = 𝑢(𝑟) − 𝑣(𝑟),

(𝑢 − 𝑣)(𝑟) = 𝑢(𝑟) − 𝑣(𝑟),
 

  
 multiplication:  

(�̃��̃�)(𝑟) = {
(𝑢𝑣)(𝑟) = 𝑚𝑖𝑛{𝑢(𝑟)𝑣(𝑟), 𝑢(𝑟)𝑣(𝑟), 𝑢(𝑟)𝑣(𝑟), 𝑢(𝑟)𝑣(𝑟)},

(𝑢𝑣)(𝑟) = 𝑚𝑎𝑥{𝑢(𝑟)𝑣(𝑟), 𝑢(𝑟)𝑣(𝑟), 𝑢(𝑟)𝑣(𝑟), 𝑢(𝑟)𝑣(𝑟)}
 

 
scalar product:  

(𝑘�̃�)(𝑟) = {
(𝑘(𝑢)(𝑟), 𝑘(𝑢(𝑟))); 𝑘 ≥ 0,

(𝑘(𝑢)(𝑟), 𝑘(𝑢(𝑟))); 𝑘 < 0.
 

Definition 4. For arbitrary Fuzzy numbers �̃� = (𝑢(𝑟), 𝑢(𝑟)) and �̃� = (𝑣(𝑟), 𝑣(𝑟)), we use the distance  

 

 𝐷(�̃�, �̃�) = max{ sup
0≤𝑟≤1

|𝑢(𝑟) − 𝑣(𝑟)|, sup
0≤𝑟≤1

|𝑢(𝑟) − 𝑣(𝑟)|}, 

 
and (𝐸1, 𝐷) is a complete metric space [8]. 

Definition 5. Take 𝑓: [𝑎, 𝑏] → 𝐸1 for each partition 𝑝 = {𝑥0, 𝑥1,⋯ , 𝑥𝑛} of [𝑎, 𝑏] and for arbitrary 𝜀𝑖;𝑥𝑖−1 ≤ 𝜀𝑖 ≤
𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, and 

{
 
 

 
 
𝜆 = max

1≤𝑖≤𝑛
|𝑥𝑖 − 𝑥𝑖−1| ,

𝑅𝑝 =∑ 

𝑛

𝑖=1

𝑓(𝜀𝑖)(𝑥𝑖 − 𝑥𝑖−1).

 

 
  
The definition integral of 𝑓(𝑥) over [a,b] is  

 

 ∫  
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = lim

𝜆→0
𝑅𝑝 , 

  

provided that this 𝑙𝑖𝑚𝑖𝑡 exists in the metric 𝐷.  

We let the parametric form of 𝑓(𝑥) be: 

 

 𝑓(𝑥; 𝑟) = (𝑓(𝑥, 𝑟), 𝑓(𝑥, 𝑟)), 

  

Now if the fuzzy function 𝑓(𝑥; 𝑟) is continuous in the metric 𝐷, the definite integral exists [8]; furthermore,  

{
 
 

 
 ∫  

𝑏

𝑎

𝑓(𝑥, 𝑟)𝑑𝑥 = ∫  
𝑏

𝑎

𝑓(𝑥, 𝑟)𝑑𝑥,

∫  
𝑏

𝑎

𝑓(𝑥, 𝑟)𝑑𝑥 = ∫  
𝑏

𝑎

𝑓(𝑥, 𝑟)𝑑𝑥.

 

Moreover, the fuzzy integral can be defined by using the Lebesgue-type approach [9]. In that case 𝑓(𝑥; 𝑟) is 

continuous, both approaches yield the same value. More details about the properties of the fuzzy integral are 

given in [8, 9]. 
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Lemma 1. If 𝑓  and �̃�: [𝑎, 𝑏] ⊆ 𝑅 → 𝐸1  are fuzzy continuous functions, then the function 𝐹: [𝑎, 𝑏] → 𝑅+  by 

𝐹(𝑥) = 𝐷(𝑓(𝑥), �̃�(𝑥)) is continuous on [𝑎, 𝑏], and [19] 

𝐷(∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥,∫  
𝑏

𝑎

�̃�(𝑥)𝑑𝑥) ≤ ∫  
𝑏

𝑎

𝐷(𝑓(𝑥), �̃�(𝑥))𝑑𝑥. 

3. Fuzzy Integral equations System 

The basic definition of integral equation is given in [14]. 

