Subject Areas : Electrical Engineering
1 - Department of Mechanical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
Keywords:
Abstract :
1] Silveiraa, JL. Tunab, CE. Thermoeconomic analysis method for optimization of combined heat and power systems Part I. Progress in Energy and Combustion Science, 2003, 29, 479–485.
[2] Kotas, TJ. The exergy method of thermal plant analysis. Malabar, FL: Krieger Pub; 1995.
[3] Kwak, H-Y. Kim, D-J. Jeon, J-S. Exergetic and thermoeconomic analyses of power plants. Energy, 2003, 28, 343–360.
[4] Tsatsaronis, G. Moran, M. Exergy-Aided cost minimization. Energy Conversion & Management, 1997, 38(N15-17), 1535-1542.
[5] Vieira, Leonardo S. Donatelli, João L. Cruz, Manuel E. Integration of an iterative methodology for exergoeconomic improvement of thermal systems with a process simulator. Energy Conversion and Management, 2004, 45, 2495–2523.
[6] Vieira, Leonardo S. Donatelli, João L. Cruz, Manuel E. Integration of a Mathematical Exergoeconomic Optimization procedure with a process simulator: Application to the CGAM system. Engenharia Termica (Thermal Engineering), 2005, 4(2), 163–172.
[7] Sahoo, PK. Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming. Applied thermal engineering, 2008, 28, 1580-1588.
[8] Zhang, C. Wang, Y. Zheng, C. Lou, X. Exergy cost analysis of a coal fired power plant on structural theory of thermoeconomics. Energy Conversion & Management, 2006, 47, 817-843.
[9] Lazzaretto, A. Tsatsaronis, G. SPECO: a systematic and general methodology for calculating efficiencies and cost in thermal systems. Energy, 2006, 31(8–9), 1257–1289.
[10] Torres, C. Valero, A. Rangel, V. Zaleta, A. On the cost formation process of the residues. Energy, 2008, 33, 144–152.
[11] Lozano, MA. Valero, A. Theory of the exergetic cost. Energy, 1993, 18(9), 939–960.
[12] Bejan, A. Tsatsaronis, G. Moran, M. Thermal & design optimization. New York: John Wiley and Sons, 1996.
[13] Lazzaretto, A. Tsatsaronis, G. On the calculation of efficiencies and costs in thermal systems. In Proceedings of the ASME Advanced Energy Systems Division – 1999, AES-39, New York: ASME, 1999, 421–430.
[14] Kim, S-M. Oh, S-D. Kwon, Y-H. Kwak, H-Y. Exergoeconomic analysis of thermal systems. Energy, 1998, 23(5), 393–406.
[15] Kwon, Y-H. Kwak, H-Y. Oh, S-D. Exergoeconomic analysis of gas turbine cogeneration systems. Exergy, 2001, 1(1), 31–40.
[16] Serra, L. Valero, A. Torres, C. Uche, J. Thermoeconomic analysis fundamentals. In: Husain A, editor. Integrated power and desalination plants. Oxford: EOLSS Publisher, 2003, 429–459.
[17] Frangopoulos, C. von Spakovsky, M. A global environomic approach for energy system analysis and optimization. In: Szargut J, editor. Energy systems and ecology ENSEC’93, Cracow, Poland, 1993, 123–144.
[18] Lozano, MA. Valero, A. Thermoeconomic analysis of a gas turbine cogeneration system. ASME Book no. H00874, WAM 1993, AES, vol. 30, 312–320.
[19] Frangopoulos, CA. Thermoeconomic functional analysis. In: Frangopoulos CA, editor. Exergy, energy system analysis and optimization, from encyclopedia of life support system (EOLSS). Developed under the Auspices of the UNESCO. Oxford: EOLSS Publishers; 2004. Available at: áhttp://www.eolss.netñ.
[20] Erlach, B. Serra, L. Valero, A. Structural theory as standard for thermoeconomics. Energy Conversion and Management, 1999, 40, 1627–1649
[21] Sayyaadi, H. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system. Applied Energy, 2009, 86, 867-879
[22] Cammarata, G. Fichera, A. Marletta, L. Using genetic algorithms and the exergonomic approach to optimize district heating networks, ASME: Journal of Energy Resource Technology, 1998, 120, 241–246.
[23] Marletta, L. A comparison of methods for optimizing air-conditioning systems according to the exergonomic approach, ASME: Journal of Energy Resource Technology, 2001, 123, 304–310.
[24] Lazzaretto, A. Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design. Energy, 2002, 27, 549–567.
[25] Yang, H. Yang, PC. Huang, CL. Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions, IEEE Transactions on Power Systems, 1996, 11, 112–118.
[26] Osyczka , A. Evolutionary algorithms for single and multicriteria design optimization. New York: Heidelberg, 2002.
[27] Valero, A. Lozano, MA. Serra, L. Tsatsaronis, G. Pisa, J. Frangopoulos, C. Von Spakovsky, MR. CGAM problem : definition and conventional solution. Energy, 1994, 19(3), 279–286.
[28] Torres, C. Symbolic thermoeconomic analysis of energy systems. In: Frangopoulos CA, editor. Exergy, energy system analysis and optimization, from encyclopedia of life support system (EOLSS). Developed under the Auspices of the UNESCO. Oxford: EOLSS Publishers; 2004. Available at: áhttp://www.eolss.netñ.