Assessment the Wear Properties of Biodiesel-diesel Blends with the Addition of Copper Oxide Nanoparticles
Subject Areas :Hossein Khorshidnia 1 , Alireza Shirneshan 2
1 - Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 - Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran|Aerospace and Energy Conversion Research Center, Najafabad Branch, Islamic Azad University,
Najafabad, Iran
Keywords:
Abstract :
[1] Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J. and Choi, C. 2009. Tribological behaviour of copper nanoparticles as additive in oil. Current Applied Physics. 9(2): 124–127.
[2] Syaima, M.T.S, Zamratul, M.I.M., Nor, I.M. and Rifdi, W. 2014. Development of bio-lubricant from Jatropha curcas oils. International Journal of Research in Chemical, Metallurgical and Civil Engineering. 1(1):10-12.
[3] Shafiee, S. and Topal, E. 2009. When will fossil fuel reserves be diminished? Energy Policy. 37:181–9.
[4] Sangeeta, A., Moka, S., Pande, M., Rani, M., Gakhar. R. and Sharma, M. 2014. Alternative fuels: An overview of current trends. Renewable and Sustainable Energy Reviews. 32:697-712.
[5] Serrano, L.M.V., Camara, R.M.O., Carreira, V.J.R. and Gameiro da Silva, M.C. 2012. Performance study about biodiesel impact on buses engines using dynamometer tests and fleet consumption data. Energy Conversion and Management. 60:2–9.
[6] Knothe, G. and Steidley, K.R. 2005. Lubricity of components of biodiesel and petrodiesel: The origin of biodiesel lubricity. Energy & Fuels. 19:1192–200.
[7] Sarvi, A., Fogelholm, C.J., Zevenhoven, R. 2008. Emissions from large-scale medium speed diesel engines: 2– Influence of fuel type and operating mode. Fuel Processing Technology. 89:520–7.
[8] Nwafor, O.M.I. 2003. The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renewable Energy. 28:171–81.
[9] He-long, Y., Yi, X., Pei-jing, S., Bin-shi, X., Xiao-li, W. and Qian, L. 2008. Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Transactions of Nonferrous Metals Society of China. 18(3):636-641.
[10] Zulkifli, N.W.M., Kalam, M.A., Masjuki, H.H. and Yunus, R. 2013. Experimental analysis of tribological properties of chemically modified bio-based lubricant with nanoparticles additives. Procedia Engineering. 68:152-157.
[11] Zhang, Z.J., Simionesie, D. and Schaschke, C. 2014. Graphite and hybrid nanometerials as lubricant additive. Lubricants. 2(2), 44-65.
[12] Gu, C., Zhu, G., Li, L., Tian, X. and Zhu, G. 2009. Tribological effect of oxide base nanoparticles in lubricating oils. Journal of Marine Science and Application. 8:71–76.
[13] Padgurskas, J., Rukuiza, R., Prosycevas, I. and Kreivaitis, R. 2013. Tribological properties of lubricant additive of Fe, Cu and Co nanoparticles. Tribology International. 60:224-232.
[14] Abdullah, M., Abdollah, M., Amiruddin, H., Tamaldin, N. and Nuri, N. 2014. Effect of hBN/Al2O3 nanoparticles on the tribological performance of engine oil. Jurnal Teknologi. 66(3):1–6.
[15] Wu, Y.Y., Tsui, W.C. and Liu, T.C. 2007. Experimental analysis of tribological properties of lubricating oils with nanoparticles additive. Wear. 262(7–8):819-825.
[16] Asnida, M., Hisham, S., Awang, N.W., Amirruddin, A.K., Noor, M.M., Kadirgama, K., Ramasamy, D., Najafi, G. and Tarlatan F. Copper (II) oxide nanoparticles as additve in engine oil to increase the durability of piston-liner contact. Fuel. 212: 656-667.
[17] Battez, A.H., Gonzalez, R., Viesca, J.L., Fernandez, J.E., Fernandez, J.M.D. and Machado, A. 2008. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear. 265(3–4): 422-428.
[18] Wu, Y. Y., Tsui, W. C. and Liu, T. C. 2007. Experimental analysis of tribological properties of lubricating oils with nanoparticles additives. Wear. 262(7): 819-825.
[19] Padgurskas, J., Rukuiza, R., Prosyčevas, I. and Kreivaitis, R. 2013. Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International. 60: 224-232.
[20] Kotia, A., Borkakoti, S. and Kumar Ghosh, S. 2018. Wear and performance analysis of a 4-stroke diesel engine employing nanolubricants. Particuology. 37:54-63.
[21] Dai,W., Kheireddin, B., Gao, H. and Liang, H. 2016. Roles of nanoparticles in oil lubrication. Tribology International.102:88–98.
[22] Fazal, M. A., Haseeb, A. S. M. A. and Masjuki, H. H. 2013. Investigation of friction and wear characteristics of palm biodiesel. Energy Conversion and Management. 67:251-256.
[23] Fazal, M. A., Haseeb, A. S. M. A. and Masjuki, H. H. 2014. A Critical Review on the tribological compatibility of automotive materials in palm biodiesel. Energy Conversion and Management. 79:180-186.
[24] Fazal, M. A., Haseeb, A. S. M. A. and Masjuki, H. H. 2013. Corrosion mechanism of copper in palm biodiesel. Corrosion Science. 67:50-59.
[25] Hu, J., Du, Z., Li, C. and Min, E. 2005. Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel. 84(12–13):1601-1606.
[26] Barsari, M. A. N. and Shirneshan, A. 2019. An Experimental study of friction and wear characteristics of sunflower and soybean oil methyl ester under the steady-state conditions by the four-ball wear testing machine. Journal of Tribology. 141(4):044501-044501-10.