Definition 6. The Fredholm integral equation of the second kind is  

 𝐹(𝑥) = 𝐺(𝑥) + 𝜆(𝐻𝑈)(𝑥),   (1) 

 

where  

 (𝐻𝑈)(𝑥) = ∫  
𝑏

𝑎
𝐻(𝑠, 𝑥)𝐹(𝑠)𝑑𝑠, 𝑎 ≤ 𝑥 ≤ 𝑏 (2) 

 

In (1), 𝐻(𝑠, 𝑥) is an arbitrary kernel function over the square𝑎 ≤ 𝑠, 𝑥 ≤ 𝑏 and 𝐺(𝑥)is a function of 𝑥 :𝑎 ≤ 𝑥 ≤
𝑏. If 𝐻(𝑠, 𝑥) = 0, 𝑠 > 𝑥, we obtain the Volterra integral equation  

 𝐹(𝑥) = 𝐺(𝑥) + 𝜆 ∫  
𝑥

𝑎
𝐻(𝑠, 𝑥)𝐹(𝑠)𝑑𝑠, 𝑎 ≤ 𝑥 ≤ 𝑏 (3) 

 

Moreover, if 𝐺(𝑥) be a crisp function, then the solution of the above equation is crisp as well. Also if 𝐺(𝑥) be a 

fuzzy function, we have fuzzy integral equation of the second kind which may only process fuzzy solutions. 

Sufficient conditions for the existence and uniqueness of the solution of the second kind equation, where 𝐺(𝑥) 
is a fuzzy function, are given in [17, 20]. 

 

 Definition 7. The second kind fuzzy linear Volterra integral equations system is in the form  

 

(

 
 
 

𝐹1(𝑥)
    ⋮
𝐹𝑖(𝑥)
    ⋮
𝐹𝑚(𝑥)

)

 
 
 
=

(

 
 
 
 

𝐺1(𝑥) + ∑  𝑚
𝑗=0 [𝜆1𝑗 ∫  

𝑥

𝑎
𝑈1𝑗(𝑠, 𝑥)𝑑𝑠]

                                ⋮

𝐺𝑖(𝑥) + ∑  𝑚
𝑗=0 [𝜆𝑖𝑗 ∫  

𝑥

𝑎
𝑈𝑖𝑗(𝑠, 𝑥)𝑑𝑠]

                                ⋮

𝐺𝑚(𝑥) + ∑  𝑚
𝑗=0 [𝜆𝑚𝑗 ∫  

𝑥

𝑎
𝑈𝑚𝑗(𝑠, 𝑥)𝑑𝑠]

)

 
 
 
 

 (4) 

 where 𝑎 ≤ 𝑠 ≤ 𝑥 ≤ 𝑏 and 𝜆𝑖𝑗 ≠ 0 (for 𝑖, 𝑗 = 1, . . . , 𝑚) are real constants. Moreover, in system (4), the fuzzy 

function 𝐺𝑖(𝑥) and kernel 𝐻𝑖𝑗(𝑠, 𝑥) are given and assumed to be sufficiently differentiable with respect to all 

their arguments on the interval 𝑎 ≤ 𝑠, 𝑥 ≤ 𝑏. Also we assume that the kernel function 𝐻𝑖𝑗(𝑠, 𝑥) ∈ 𝐿
2([𝑎, 𝑏] ×

[𝑎, 𝑏]) and  

 𝐹(𝑥) =

(

 
 
 

𝐹1(𝑥)
    ⋮
𝐹𝑖(𝑥)
    ⋮
𝐹𝑚(𝑥)

)

 
 
 

 

 is the solution to be determined. 

Now let, for 0 ≤ 𝑟 ≤ 1, 𝑎 ≤ 𝑥 ≤ 𝑏 and 1 ≤ 𝑖 ≤ 𝑚 be parametric form of functions:  

 �̃�𝑖(𝑥; 𝑟) = [𝐹𝑖(𝑥; 𝑟), 𝐹𝑖(𝑥; 𝑟)], 
 

 

 �̃�𝑖(𝑥; 𝑟) = [𝐺𝑖(𝑥; 𝑟), 𝐺𝑖(𝑥; 𝑟)], 
 

and  

 �̃�𝑖𝑗(𝑠, 𝑥; 𝑟) = [𝑈𝑖𝑗(𝑠, 𝑥; 𝑟), 𝑈𝑖𝑗(𝑠, 𝑥; 𝑟)]. 
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To simplify, we assume that 𝜆𝑖𝑗 > 0 (for 𝑖, 𝑗 = 1, . . . , 𝑚). In order to design a numerical scheme for solving (4), 

we write the parametric form of the given fuzzy integral equations system as follows: 

�̃�(𝑥; 𝑟) =

(

 
 
 

�̃�1(𝑥; 𝑟)
        ⋮
�̃�𝑖(𝑥; 𝑟)
        ⋮
�̃�𝑚(𝑥; 𝑟)

)

 
 
 
=

(

 
 
 
 

[𝐹1(𝑥; 𝑟), 𝐹1(𝑥; 𝑟)]
                ⋮

[𝐹i(𝑥; 𝑟), 𝐹i(𝑥; 𝑟)]
                ⋮

[𝐹m(𝑥; 𝑟), 𝐹m(𝑥; 𝑟)]
)

 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
[𝐺1(𝑥; 𝑟) +∑ 

𝑚

𝑗=0

[𝜆1𝑗∫  
𝑥

𝑎

𝑈1𝑗(𝑠, 𝑥)𝑑𝑠], 𝐺1(𝑥; 𝑟) +∑ 

𝑚

𝑗=0

[𝜆1𝑗∫  
𝑥

𝑎

𝑈1𝑗(𝑠, 𝑥)𝑑𝑠]]

