Design of a High Step-up DC-DC Converter Based on QZSI with Low Voltage Dtress by Using Coupled Inductor Technique
Subject Areas : Renewable energyJafari Hosein 1 , Mahdi Shaneh 2 , Tohid Nouri 3
1 - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 - Smart Microgrid Research Center- Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 - Department of Electrical Engineering- Sari Branch, Islamic Azad University, Sari, Iran
Keywords: Quasi Z-source Impedance Network, Voltage Multiplier Cell, Stacked capacitor, coupled inductor,
Abstract :
High step-up structures are commonly used to upgrade the low voltage levels generated by renewable energy sources. In this paper, a high step-up structure based on Quasi Z-Source network is presented, which has a simple yet functional structure consisting of two inductors and two capacitors. Due to the duty cycle of about 50% for this converter, the problems of reverse recovery of diodes and stability are solved. In addition, the common ground of the power switch and the input source simplifies the control circuit. Using the coupled inductor technique as well as the voltage multiplier cell, the converter voltage gain increases significantly. In addition, the stacked capacitor is used to limit the voltage stress on the switch. The use of the proposed structure increases the voltage gain of the converter. The proposed structure also reduces the level of voltage stress on the semiconductors of the circuit, which reduces the cost and increases the efficiency of the circuit. The converter designed with 25V/ 400V input/ output 100Wouput power is simulated in PSpice software and the results are presented.
[1] F.Z. Peng, "Z-source inverter", IEEE Trans. Power Electronic, vol. 39, no. 2, pp. 504-510, Mar./Apr. 2003 (doi: 10.1109/TIA.2003.808920).
[2] M. Soltani, S. Mirtalaee, "Design and simulation of a high step-up three level boost converter with coupled-inductor and passive clamp", Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 32, pp. 3-12, March 2017 (dor: 20.1001.1.23223871.1396.8.32.1.1) (in Persian).
[3] D. Taheri, G. Shahgholian, M.M. Mirtalaei, "Simulation of combined boost converter behavior with positive output voltage and investigation of voltage ripple at output", vol. 9, no. 3, pp. 1-8, autumn 2020 (in Persian).
[4] E.H. Ismail, M.A. Al-Saffar, A.J. Sabzali, "High conversion ratio dc–dc converters with reduced switch stress", IEEE Trans. on Power Electronics, vol. 55, no. 7, pp. 2139-2151, Aug. 2008 (doi: 10.1109/TCSI.2008.918195).
[5] Y. Zheng, K.M. Smedley, "Analysis and design of a single-switch high step-up coupled inductor boost converter", IEEE Trans. on Power Electronics, vol. 35, no. 1, pp. 535-545, Jan. 2019 (doi: 10.1109/TPEL.2019.2915348).
[6] M. Das, V. Agarwal, "Design and analysis of a high-efficiency dc–dc converter with soft switching capability for renewable energy applications requiring high voltage gain", IEEE Trans. on Power Electronics, vol. 63, no. 5, pp. 2936-2944, 2016 (doi: 10.1109/TIE.2016.2515565).
[7] O. Sharifiyana, M. Dehghani, G. Shahgholian, S. M. M. Mirtalaei, M. Jabbari, "An overview of the structure and improvement of the main parameters of non-isolated dc/dc boost converters", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 48, pp. 1-29, March 2022 (dor: 20.1001.1.23223871.1400.12.48.6.6) (in Persian).
[8] A.A.A. Hafez, “Multi-level cascaded dc/dc converters for PV applications”, Alexandria Engineering Journal, vol. 54, no. 4, pp. 1135-1146, Dec. 2015 (doi: 10.1016/j.aej.2015.09.004).
[9] B. Gu, J. Dominic, J.S. Lai, Z. Zhao, C. Liu, "High boost ratio hybrid transformer dc–dc converter for photovoltaic module applications", IEEE Trans. on Power Electronics, vol. 28, no. 4, pp. 2048-2058, May. 2013 (doi: 10.1109/TIE.2016.2515565)
[10] J.H. Lee, T.J. Liang, J.F. Chen, "Isolated coupled-inductor-integrated dc–dc converter with nondissipative snubber for solar energy applications”, IEEE Trans. on Industrial Electronics, vol. 61, no. 7, pp. 3337-3348, July 2014 (doi: 10.1109/TIE.2013.2278517).
