Microstructural and Mechanical Characterization of Friction Stir Processed Aluminum Alloy 6061-T6 Reinforced with Zirconium-Silicate Particles
Subject Areas :Zohrheh Ebrahimi 1 , Moslem Sarikhani 2
1 - Mechanical Engineering Department, Payame Noor University (PNU), P.O.Box 19395-4697Tehran, Iran
2 - Mechanical Engineering Department, Payame Noor University (PNU), P.O.Box 19395-4697Tehran, Iran.
Keywords: Friction stir process, Microhardness, Reinforcing Particles, AL6061-T6/ZrSiO4 Composite,
Abstract :
Friction stir processing (FSP) is an effective technique for surface modification and grain refinement. This method can be used to incorporate hard ceramic reinforcement into modified aluminum surfaces, allowing for the fabrication of composites with enhanced properties. In this study, FSP was utilized to fabricate surface composites of aluminum alloy 6061-T6 reinforced with zirconium-silicate particles. The effects of tool rotational and traverse speeds, as well as the number of passes, on the microstructural and mechanical properties of the composite specimens were investigated. The corresponding strength, grain size, and microhardness of the specimens were evaluated and compared with unprocessed and non-reinforced aluminum alloy. The scanning electron micrographs of the specimen cross-section showed an excellent dispersion of zirconium-silicate particles in the aluminum matrix, indicating the homogeneity of the aluminum composite and the success of the applied FSP. The results showed that increasing the number of passes from one to four caused microstructure refinement at the stir zone, resulting in enhanced tensile strength and hardness of the produced composite. An optimum value of 1000 rpm and 20 mm/min for rotational and traverse speeds was obtained. Consequently, a composite with improved mechanical properties was achieved due to the formation and distribution of reinforcing zirconium-silicate particles.
[1] Mironov, S., Sato, Y.S. and Kokawa, H. 2019. Nanocrystalline Titanium, Chapter 4 - Friction-stir processing. Elsevier. doi:10.1016/B978-0-12-814599-9.00004-3.
[2] Kwon, Y.J., Shigematsu, I. and Saito, N. 2003. Mechanical Properties of Fine-Grained Aluminum Alloy Produced by Friction Stir Process. Scripta Material. 49:785-789. doi:10.1016/s1359-6462(03)00407-x.
[3] Nakata, K., Kim, Y.G., Fujii H., Tsumura, T. and Komazaki, T. 2006. Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing. Material Science and Engineering A. 437:274-280. doi:10.1016/j.msea.2006.07.150.
[4] Su, J.Q., Nelson, T.W. and Sterling, J.C. 2006. Grain refinement of aluminum alloys by friction stir processing. Philosophical Magazine. 86:1–24. doi:10.1080/14786430500267745.
[5] Elangovan, K., Balasubramanian, V. and Valliappan, M. 2008. Effect of tool pin profile and tool rotational speed on mechanical properties of friction stir welded AA6061 aluminium alloy. Materials and Manufacturing Processes. 23:251–260. doi:10.1080/10426910701860723.
[6] Karthikeyan, L., Senthikumar, V.S., Balasubramanian, V. and Natarajan, S. 2009. Mechanical property and microstructural changes during friction stir processing of cast aluminum 2285 alloy. Materials and Design. 30:2237–2242. doi:10.1016/j.matdes.2008.09.006.
[7] Morishige, T., Tomotake, H., Tsujikawa, M. and Higashi, K. 2010. Comprehensive analysis of minimum grain size in pure aluminum using friction stir processing. Material Letter. 64:1189–1200. doi:10.1016/j.matlet.2010.06.003.
[8] Al-Fadhalah, K.J., Almazrouee, A.I. and Aloraier, A.S. 2013. Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063. Materials and Design. 53:550–560. doi:10.1016/j.matdes.2013.07.062.
[9] Devaraju, A., Kumar, A. and Kotiveerachari, B. 2013. Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Materials and Design. 45:576–585. doi:10.1016/j.matdes.2012.09.036.
[10] El-Rayes, M.M. and El-Danaf, E.A. 2012. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082. Journal of Materials Processing Technology. 212:1157–1168. doi:10.1016/j.jmatprotec.2011.12.017.
[11] Rasouli, S., Behnagh, R.A., Dadvand, A. and Saleki-Haselghoubi, N. 2016. Improvement in corrosion resistance of 5083 aluminum alloy via friction stir processing. Proceeding of Institute of Mechanical Engineering Part. L. Journal of Materials: Design and Application. 230:142–150. doi:10.1177/1464420714552539.
[12] Alishavandi, M., Ebadi, M. and Kokabi, M.H. 2021. Optimization of parameters for the friction stir processing and welding of AA1050 aluminum alloy. Iranian Journal of Materials Science and Engineering. 18:1-11. doi:10.22068/ijmse.2016.