                                                                   ⋮

[𝐺i(𝑥; 𝑟) +∑ 

𝑚

𝑗=0

[𝜆i𝑗∫  
𝑥

𝑎

𝑈i𝑗(𝑠, 𝑥)𝑑𝑠], 𝐺i(𝑥; 𝑟) +∑ 

𝑚

𝑗=0

[𝜆i𝑗∫  
𝑥

𝑎

𝑈i𝑗(𝑠, 𝑥)𝑑𝑠]]

                                                                  ⋮

[𝐺m(𝑥; 𝑟) +∑ 

𝑚

𝑗=0

[𝜆m𝑗∫  
𝑥

𝑎

𝑈m𝑗(𝑠, 𝑥)𝑑𝑠], 𝐺m(𝑥; 𝑟) +∑ 

𝑚

𝑗=0

[𝜆m𝑗∫  
𝑥

𝑎

𝑈m𝑗(𝑠, 𝑥)𝑑𝑠]]

)

 
 
 
 
 
 
 
 
 

 

  

 

  

 where for 0 ≤ 𝑖 ≤ 𝑚;  

𝑈𝑖𝑗 = {

𝐻𝑖𝑗(𝑠, 𝑥)𝐹𝑗(𝑠),          𝐻𝑖𝑗(𝑠, 𝑥) ≥ 0,

𝐻𝑖𝑗(𝑠, 𝑥)𝐹𝑗(𝑠),          𝐻𝑖𝑗(𝑠, 𝑥) < 0.
 

  

 

and  

�̅�𝑖𝑗 = {

𝐻𝑖𝑗(𝑠, 𝑥)�̅�𝑗(𝑠),          𝐻𝑖𝑗(𝑠, 𝑥) ≥ 0,

𝐻𝑖𝑗(𝑠, 𝑥)𝐹𝑗(𝑠),          𝐻𝑖𝑗(𝑠, 𝑥) < 0.

 

 

4.    Differential Transform Method 

     In this section, we consider representing the Differential Transformation Method(DTM). For the function 

𝑓(𝑥), the differential transformation of 𝐾th is defined as follows [16]:  

 𝐹(𝑘) =
1

𝑘!
[
𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
]𝑥=𝑥0 , (5) 

 

where 𝑓(𝑥) and 𝐹(𝑘) are original function and derivative translate of 𝑘-th respectively. The differential 

inverse transform of 𝐹(𝑘) is defined as:  

 𝑓(𝑥) = ∑  ∞
𝑘=0 𝐹(𝑘)(𝑥 − 𝑥0)

𝑘, (6) 

 

From Equations (5) and (6) we have: 

 

 𝑓(𝑥) = ∑  ∞
𝑘=0 [

(𝑥−𝑥0)
𝑘

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
]𝑥=𝑥0 . (7) 
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The following theorems can be deduced form Equations (5), (6) and (7). 

 

 Theorem 1.  

 𝑖𝑓  𝑓(𝑥) = 𝑔(𝑥) ± ℎ(𝑥) ⟹ 𝐹(𝑘) = 𝐺(𝑘) ± 𝐻(𝑘). 
 

 Theorem 2.  

 𝑖𝑓  𝑓(𝑥) = 𝑎𝑔(𝑥) ⟹ 𝐹(𝑘) = 𝑎𝐺(𝑘). 
 

 Theorem 3.  

 𝑖𝑓  𝑓(𝑥) =
𝑑𝑚𝑔(𝑥)

𝑑𝑥𝑚
⟹𝐹(𝑘) =

(𝑘+𝑚)!

𝑘!
𝐺(𝑘 +𝑚). 

 

 Theorem 4.  

 𝑖𝑓  𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) ⟹ 𝐹(𝑘) = ∑  𝑘
𝑖=0 𝐺(𝑖)𝐻(𝑘 − 𝑖). 

 

 Theorem 5.  

 𝑖𝑓 𝑓(𝑥) = 𝑥𝑛 ⟹ 𝐹(𝑘) = 𝛿(𝑘 − 𝑛) = {
1,   𝑘 = 𝑛 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

 Theorem 6.  

 𝑖𝑓  𝑓(𝑥) = 𝑒𝑥𝑝(𝜆𝑥) ⟹ 𝐹(𝑘) =
𝜆𝑘

𝑘!
. 

 

 Theorem 7.  

 𝑖𝑓  𝑓(𝑥) = 𝑠𝑖𝑛(𝑤𝑥 + 𝛼) ⟹ 𝐹(𝑘) =
𝑤𝑘

𝑘!
𝑠𝑖𝑛(

𝜋𝑘

2
+ 𝛼). 

 

 Theorem 8.  