[11] Y.P. Siwakoti, F.Z. Peng, F. Blaabjerg, P. C. Loh and G.E. Town, "Impedance-source networks for electric power conversion part I: A topological review", IEEE Trans. on Power Electronics, vol. 30, no. 2, pp. 699-716, Feb. 2015 (doi: 10.1109/TPEL.2014.2313746).
[12] B. Axelrod, Y. Berkovich, A. Ioinovici, "Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc–dc PWM converters", IEEE Trans. on Circuits and Systems, vol. 55, no. 2, pp. 687-696, March 2008 (doi: 10.1109/TCSI.2008.916403).
[13] T. Nouri, M. Shaneh, A. Ghorbani, "Interleaved high step-up ZVS dc–dc converter with coupled inductor and built-in transformer for renewable energy systems applications", IET Power Electronics, vol. 13, no. 16, pp. 3537-3548, Dec. 2020 (doi: 10.1049/iet-pel.2020.0162).
[14] T. Nouri, M. Shaneh, "New interleaved high step-up converter based on a voltage multiplier cell mixed with magnetic devices", IET Power Electronics, vol. 13, no. 17, pp. 4089-4097, Dec. 2021 (doi: 10.1049/iet-pel.2020.0591).
[15] Z. Peiravan, M. Delshad, M.R. Amini, "A new soft switching interleaved flyback converter with parallel coupled inductors and recovery leakage inductance energy", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 50, pp. 31-47, September 2022 (dor: 20.1001.1.23223871.1401.13.50.2.3) (in Persian).
[16] J. Zhang, J. Ge, "Analysis of Z-source dc-dc converter in discontinuous current mode", Proceeding of the IEEE/APPEEC, Chengdu, China, March 2010 (doi: 10.1109/APPEEC.2010.5448927).
[17] M. Zhu, K. Yu, F.L. Luo, "Switched inductor Z-source inverter", IEEE Trans. on Industrial Electronics, vol. 25, no. 8, pp. 2150-2158, Aug. 2010 (doi: 10.1109/TPEL.2010.2046676).
[18] A. Raveendran, E. Paul, A.P. Ommen, "Quasi-Z-source dc-dc converter with switched capacitor", International Journal of Engineering Research and General Science, vol. 3, no. 4, pp. 1132-1137, July/Aug. 2015.
[19] G. Zhang, Z. Wang, S.S. Yu, S.Z. Chen, B. Zhang, H.H. Iu, Y. Zhang, "A generalized additional voltage pumping solution (GAVPS) for high-step-up converters", IEEE Trans. on Power Electronics, vol. 34, no. 7, pp. 6456-6467, 2019 (doi: 10.1109/TPEL.2018.2874006).
[20] S.M. Chen, T.J. Liang, L.S. Yang, J.F. Chen, "A cascaded high step-up dc–dc converter with single switch for microsource applications", IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1146 - 1153, April 2011 (doi: 10.1109/TPEL.2010.2090362).
_||_[1] F.Z. Peng, "Z-source inverter", IEEE Trans. Power Electronic, vol. 39, no. 2, pp. 504-510, Mar./Apr. 2003 (doi: 10.1109/TIA.2003.808920).
[2] M. Soltani, S. Mirtalaee, "Design and simulation of a high step-up three level boost converter with coupled-inductor and passive clamp", Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 32, pp. 3-12, March 2017 (dor: 20.1001.1.23223871.1396.8.32.1.1) (in Persian).
[3] D. Taheri, G. Shahgholian, M.M. Mirtalaei, "Simulation of combined boost converter behavior with positive output voltage and investigation of voltage ripple at output", vol. 9, no. 3, pp. 1-8, autumn 2020 (in Persian).
[4] E.H. Ismail, M.A. Al-Saffar, A.J. Sabzali, "High conversion ratio dc–dc converters with reduced switch stress", IEEE Trans. on Power Electronics, vol. 55, no. 7, pp. 2139-2151, Aug. 2008 (doi: 10.1109/TCSI.2008.918195).
[5] Y. Zheng, K.M. Smedley, "Analysis and design of a single-switch high step-up coupled inductor boost converter", IEEE Trans. on Power Electronics, vol. 35, no. 1, pp. 535-545, Jan. 2019 (doi: 10.1109/TPEL.2019.2915348).
