Dissimilar Friction Stir Welding between Magnesium and Aluminum Alloys
Subject Areas :
1 - Materials Science and Engineering Dept., Islamic Azad University, Sirjan Branch
Keywords:
Abstract :
[1] Sameer, M. and Anil Kumar, B. 2019. Mechanical and metallurgical properties of friction stir welded dissimilar joints of AZ91 magnesium alloy and AA 6082-T6 aluminium alloy. Journal of Magnesium and Alloys. 7: 264-271.
[2] Rajendran, C. and Srinivasan, K. 2019. Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy. Transactions of Nonferrous Metals Society of China. 29: 1824-1835.
[3] Peiqi, L., Guoqiang, Y., Hengyu, W. and Sha, L. 2019. Friction stir welding between the high-pressure die casting of AZ91 magnesium alloy and A383 aluminum alloy. Journal of Materials Processing Technology. 264: 55-63.
[4] Boccarusso, L., Astarita, A. and Carlone, P. 2019. Dissimilar friction stir lap welding of AA 6082 - Mg AZ31: Force analysis and microstructure evolution. Journal of Manufacturing Processes. 44: 376-388.
[5] Jedrasiak, P. and Shercliff, H. 2019. Small strain finite element modelling of friction stir spot welding of Al and Mg alloys. Journal of Materials Processing Technology. 263: 207-222.
[6] Sato, Y., Park, S. and Kokawa, H. 2001. Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metallic Materials Transactions. 32:3033–3042.
[7] Yan, J., Sutton. A. and Reynolds. A. 2005. Process structure property relationships for nugget and heat affected zone regions of AA2524-T351 friction stir welds, Science and Technology of Welding and Joining, 10: 725-36.
[8] Yamamoto, N., Liao, J., Watanabe, S. and Nakata, K. 2009. Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of high strength Mg alloy and Al Alloy. Materials Transactions. 50: 2833-2838.
[9] Jagadeesha, C. 2014. Dissimilar friction stir welding between aluminum alloy and magnesium allow at a low rotational speed, Materials Science and Engineering A. 616: 55-62.
[10] Shibayanagi, S., Khodir, A. and Toshiya, D. 2007. Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Aluminum Joints of AA2024-T3 and AA7075-T6, Materials Transactions. 48: 1928-1937.
[11] Magnesium Elektron WE43 Alloy. AZO Materials. http://www.azom.com/article.aspx?ArticleID=9279.
[12] Cho, A., Lisagor, W. and Bales, T. 2007. Development and Processing Improvement of Aerospace Aluminum Alloys - Development of Al-Cu-Mg-Ag Alloy (2139), NASA/CR. 27:215-294.
[13] Das, J., Banik, S., Reddy, S., Sankar, M. and Robi, P. 2019. Review on process parameters effect on fatigue crack growth rate in friction stir welding. Materials today processing. 18: 3061-3070.
[14] Guangyu, L., Wenming, J., Feng, G., Junwen, Z. and Zitian, F. 2021, Microstructure, mechanical properties and corrosion resistance of A356 aluminum/AZ91D magnesium bimetal prepared by a compound casting combined with a novel Ni-Cu composite interlayer. Journal of Materials Processing Technology. 288: 116-128.
[15] Chunliang, Y., Chuan, S. and Wu, L. 2020, Modeling the dissimilar material flow and mixing in friction stir welding of aluminum to magnesium alloys. Journal of Alloys and Compounds. 843:156-162.
[16] Raval, S. and Judal, K. 2020. Recent Advances in Dissimilar Friction Stir Welding of Aluminum to Magnesium Alloys. Materials today processing. 22: 2665-2675.