 𝑖𝑓  𝑓(𝑥) = 𝑐𝑜𝑠(𝑤𝑥 + 𝛼) ⟹ 𝐹(𝑘) =
𝑤𝑘

𝑘!
𝑐𝑜𝑠(

𝜋𝑘

2
+ 𝛼). 

 

 Theorem 9.  

 𝑖𝑓  𝑓(𝑥) = ∫  
𝑥

𝑥0
𝑔(𝑡)𝑑𝑡 ⟹ 𝐹(𝑘) =

𝐺(𝑘−1)

𝑘
, ∀𝑘 ≥ 1, 𝑎𝑛𝑑𝐹(0) = 0. 

 

 Theorem 10.  

 𝑖𝑓  𝑓(𝑥) = ∫  
𝑥

𝑥0
𝑔(𝑡)ℎ(𝑡)𝑑𝑡 ⟹ 𝐹(𝑘) = ∑  𝑘−1

𝑟=0 𝐺(𝑟)
𝐻(𝑘−𝑟−1)

𝑘
, 𝐹(0) = 0. 

 

 Theorem 11.  

 𝑖𝑓   𝑓(𝑥) = 𝑔(𝑥) ∫  
𝑥

𝑥0
ℎ(𝑡)𝑑𝑡 ⟹ 𝐹(𝑘) = ∑  𝑘−1

𝑟=0 𝐺(𝑟)
𝐻(𝑘−𝑟−1)

𝑘−𝑟
, 𝐹(0) = 0. 

 

 Theorem 12. If  

 𝑓(𝑥) = (𝑔1(𝑥)𝑔2(𝑥)⋯𝑔𝑛−1(𝑥)𝑔𝑛(𝑥)) ∫  
𝑥

𝑥0
ℎ1(𝑡)ℎ2(𝑡)⋯ℎ𝑚−1(𝑡)ℎ𝑚(𝑡)𝑑𝑡, 

 

then: 

𝐹(𝑘) =∑  
𝑘

𝑘𝑚+𝑛−1=1
∑  

𝑘𝑚+𝑛−1

𝑘𝑚+𝑛−2=1
⋯∑  

𝑘3

𝑘2=1
∑  

𝑘2

𝑘1=1

1

𝑘𝑚
𝐻1(𝑘1 − 1)𝐻2(𝑘2 − 𝑘1) ×⋯ 

× 𝐻𝑚−1(𝑘𝑚−1 − 𝑘𝑚−2)𝐻𝑚(𝑘𝑚 − 𝑘𝑚−1)𝐺1(𝑘𝑚+1 − 𝑘𝑚)𝐺2(𝑘𝑚+2 − 𝑘𝑚+1) × ⋯ 

× 𝐺𝑛−1(𝑘𝑚+𝑛−1 − 𝑘𝑚+𝑛−2)𝐺𝑛(𝑘 − 𝑘𝑚+𝑛−1). 
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5. Error Estimation 

 We consider the general form of a Fuzzy integral equations system, for 0 ≤ 𝑟 ≤ 1 as: 

 

 �̃�(𝑥; 𝑟) = (

�̃�1(𝑥; 𝑟)
      ⋮
�̃�𝑛(𝑥; 𝑟)

) 

 where  

                                          

{
 
 

 
 �̃�1(𝑥; 𝑟) = �̃�1(𝑥; 𝑟) + 𝜆1 ∫  

𝑥

0
𝐻1(𝑥, 𝑠)�̃�1(𝑠; 𝑟)𝑑𝑠,

                                            ⋮

�̃�𝑚(𝑥; 𝑟) = �̃�𝑚(𝑥; 𝑟) + 𝜆𝑚 ∫  
𝑥

0
𝐻𝑚(𝑥, 𝑠)�̃�𝑚(𝑠; 𝑟)𝑑𝑠.

                                                  (8) 

 

Theorem 13. Let 𝐻1(𝑥, 𝑠), . . . , 𝐻𝑚(𝑥, 𝑠) have been continuous for 𝑎 ≤ 𝑥, 𝑠 ≤ 𝑏, and �̃�1(𝑥; 𝑟), . . . , �̃�𝑚(𝑥; 𝑟) are 

continuous of x, 𝑎 ≤ 𝑥 ≤ 𝑏, respectively. If  

{
 
 

 
 𝜆1 <

1

𝑀1(𝑏 − 𝑎)
,

           ⋮

𝜆𝑚 <
1

𝑀𝑚(𝑏 − 𝑎)
,
 

  

where  

{
 
 

 
 
𝑀1 = max

𝑎≤𝑥,𝑠≤𝑏
|𝐻1(𝑥, 𝑠)|,

                     ⋮
𝑀𝑚 = max

𝑎≤𝑥,𝑠≤𝑏
|𝐻𝑚(𝑥, 𝑠)|,

 

 

then the iterative procedure, 

𝑖𝑓𝑘 = 0 ⟹ {

�̃�1,0(𝑥; 𝑟) = �̃�1(𝑥; 𝑟),
                    ⋮
�̃�𝑚,0(𝑥; 𝑟) = �̃�𝑚(𝑥; 𝑟),

 

