Optimal Trajectory Planning for an Industrial Mobile Robot using Optimal Control Theory
Subject Areas :Pouya Mallahi Kolahi 1 , Masoud Mosayebi 2
1 - Department of Mechanical Engineering, Malek-Ashtar University of Technology, Iran
2 - Department of Mechanical Engineering, Malek-Ashtar University of Technology, Iran
Keywords:
Abstract :
[1] https://en.wikipedia.org/wiki/Mobile_industrial_robots#cite_note-13
[2] Pandey, A., Pandey, S. and Parhi, D.R. 2017. Mobile robot navigation and obstacle avoidance techniques: A review. Int Rob Auto J. 2(3): 00022.
[3] Korayem, M.H., Nazemizadeh, M. and Nohooji, H.R. 2014. Optimal point-to-point motion planning of non-holonomic mobile robots in the presence of multiple obstacles. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 36(1): 221-232.
[4] Nazemizadeh, M., Rahimi, H.N. and Khoiy, K.A. 2012. Trajectory planning of mobile robots using indirect solution of optimal control method in generalized point-to-point task. Frontiers of Mechanical Engineering. 7(1): 23-28.
[5] Wu, Y., Wang, B. and Zong, G.D. 2005. Finite-time tracking controller design for nonholonomic systems with extended chained form. IEEE Transactions on Circuits and Systems II: Express Briefs. 52(11): 798-802.
[6] Cui, M., Sun, D., Liu, W., Zhao, M. and Liao, X. 2012. Adaptive tracking and obstacle avoidance control for mobile robots with unknown sliding. International Journal of Advanced Robotic Systems. 9(5): 171.
[7] Dos Santos, R.R., Steffen, V. and de FP Saramago, S. 2008. Robot path planning in a constrained workspace by using optimal control techniques. Multibody System Dynamics. 19(1): 159-177.
[8] Ramos, O.E. 2019. Optimal Control for Time and Energy Minimization in the Trajectory Generation of a Mobile Robot. IEEE XXVI International Conference on Electronics, Electrical Engineering and Computing. August 12-13. 1-4.
[9] Tuncer, A. and Yildirim, M. 2012. Dynamic path planning of mobile robots with improved genetic algorithm. Computers & Electrical Engineering. 38(6): 1564-1572.
[10] Perrier, C., Dauchez, P. & Pierrot, F, 1998. A global approach for motion generation of non-holonomic mobile manipulators. In Proceedings. IEEE International Conference on Robotics and Automation. May 20. 4: 2971-2976.
[11] Chettibi, T., Lehtihet, H. E., Haddad, M., & Hanchi, S. 2004. Minimum cost trajectory planning for industrial robots. European Journal of Mechanics-A/Solids. 23(4): 703-715.
[12] Korayem, M. H., Ghariblu, H., & Basu, A. 2005. Dynamic load-carrying capacity of mobile-base flexible joint manipulators. The International Journal of Advanced Manufacturing Technology. 25(1): 62-70.
[13] Mohri, A., Furuno, S., & Yamamoto, M. 2001. Trajectory planning of mobile manipulator with end-effector's specified path. IEEE/RSJ International Conference on Intelligent Robots and Systems. 29 Oct.-3 Nov. 4: 2264:2269
[14] Korayem, M. H., Nazemizadeh, M., & Azimirad, V. 2011. Optimal trajectory planning of wheeled mobile manipulators in cluttered environments using potential functions. Scientia Iranica. 18(5): 1138-1147.
[15] Korayem, M. H., Rahimi, H. N., & Nikoobin, A. 2012. Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Applied Mathematical Modelling. 36(7): 3229-3244.
[16] Korayem, M. H., Nohooji, H. R., & Nikoobin, A. 2011. Path planning of mobile elastic robotic arms by indirect approach of optimal control. International Journal of Advanced Robotic Systems. 8(1): 10.
[17] Klancar, G., Zdesar, A., Blazic, S. and Skrjanc, I. 2017. Wheeled mobile robotics: from fundamentals towards autonomous systems. United Kingdom: Butterworth-Heinemann.
[18] Kirk, D.E. 2004. Optimal control theory: an introduction. New York: Courier Corporation.
[19] Najafi, H. S., & Edalatpanah, S. A. 2013. Iterative methods with analytical preconditioning technique to linear complementarity problems: application to obstacle problems. RAIRO-Operations Research. 47(1): 59-71.