Performance Improvement of the Single Pole Auto Reclose Using a New Mother Wavelet
Saeid Zoghi Khosrowshahi
1
(
Manufacturing Engineering- Tabriz University of Applied Science and Technology, Tabriz, Iran
)
Larissa Khodadadi
2
(
Department of Electrical Engineering- Tabriz Branch, Islamic Azad University, Tabriz, Iran
)
Mousa Vaezipour
3
(
Department of Mechanical Engineering, Technical and Vocational University (TVU), Tabriz,
)
Mahsa Khodadadi
4
(
Department of Electrical Engineering- Bonab Branch, Islamic Azad University, Bonab, Iran
)
Keywords: Wavelet Transform, electric Arc, auto-reclose, new mother wavelet, transient faults,
Abstract :
In this paper, a novel wavelet-based method is proposed to improve the performance of the single-pole auto reclose (SPAR). Despite earlier approaches, a new mother wavelet is developed in this study to carry out the adaptive reclosing instead of using standard wavelets. However, the innovation of the research goes beyond this. The paper's originality also includes the use of a new combination of filter bank coefficients and the proposal of a two-threshold logic to distinguish between permanent and transient faults and to identify the secondary arc extinction time. In order to evaluate the performance of the proposed method, a typical 400 KV transmission line from Iran’s national grid is simulated under different fault scenarios and various operating conditions in EMTP-RV transient mode software. The obtained results demonstrate the optimal accuracy of the suggested technique to distinguish between permanent and transient faults. Additionally, secondary arc extinction is detected at a faster rate compared to existing methods. On the other hand, the proposed method does not impose a heavy computational load, and its implementation is quite affordable.
[1] P.M. Anderson, C. Henville, R. Rifaat, B. Johnson, S. Meliopoulos, "Power system protection", 2nd Edition, New York: Wiley-IEEE Press, Jan. 2022 (ISBN: 978-1-119-51314-8).
[2] M.R. Rezaei, S.R. Hadian-Amrei, M.R. Miveh, "An improved method for online fault location based on the phasor measurement unit in transmission lines considering the thermal limit", Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 53, pp. 61-78, Sept. 2023 (in Persian) (dor: 20.1001.1.23223871.1402.14.53.4.8).
[3] M. Jannati, B. Vahidi, S.H. Hosseinian, H.R. Baghaee, "A new adaptive single phase auto-reclosure scheme for EHV transmission lines", Proceeding of the IEEE/MEPCON, pp. 203-207, Aswan, Egypt, Mar. 2008 (doi:10.1109/MEPCON.2008.4562389).
[4] M. Sanaye-Pasand, A. Kadivar, "Design of an online adaptive auto-reclose algorithm for HV transmission lines", Proceeding of the IEEE/POWERI, pp. 1-5, New Delhi, India, April 2006 (doi: 10.1109/POWERI.2006.1632609).
[5] M.R. Dadash-Zadeh, M. Sanaye-Pasand, A. Kadivar, "Investigation of neutral reactor performance in reducing secondary arc current", IEEE Trans. on Power Delivery, vol. 23, no. 4, pp. 2472-2479, Oct. 2008 (doi: 10.1109/TPWRD.2008.923089).
[6] S.A. Ahmadi, M. Sanaye-Pasand, P. Jafarian, H. Mehrjerdi, "Adaptive single-phase auto-reclosing approach for shunt compensated transmission lines", IEEE Trans. on Power Delivery, vol. 36, no. 3, pp. 1360-1369, June 2021 (doi: 10.1109/TPWRD.2020.3007392).
[7] A. Mehdi, C.H. Kim, A. Hussain, J.S. Kim, S.J.U. Hassan, "A comprehensive review of auto-reclosing schemes in AC, DC, and hybrid (AC/DC) transmission lines", IEEE Access, vol. 9, pp. 74325-74342, May 2021 (doi: 10.1109/ACCESS.2021.3077938).
[8] K.M.C. Dantas, F.V. Lopes, K.M. Silva, F.B. Costa, N.S.S. Ribeiro, "Phasor-based single-phase auto-reclosing scheme for non-compensated transmission lines", IEEE Trans. on Power Delivery, vol. 37, no. 1, pp. 219-229, Feb. 2022 (doi: 10.1109/TPWRD.2021.3055853).
[9] P. Liu, W. Shao, G. Song, "Single-phase adaptive reclosure scheme using impedance property of fault loop in shunt-reactored transmission lines", Proceeding of the IEEE/APAP, pp. 154-157, Xi'an, China, Oct. 2019 (doi: 10.1109/APAP47170.2019.9224891).
[10] S. Jamali, A. Parham, "New approach to adaptive single pole auto-reclosing of power transmission lines", IET Generation, Transmission and Distribution, vol. 4, no. 1, pp. 115-122. Jan. 2010 (doi: 10.1049/iet-gtd.2009.0058).
[11] I. Zalitis, A. Dolgicers, J. Kozadajevs, "An adaptive single-pole automatic reclosing method for uncompensated high-voltage transmission lines", Electric Power Systems Research, vol. 166, pp. 210-222, Jan. 2019 (doi: 10.1016/j.epsr.2018.10.012).
[12] F. Zhalefar, M.R. Dadash Zadeh, T.S. Sidhu, "A high-speed adaptive single-phase reclosing technique based on local voltage phasors", IEEE Trans. on Power Delivery, vol. 32, no. 3, pp. 1203-1211, June 2017 (doi: 10.1109/TPWRD.2015.2388474).
[13] R.J. Hamidi, H. Livani, "Adaptive single-phase auto-reclosing method using power line carrier signals", International Journal of Electrical Power and Energy Systems, vol. 96, pp. 64-73, Mar. 2018 (doi: 10.1016/j.ijepes.2017.09.033).