𝑓𝑜𝑟   𝑘 > 0 ⟹

{
  
 

  
 �̃�1,𝑘(𝑥; 𝑟) = �̃�1(𝑥; 𝑟) + 𝜆1∫  

𝑥

0

𝐻1(𝑥, 𝑠)�̃�1,(𝑘−1)(𝑠; 𝑟)𝑑𝑠,

                                          ⋮

�̃�𝑚,𝑘(𝑥; 𝑟) = �̃�𝑚(𝑥; 𝑟) + 𝜆𝑚∫  
𝑥

0

𝐻𝑚(𝑥, 𝑠)�̃�𝑚,(𝑘−1)(𝑠; 𝑟)𝑑𝑠,

 

converges to the unique solution of (8). Specially, 

{
  
 

  
 sup
𝑎≤𝑥≤𝑏

𝐷(�̃�1(𝑥; 𝑟), �̃�1,𝑘(𝑥; 𝑟)) ≤
𝐿1
𝑘

1 − 𝐿1
sup
𝑎≤𝑥≤𝑏

𝐷(�̃�1,0(𝑥; 𝑟), �̃�1,1(𝑥; 𝑟)),

                                                      ⋮

sup
𝑎≤𝑥≤𝑏

𝐷(�̃�𝑚(𝑥; 𝑟), �̃�𝑚,𝑘(𝑥; 𝑟)) ≤
𝐿2

𝑘

1 − 𝐿𝑚
sup
𝑎≤𝑥≤𝑏

𝐷(�̃�𝑚,0(𝑥; 𝑟), �̃�𝑚,1(𝑥; 𝑟)),

 

where  

{

𝐿1 = 𝜆1𝑀1(𝑏 − 𝑎),
⋮
𝐿𝑚 = 𝜆𝑚𝑀𝑚(𝑏 − 𝑎),
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Throughout this paper, we consider Volterra integral Equation (8) with 𝜆1, . . . , 𝜆𝑚 > 0, where  

 

{

�̃�1(𝑥; 𝑟), �̃�1(𝑥; 𝑟) ∈ 𝐿1
2[0,1),

                            ⋮
�̃�𝑚(𝑥; 𝑟), �̃�2(𝑥; 𝑟) ∈ 𝐿𝑚

2[0,1),
 

  

and  

{

𝐻1(𝑥, 𝑠) ∈ 𝐿1
2([0,1) × [0,1)),

                         ⋮
𝐻𝑚(𝑥, 𝑠) ∈ 𝐿𝑚

2([0,1) × [0,1)),
 

  

(coefficients of �̃�1(𝑥; 𝑟), . . . , �̃�𝑚(𝑥; 𝑟) in the interval [0,1) from the know functions �̃�1(𝑥; 𝑟), . . . , �̃�𝑚(𝑥; 𝑟) 
and kernel 𝐻1(𝑥; 𝑠), . . . , 𝐻𝑚(𝑥; 𝑠)). 

 

6.  Numerical examples  

In this section, we present the application of the Differential Transform Method (DTM) to solve linear and 

nonlinear Fuzzy Integral equations systems. 

 
Example 1. We consider the linear Fuzzy Integral equations system 

{
  
 

  
 �̃�1(𝑥; 𝑟) = �̃�1(𝑥; 𝑟) + 𝑥�̃�2(𝑥; 𝑟) + 2∫  

𝑥

0

[𝑥�̃�1(𝑠; 𝑟) + �̃�2(𝑠; 𝑟)]𝑑𝑠,

�̃�2(𝑥; 𝑟) = �̃�2(𝑥; 𝑟) −
1

2
(𝑥2 + 𝑥)�̃�1(𝑥; 𝑟) −

1

2
∫  
𝑥

0

[�̃�1(𝑠; 𝑟) − �̃�2(𝑠; 𝑟)]𝑑𝑠,

 

  
 where 

�̃�1(𝑥; 𝑟):

{
 
 

 
 𝐺1(𝑥; 𝑟) = −

2

3
𝑟5𝑥4 −

4

3
𝑟𝑥4 + 𝑟5𝑥2 − 4𝑟𝑥2 + 2𝑥2,

𝐺1(𝑥; 𝑟) = 2𝑟
3𝑥4 − 4𝑥4 − 3𝑟3𝑥2 + 2𝑟𝑥2,

 

  
and  

�̃�2(𝑥; 𝑟):

{
 
 

 
 𝐺2(𝑥; 𝑟) =

1

2
𝑟5𝑥4 + 𝑟𝑥4 +

2

3
𝑟5𝑥3 +

4

3
𝑟𝑥3 −

3

4
𝑟𝑥2 +

1

4
𝑥2 + 3𝑟𝑥 − 𝑥,

𝐺2(𝑥; 𝑟) = −
3

2
𝑟3𝑥4 + 3𝑥4 − 2𝑟3𝑥3 + 4𝑥3 +

1

4
𝑟𝑥2 −

3

4
𝑥2 + 3𝑥 − 𝑟𝑥.