[13] Valeeva, A.K., Akhunova, A.K., Imayev, M.F. and Fazlyakhmetov, R.F. 2020. Effect of friction stir processing on the strengthening of the 2024 aluminum alloy. IOP Conf. Series: Materials Science and Engineering. 1008:012025. doi:10.1088/1757-899X/1008/1/012025.
[14] Mirian Mehrian, S.S., Rahsepar, M., Khodabakhshi, F. and Gerlich, A.P. 2021. Effects of friction stir processing on the microstructure, mechanical and corrosion behaviors of an aluminum-
magnesium alloy. Surface and Coatings Technology. 405:126647. doi:10.1016/j.surfcoat.2020.126647.
[15] Karimi, M., Asefnejad, A., Aflaki, D., Surendar, A., Baharifar, H., Saber-Samandari, S., Khandan, A., Khan, A. and Toghraie, D. 2021. Fabrication of shapeless scaffolds reinforced with baghdadite-magnetite nanoparticles using a 3D printer and freeze-drying technique. Journal of Materials Research and Technology. 14:3070-3079. doi:10.1016/j.jmrt.2021.08.084.
[16] Liang, H., Sadat Mirinejad, M., Asefnejad, A., Baharifar, H., Li, X., Saber-Samandari, S., Toghraie, D. and Khandan, A. 2022. Fabrication of tragacanthin gum-carboxymethyl chitosan bio-nanocomposite wound dressing with silver-titanium nanoparticles using freeze-drying method. Materials Chemistry and Physics. 279:125770. doi:10.1016/j.matchemphys.2022.125770.
[17] Soleymani, S., Abdollah-zadeh, A. and Alidokht, S.A. 2012. Microstructural and tribological properties of Al5083 based surface hybrid composite produced by friction stir processing. Wear. 278–279:41–47. doi:10.1016/j.wear.2012.01.009.
[18] Arun Kumar, R., Aakash Kumar, R.G., Ahamed, K.A., Alstyn, B.D. and Vignesh, V. 2019. Review of friction stir processing of aluminium alloys. Materials Today. 16:1048–1054. doi:10.1016/j.matpr.2019.05.194.
[19] Moustafa, E.B., Abushanab, W.S., Melaibari, A., Mikhaylovskaya, A.V., Abdel-Wahab, M.S. and Mosleh, A.O. 2021. Nano-surface composite coating reinforced by Ta2C, Al2O3 and MWCNTs nanoparticles for aluminum base via FSP. Coatings. 11:1496. doi:10.3390/coatings11121496.
[20] Liu, Y., Chen, G., Zhang, H., Yang, C., and Shi, Q. 2012. In situ exfoliation of graphite for fabrication of graphene/aluminum composites by friction stir processing. Materials Letters: 301: 130280. doi:10.1016/j.matlet.2021.130280.
[21] Huang, G., Hou, W. and Shen, Y. 2018. Evaluation of the microstructure and mechanical properties of WC particle reinforced aluminum matrix composites fabricated by friction stir processing. Mater Charact. 138:26-37. doi:10.1016/j.matchar.2018.01.053.
[22] Balakrishnan, M., Dinaharan, I., Palanivel, R. and Sathiskumar, R. 2019. Effect of friction stir processing on microstructure and tensile behavior of AA6061/Al3Fe cast aluminum matrix composites. Journal of Alloys and Compounds. 785:531-541. doi:10.1016/j.jallcom.2019.01.211.
[23] Madhu, H.C., Ajay Kumar, P. and Perugu, C.S. 2018. Microstructure and mechanical properties of friction stir process derived Al-TiO2 nanocomposite. Journal of Materials Engineering and Performance. 27:1318-1326. doi:10.1007/s11665-018-3188-y.
[24] Bauri, R., Yadav, D. 2018. Metal Matrix Composites by Friction Stir Processing. Elsevier. doi:10.1016/B978-0-12-813729-1.00005-X.
[25] Asadi, P., Faraji, G. and Besharati, M.K. 2010. Producing of AZ91/SiC composite by friction stir processing (FSP). International Journal of Advanced Manufacturing and Technology. 51:247–260. doi:10.1007/s00170-010-2600-z.
[26] Dolatkhah, A., Golbabaei, P., Besharati Givi, M.K. and Molaiekiya, F. 2012. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Materials and Design. 37:458–464. doi:10.1016/j.matdes.2011.09.035.
[27] Zuhailawati, H., Halmy, M.N., Almanar, I.P. and Dhindaw, B.K. 2014. Friction stir processed of 6061-T6 aluminum alloy reinforced with silica from rice husk ash. Advanced Materials Research. 1024:227–230. doi:10.4028/www.scientific.net/amr.1024.227.
[28] Sharma, H., Kumar Tiwari, S., Singh Chauhan, V., Kumar, R. and Gulati, P. 2021. Wear analysis of friction stir processed aluminum composite reinforced by boron carbide. Materials Today. 46:2141–2145. doi:10.1016/j.matpr.2021.02.468.