[14] Z.S. Hussain, A.J. Ali, A.A. Allu, R.K. Antar, "Improvement of protection relay with a single phase autore-closing mechanism based on artificial neural network", International Journal of Power Electronics and Drive Systems, vol. 11, no. 1, pp. 505-514, Mar. 2020 (doi: 10.11591/ijpeds.v11.i1.pp505-514).
[15] H. Khorashadi-Zadeh, "Artificial neural network approach for autoreclosure in transmission lines", Proceeding of the IEEE/PTC, pp. 1-4, St. Petersburg, Russia, June 2005 (doi: 10.1109/PTC.2005.4524653).
[16] F. Hatami, M. Jannati, M. Shams, "A deep long Short-Term memory based scheme for auto-reclosing of power transmission lines", International Journal of Electrical Power and Energy Systems, vol. 141, pp.108105, Oct. 2022 (doi: 10.1016/j.ijepes.2022.108105).
[17] M. Saad, C.H. Kim, N. Munir, "Single-phase auto-reclosing scheme using particle filter and convolutional neural network", IEEE Trans. on Power Delivery, vol. 37, no. 6, pp. 4775-4785, Dec. 2022 (doi: 10.1109/TPWRD.2022.3159256).
[18] H. Khorashadi-Zadeh, Z. Li, "Transmission line single phase auto reclosing scheme based on wavelet transform and adaptive fuzzy neuro inference system", Proceeding of the IEEE/NAPS, pp. 43-48, Las Cruces, NM, USA, Sept. 2007 (doi: 10.1109/NAPS.2007.4402284).
[19] S. Vasilic, M. Kezunovic, "Fuzzy ART neural network algorithm for classifying the power system faults", IEEE Trans. on Power Delivery, vol. 20, no. 2, pp. 1306-1314, Apr. 2005 (doi: 10.1109/TPWRD.2004.834676).
[20] K. Behrouz-Dehkordi, H. Movahednejad, M. Sharifi, "Comprehensive review on data-driven techniques in smart power grids", Journal of Intelligent Procedures in Electrical Technology, vol. 15, no. 57, pp. 133-162, June 2024 (in Persian) (dor: 20.1001.1.23223871.1403.15.57.9.8).
[21] B. Sahoo, S.R. Samantaray, "Wavelet-based auto-reclosing technique for TCSC compensated lines connecting windfarm", Proceeding of the IEEE/NPSC, pp. 1-6, Tiruchirappalli, India, Dec. 2018 (doi: 10.1109/NPSC.2018.8771764).
[22] O. Dias, M.C. Tavares, "Implementation and performance evaluation of a harmonic filter for use in adaptive single-phase reclosing", IET Generation, Transmission and Distribution, vol. 11, no. 9, pp. 2261-2268. June 2017 (doi: 10.1049/iet-gtd.2016.1630).
[23] H. Khorashadi-Zadeh, Z. Li, "Design of a novel phasor measurement unit-based transmission line auto reclosing scheme", IET Generation, Transmission and Distribution, vol. 5, no. 8, pp. 806-813. Aug. 2011 (doi: 10.1049/iet-gtd.2010.0744).
[24] A.R. Adly, R.A. El-Sehiemy, A.Y. Abdelaziz, "An optimal/adaptive reclosing technique for transient stability enhancement under single pole tripping", Electric Power Systems Research, vol. 151, pp. 348-358, Oct. 2017 (doi: 10.1016/j.epsr.2017.06.005).
[25] C. Xie, F. Li, "Adaptive comprehensive auto-reclosing scheme for shunt reactor-compensated transmission lines", IEEE Trans. on Power Delivery, vol. 35, no. 5, pp. 2149-2158, Oct. 2020 (doi: 10.1109/TPWRD.2019.2961981).
[26] O.D. Naidu, A.K. Pradhan, P. Krishnamurthy, "Traveling wave based adaptive auto-reclosing and fault location for three-terminal mixed lines", Proceeding of the IEEE/GTDAsia, pp. 466-471, Bangkok, Thailand, Mar. 2019 (doi: 10.1109/GTDAsia.2019.8715973).
[27] J.R. Marti, "Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations", IEEE Trans. on Power Apparatus and Systems, vol. PAS-101, no. 1, pp. 147-157, Jan. 1982 (doi: 10.1109/TPAS.1982.317332).
[28] L. Prikler, M. Kizilcay, G. Ban, P. Handl, "Modeling secondary arc based on identification of arc parameters from staged fault test records", International Journal of Electrical Power & Energy Systems, vol. 25, no. 8, pp. 581-589, Oct. 2003 (doi: 10.1016/S0142-0615(03)00018-8).
[29] O.A.S. Youssef, "New algorithm to phase selection based on wavelet transforms", IEEE Trans. on Power Delivery, vol. 17, no. 4, pp. 908-914, Oct. 2002 (doi:10.1109/PESS.2002.1043435).
[30] I. Daubechies, "Ten lectures on wavelets", 1st Edition, Philadelphia: Society for Industrial and Applied Mathematics, Aug. 1992 (ISBN: 978-0-89871-274-2).
[31] R.C. Guido, "A note on a practical relationship between filter coefficients and scaling and wavelet functions of discrete wavelet transforms", Applied Mathematics Letters, vol. 24, no. 7, pp. 1257-1259, July 2011 (doi: 10.1016/j.aml.2011.02.018).
[32] S. Jamali, A.G. Baayeh, "Detection of secondary arc extinction for adaptive single phase auto-reclosing based on local voltage behaviour", IET Generation, Transmission and Distribution, vol. 11, no. 4, pp. 952-958, Mar. 2017 (doi: 10.1049/iet-gtd.2016.0960).
_||_