 

 
The exact solution, for 0 ≤ 𝑟 ≤ 1, by using direct method, is  

 

�̃�𝑒𝑥𝑎.(𝑥; 𝑟) = (

�̃�1(𝑥; 𝑟)

�̃�2(𝑥; 𝑟)
) =

(

 
 
[𝐹1(𝑥; 𝑟), 𝐹1(𝑥; 𝑟)]

[𝐹2(𝑥; 𝑟), 𝐹2(𝑥; 𝑟)]

)

 
 
= (

[𝑟5𝑥2 + 2𝑟𝑥2, −3𝑟3𝑥2 + 6𝑥2]

       [3𝑟𝑥 − 𝑥,−𝑟𝑥 + 3𝑥]
) 

 
  



M. Paripour and M. Takrimi. / FOMJ 3(3) (2022) 19–32                                                                                   27 

First, we calculate the solution of 𝐹1(𝑘) and 𝐹2(𝑘) where:  

{
  
 

  
 𝐹1(𝑥; 𝑟) = 𝐺1(𝑥; 𝑟) + 𝑥𝐹2(𝑥; 𝑟) + 2∫  

𝑥

0

[𝑥𝐹1(𝑠; 𝑟) + 𝐹2(𝑠; 𝑟)]𝑑𝑠,

𝐹2(𝑥; 𝑟) = 𝐺2(𝑥; 𝑟) −
1

2
(𝑥2 + 𝑥)𝐹1(𝑥; 𝑟) −

1

2
∫  
𝑥

0

[𝐹1(𝑠; 𝑟) − 𝐹2(𝑠; 𝑟)]𝑑𝑠,

 

  
and  

{
 
 

 
 𝐺1(𝑥; 𝑟) = −

2

3
𝑟5𝑥4 −

4

3
𝑟𝑥4 + 𝑟5𝑥2 − 4𝑟𝑥2 + 2𝑥2,

𝐺2(𝑥; 𝑟) =
1

2
𝑟5𝑥4 + 𝑟𝑥4 +

2

3
𝑟5𝑥3 +

4

3
𝑟𝑥3 −

3

4
𝑟𝑥2 +

1

4
𝑥2 + 3𝑟𝑥 − 𝑥.

 

  
We have by using theorems of DTM, the following relation for 𝐹1(𝑘) and 𝐹2(𝑘):  

{
 
 
 

 
 
 
𝐹1(𝑘) = 𝐺1(𝑘) +∑  

𝑘

ℎ=0

𝛿(ℎ − 1)𝐹2(𝑘 − ℎ) + 2∑  

𝑘−1

ℎ=0

𝛿(ℎ − 1)
𝐹1(𝑘 − ℎ − 1)

𝑘 − ℎ
+ 2

𝐹2(𝑘 − 1)

𝑘
,

𝐹2(𝑘; 𝑟) = 𝐺2(𝑘; 𝑟) −
1

2
∑  

𝑘

ℎ=0

𝛿(ℎ − 2)𝐹1(𝑘 − ℎ) −
1

2
∑  

𝑘

ℎ=0

𝛿(ℎ − 1)𝐹2(𝑘 − ℎ) −
1

2

𝐹1(𝑘 − 1)

𝑘
+
1

2

𝐹2(𝑘 − 1)

𝑘
,

 

 
where:  

{
 
 

 
 𝐺1(𝑘) = −

2

3
𝑟5𝛿(𝑘 − 4) −

4

3
𝑟𝛿(𝑘 − 4) + 𝑟5𝛿(𝑘 − 2) − 4𝑟𝛿(𝑘 − 2) + 2𝛿(𝑘 − 2),

𝐺2(𝑘) =
1

2
𝑟5𝛿(𝑘 − 4) + 𝑟𝛿(𝑘 − 4) +

2

3
𝑟5𝛿(𝑘 − 3) +

4

3
𝑟𝛿(𝑘 − 3) −

3

4
𝑟𝛿(𝑘 − 2) +

1

4
𝛿(𝑘 − 2) + 3𝑟𝛿(𝑘 − 1) − 𝛿(𝑘 − 1),

 

  
 
Consequently, we find:  

{
𝐹1(0) = 0,

𝐹2(0) = 0,
 , {

𝐹1(1) = 0,

𝐹2(1) = 3𝑟 − 1,
,     {

𝐹1(2) = 𝑟5 + 2𝑟,

𝐹2(2) = 0,
,          {

𝐹1(𝑘) = 0; 𝑓𝑜𝑟: 𝑘 ≥ 3,

𝐹2(𝑘) = 0; 𝑓𝑜𝑟: 𝑘 ≥ 3.
       