[29] Khethier Abbass, M. and Baheer, N.A. 2020. Effect of SiC particles on microstructure and wear behavior of AA6061-T6 aluminum alloy surface composite fabricated by friction stir processing. IOP Conf. Series: Materials Science and Engineering. 671: 012159. doi:10.1088/1757-899X/671/1/012159.
[30] Dwivedi, P., Sachin Maheshwari, S. and Siddiquee, A.N. 2022. Investigation on aluminum based surface composite through FSP using metal (Fe-Sn-Mn) and ceramic (SiC) reinforcements. Materials Today. 62:251–254. doi:10.1016/j.matpr.2022.03.222.
[31] Subramani, N., Haridass, R., Krishnan, R., Manikandan, N. and Baskaran, A. 2021. Fabrication of hybrid (AA6061/SiCp/B4C) composites using FSP method and analysing the thermal behaviour in the weld region. Materials Today. 47:4306–4311. doi:10.1016/j.matpr.2021.04.601
[32] Ande, R., Gulati, P., Kumar Shukla, D. and Dhingra, H. 2019. Microstructural and wear characteristics of friction stir processed Al-7075/SiC reinforced aluminum composite. Materials Today. 18:4092–4101. doi:10.1016/j.matpr.2019.07.353.
[33] Gopi, K. R., Mohandas, K. N., Reddappa, H. N. and Ramesh, M. R. 2013. Characterisation of as cast and heat treated aluminium 6061/Zircon sand/graphite particulate hybrid composites. International Journal of Engineering and Technology. 5:340-344. doi:10.13140/RG.2.2.36677.24803.
[34] Rino, J.J., Sivalingappa, D., Koti, H. and Jebin, V.D. 2013. Properties of Al6063 MMC reinforced with zircon sand and alumina. Journal of Mechanical and Civil Engineering. 5(5):72-77.
[35] Raju H.T. and Ramamurthy, V.S. 2018. Fabrication and evaluation of properties of aluminum alloy zirconium silicate particles reinforced metal matrix composites: A review. International Journal of Innovative Research in Science, Engineering and Technology. 7(11): 9284-9288.doi:10.15680/IJIRSET.2018.0711021.
[36] Thandallam, S.K., Ramanathan, S. and Sundarrajan S. 2015. Synthesis, microstructural and mechanical properties of ex situ Zircon particles (ZrSiO4) reinforced metal matrix composites (MMCs): A review. Journal of Research Materials and Technology. 4(3):333-347. http://doi.org/10.1016/j.jmrt.2015.03.003.
[37] Kumar, S.T., Raghu, R., Kumar, K.K., Shalini, S. and Subramanian, R. 2018. Optimisation of three body abrasive wear behavior of stir cast A356/ZrSiO4 metal matrix composite. Tribology in Industry. 40(4):633-642. doi:10.24874/ti.2018.40.04.10.
[38] Ramnath, B.V., Elanchezhian, C., Naveen, E., Nagarajakrishnan, P., Chezhihan, T., Saleem, A. and Srivalsan, M. 2018. Mechanical and wear behaviour of aluminum Zircon sand flyash metal matrix composite, Proceedings of the 3rd International Conference on Materials and Manufacturing Engineering. 390:1-8. doi:10.1088/1757-899X/390/1/012018.
[39] Fabrizi, A., Capuzzi, S., De Mori, A. and Timelli, G. 2018. Effect of T6 heat treatment on the microstructure and hardness of secondary AlSi9Cu3(Fe) alloys produced by semi-solid. SEED Processing Metals. 750:1-8. doi:10.3390/met8100750.
[40] Dhuruva Maharishi, M., Arul Marcel Moshi, A., Hariharasakthisudhan, P. and Surya Rajan, B. 2022. Investigation on the mechanical behaviour of aluminium alloy 356-Zirconium silicate metal matrix composites (AA356-ZrSiO4 MMCs). Silicon. 14:11731–11739. doi:10.1007/s12633-022-01896-0.
[41] Rahsepar, M. and Jarahimoghadam, H. 2016. The influence of multipass friction stir processing on the corrosion behavior and mechanical properties of zircon-reinforced Al metal matrix composites. Materials Science & Engineering A. 671:214–220. doi:10.1016/j.msea.2016.05.056
[42] Węglowski, M.S. 2014. Friction stir processing technology–new opportunities. Welding International. 28:583–592. doi:10.1080/09507116.2012.753216.
[43] Satish Kumar, T. and Shalini, Krishna Kumar, K. 2020. Effect of friction stir processing and hybrid reinforcement on wear behaviour of AA6082 alloy composite. Materials Research Express. 7: 026507. doi:10.1088/2053-1591/ab6e2a.