[6] M. Das, V. Agarwal, "Design and analysis of a high-efficiency dc–dc converter with soft switching capability for renewable energy applications requiring high voltage gain", IEEE Trans. on Power Electronics, vol. 63, no. 5, pp. 2936-2944, 2016 (doi: 10.1109/TIE.2016.2515565).
[7] O. Sharifiyana, M. Dehghani, G. Shahgholian, S. M. M. Mirtalaei, M. Jabbari, "An overview of the structure and improvement of the main parameters of non-isolated dc/dc boost converters", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 48, pp. 1-29, March 2022 (dor: 20.1001.1.23223871.1400.12.48.6.6) (in Persian).
[8] A.A.A. Hafez, “Multi-level cascaded dc/dc converters for PV applications”, Alexandria Engineering Journal, vol. 54, no. 4, pp. 1135-1146, Dec. 2015 (doi: 10.1016/j.aej.2015.09.004).
[9] B. Gu, J. Dominic, J.S. Lai, Z. Zhao, C. Liu, "High boost ratio hybrid transformer dc–dc converter for photovoltaic module applications", IEEE Trans. on Power Electronics, vol. 28, no. 4, pp. 2048-2058, May. 2013 (doi: 10.1109/TIE.2016.2515565)
[10] J.H. Lee, T.J. Liang, J.F. Chen, "Isolated coupled-inductor-integrated dc–dc converter with nondissipative snubber for solar energy applications”, IEEE Trans. on Industrial Electronics, vol. 61, no. 7, pp. 3337-3348, July 2014 (doi: 10.1109/TIE.2013.2278517).
[11] Y.P. Siwakoti, F.Z. Peng, F. Blaabjerg, P. C. Loh and G.E. Town, "Impedance-source networks for electric power conversion part I: A topological review", IEEE Trans. on Power Electronics, vol. 30, no. 2, pp. 699-716, Feb. 2015 (doi: 10.1109/TPEL.2014.2313746).
[12] B. Axelrod, Y. Berkovich, A. Ioinovici, "Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc–dc PWM converters", IEEE Trans. on Circuits and Systems, vol. 55, no. 2, pp. 687-696, March 2008 (doi: 10.1109/TCSI.2008.916403).
[13] T. Nouri, M. Shaneh, A. Ghorbani, "Interleaved high step-up ZVS dc–dc converter with coupled inductor and built-in transformer for renewable energy systems applications", IET Power Electronics, vol. 13, no. 16, pp. 3537-3548, Dec. 2020 (doi: 10.1049/iet-pel.2020.0162).
[14] T. Nouri, M. Shaneh, "New interleaved high step-up converter based on a voltage multiplier cell mixed with magnetic devices", IET Power Electronics, vol. 13, no. 17, pp. 4089-4097, Dec. 2021 (doi: 10.1049/iet-pel.2020.0591).
[15] Z. Peiravan, M. Delshad, M.R. Amini, "A new soft switching interleaved flyback converter with parallel coupled inductors and recovery leakage inductance energy", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 50, pp. 31-47, September 2022 (dor: 20.1001.1.23223871.1401.13.50.2.3) (in Persian).
[16] J. Zhang, J. Ge, "Analysis of Z-source dc-dc converter in discontinuous current mode", Proceeding of the IEEE/APPEEC, Chengdu, China, March 2010 (doi: 10.1109/APPEEC.2010.5448927).
[17] M. Zhu, K. Yu, F.L. Luo, "Switched inductor Z-source inverter", IEEE Trans. on Industrial Electronics, vol. 25, no. 8, pp. 2150-2158, Aug. 2010 (doi: 10.1109/TPEL.2010.2046676).
[18] A. Raveendran, E. Paul, A.P. Ommen, "Quasi-Z-source dc-dc converter with switched capacitor", International Journal of Engineering Research and General Science, vol. 3, no. 4, pp. 1132-1137, July/Aug. 2015.
[19] G. Zhang, Z. Wang, S.S. Yu, S.Z. Chen, B. Zhang, H.H. Iu, Y. Zhang, "A generalized additional voltage pumping solution (GAVPS) for high-step-up converters", IEEE Trans. on Power Electronics, vol. 34, no. 7, pp. 6456-6467, 2019 (doi: 10.1109/TPEL.2018.2874006).
[20] S.M. Chen, T.J. Liang, L.S. Yang, J.F. Chen, "A cascaded high step-up dc–dc converter with single switch for microsource applications", IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1146 - 1153, April 2011 (doi: 10.1109/TPEL.2010.2090362).