  
 
Then, by using Equation (6), we obtain the approximate solution:  

 

                                                                                              {

𝐹1(𝑥; 𝑟) = (𝑟5 + 2𝑟)𝑥2,

𝐹2(𝑥; 𝑟) = (3𝑟 − 1)𝑥,

                                                                   (9) 

 

We can to solve 𝐹1(𝑥; 𝑟),𝐹2(𝑥; 𝑟) similar to 𝐹1(𝑥; 𝑟), 𝐹2(𝑥; 𝑟) respectively; then, we find:  

 

{
𝐹1(0) = 0,

𝐹2(0) = 0,
 

  

{
𝐹1(1) = 0,

𝐹2(1) = 3 − 𝑟,
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{
𝐹1(2) = −3𝑟

3 + 6,

𝐹2(2) = 0,
 

 

{
𝐹1(𝑘) = 0; 𝑓𝑜𝑟: 𝑘 ≥ 3,

𝐹2(𝑘) = 0; 𝑓𝑜𝑟: 𝑘 ≥ 3.

 

  
 
Then, by using Equation (6), we obtain the approximate solution:  
 

{
𝐹1(𝑥; 𝑟) = (6 − 3𝑟3)𝑥2,

𝐹2(𝑥; 𝑟) = (3 − 𝑟)𝑥,

    (10) 

 
Therefore by using (9) and (10), we have:  

 

 �̃�𝑎𝑝𝑝.(𝑥; 𝑟) = (

�̃�1(𝑥; 𝑟)

�̃�2(𝑥; 𝑟)
) = (

[𝑟5𝑥2 + 2𝑟𝑥2, −3𝑟3𝑥2 + 6𝑥2]

            [3𝑟𝑥 − 𝑥, −𝑟𝑥 + 3𝑥]
) 

 Thus, we obtain:  

 �̃�𝑎𝑝𝑝.(𝑥; 𝑟) = �̃�𝑒𝑥𝑎.(𝑥; 𝑟). 

 
Example 2. We consider the following nonlinear Fuzzy Integral equations system: 
 

{
  
 

  
 �̃�1(𝑥; 𝑟) = �̃�1(𝑥; 𝑟) + ∫  

𝑥

0

[(�̃�1(𝑠; 𝑟))
2 + (�̃�2(𝑠; 𝑟))

3]𝑑𝑠,

�̃�2(𝑥; 𝑟) = �̃�2(𝑥; 𝑟) + ∫  
𝑥

0

[(�̃�1(𝑠; 𝑟))
3 − (�̃�2(𝑠; 𝑟))

2]𝑑𝑠,

 

 
where  

�̃�1(𝑥; 𝑟):

{
 
 

 
 𝐺

1
(𝑥; 𝑟) = 𝑟𝑥2 −

1

5
𝑟2𝑥5 −

1

10
𝑟3𝑥10,

𝐺1(𝑥; 𝑟) = 2𝑥2 − 𝑟𝑥2 −
4

5
𝑥5 +

4

5
𝑟𝑥5 −

1

5
𝑟2𝑥5 −

27

10
𝑥10 +

27

5
𝑟𝑥10 −

18

5
𝑟2𝑥10 +

4

5
𝑟3𝑥10,

 

 
and  

�̃�2(𝑥; 𝑟):

{
 
 

 
 𝐺

2
(𝑥; 𝑟) = 𝑟𝑥3 −

1

7
𝑟3𝑥7 +

1

7
𝑟2𝑥7,

𝐺2(𝑥; 𝑟) = 3𝑥3 − 2𝑟𝑥3 +
1

7
𝑥7 −

2

7
𝑟2𝑥7 +

1

7
𝑟3𝑥7.
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The exact solution, for 0 ≤ 𝑟 ≤ 1, is  

 

 �̃�𝑒𝑥𝑎.(𝑥; 𝑟) = (

�̃�1(𝑥; 𝑟)

�̃�2(𝑥; 𝑟)
) =

(

 
 
[𝐹1(𝑥; 𝑟), 𝐹1(𝑥; 𝑟)]

[𝐹2(𝑥; 𝑟), 𝐹2(𝑥; 𝑟)]

)

 
 
= (

[𝑟𝑥2, 2𝑥2 − 𝑟𝑥2]

[𝑟𝑥3, 3𝑥3 − 2𝑟𝑥3]
) 

 First we calculate the solution of 𝐹1(𝑘) and 𝐹2(𝑘) where:  

 

{
  
 

  
 𝐹1(𝑥; 𝑟) = 𝐺1(𝑥; 𝑟) + ∫  

𝑥

0

[(𝐹1(𝑠; 𝑟))
2 + (𝐹2(𝑠; 𝑟))

3]𝑑𝑠,

𝐹2(𝑥; 𝑟) = 𝐺2(𝑥; 𝑟) + ∫  
𝑥

0

[(𝐹1(𝑠; 𝑟))
3 − (𝐹2(𝑠; 𝑟))

2]𝑑𝑠,

 

  
and  

{
 
 

 
 𝐺1(𝑥; 𝑟) = 𝑟𝑥

2 −
1

5
𝑟2𝑥5 −

1

10
𝑟3𝑥10,

𝐺2(𝑥; 𝑟) = 𝑟𝑥
3 −

1

7
𝑟3𝑥7 +

1

7
𝑟2𝑥7.

 

  
We have by using theorems of DTM, the following relation for 𝐹1(𝑘) and 𝐹2(𝑘):  

 

{
 
 
 
 

 
 
 
 
𝐹1(𝑘) = 𝐺1(𝑘) +∑  

𝑘−1

ℎ=0

𝐹1(ℎ)
𝐹1(𝑘 − ℎ − 1)

𝑘
+
1

𝑘
∑  

𝑘

𝑘2=0

∑  

𝑘2

𝑘1=0

𝐹1(𝑘1)𝐹1(𝑘2 − 𝑘1)𝐹1(𝑘 − 𝑘2 − 1),

𝐹2(𝑘; 𝑟) = 𝐺2(𝑘; 𝑟) +
1

𝑘
∑  

𝑘

𝑘2=0

∑  

𝑘2

𝑘1=0

𝐹1(𝑘1)𝐹1(𝑘2 − 𝑘1)𝐹1(𝑘 − 𝑘2 − 1) −∑  

𝑘−1

ℎ=0

𝐹2(ℎ)
𝐹2(𝑘 − ℎ − 1)

𝑘
,

 

 
where:  

{
 
 

 
 𝐺1(𝑘) = 𝑟𝛿(𝑘 − 2) −

1

5
𝑟2𝛿(𝑘 − 5) +

1

10
𝑟3𝛿(𝑘 − 10),

𝐺2(𝑘) = 𝑟𝛿(𝑘 − 3) −
1

7
𝑟3𝛿(𝑘 − 7) +

1

7
𝑟2𝛿(𝑘 − 7),

 

  
 
Consequently, we find:  

 

{
𝐹1(0) = 0,

𝐹2(0) = 0,
,    {

𝐹1(1) = 0,

𝐹2(1) = 0,
,    {

𝐹1(2) = 𝑟,

𝐹2(2) = 0,
,     {

𝐹1(3) = 0,

𝐹2(3) = 𝑟,
,    {

𝐹1(𝑘) = 0; 𝑓𝑜𝑟: 𝑘 ≥ 4,

𝐹2(𝑘) = 0; 𝑓𝑜𝑟: 𝑘 ≥ 4.
 

  
Then, by using Equation (6), we obtain the approximate solution:  

 

                                                                                         {

𝐹1(𝑥; 𝑟) = 𝑟𝑥
2,

𝐹2(𝑥; 𝑟) = 𝑟𝑥
3,

                                                                         (11) 
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We can solve𝐹1(𝑥; 𝑟),𝐹2(𝑥; 𝑟) similar to𝐹1(𝑥; 𝑟), 𝐹2(𝑥; 𝑟) respectively; then, we find:  

 

{
𝐹1(0) = 0,

𝐹2(0) = 0,
 

 

 {
𝐹1(1) = 0,

𝐹2(1) = 0,
 

 

 {
𝐹1(2) = 2 − 𝑟,

𝐹2(2) = 0,
 

 

{
𝐹1(3) = 0,

𝐹2(3) = 3 − 2𝑟,
 

  

 {
𝐹1(𝑘) = 0; 𝑓𝑜𝑟: 𝑘 ≥ 4,

𝐹2(𝑘) = 0; 𝑓𝑜𝑟: 𝑘 ≥ 4.

 

 
  
Then, by using Equation (6), we obtain the approximate solution:  

 

                                                                    {
𝐹1(𝑥; 𝑟) = (2 − 𝑟)𝑥

2,

𝐹2(𝑥; 𝑟) = (3 − 2𝑟)𝑥
3,

                                                                                (12) 

   
 
Therefore by using (11) and (12), we have:  

 

 �̃�𝑎𝑝𝑝.(𝑥; 𝑟) = (

�̃�1(𝑥; 𝑟)

�̃�2(𝑥; 𝑟)
) = (

[𝑟𝑥2, 2𝑥2 − 𝑟𝑥2]

[𝑟𝑥3, 3𝑥3 − 2𝑟𝑥3]
) 

Thus, we obtain:  

 �̃�𝑎𝑝𝑝.(𝑥; 𝑟) = �̃�𝑒𝑥𝑎.(𝑥; 𝑟). 

 

7. Conclusion 

     In this paper, a linear and nonlinear fuzzy integral equations system of Volttera was converted into two linear 

and nonlinear crisp Integral Equations Systems of Volttera; then we successfully applied Differential Transform 

Method to obtain the solution of each of the systems. Differential transform method is different from the 

traditional high-order Taylor series method, which requires the symbolic computation of necessary derivatives 

of the data function and is computationally expensive for higher-order. The present technique in comparison 

with other numerical and traditional methods has the efficiency that all of the calculations can be made by 

simple manipulations; moreover presented examples in this article are authenticated that the DTM requires the 

least calculations among other algorithms; also another main advantage of this method is solving an integral 

equations system without using any integration. As a result, the DTM can be applied to solve many complicated 

linear and nonlinear integral equations system. 
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