Subject Areas : Electrical Engineering
Amirali Shahkoomahalli 1 , Amangaldi Koochaki 2 , Heidarali Shayanfar 3
1 - Department of Electrical Engineering, Aliabad katoul Branch,Islamic Azad University, Aliabad Katoul, Iran
2 - Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
3 - Center of Excellence for Power Systems Automation and Operation, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
Keywords:
Abstract :
[1] S. M. Nosratabadi, R. A. Hooshmand, and E. Gholipour, “A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems,” Renew. Sustain. Energy Rev., vol. 67, pp. 341–363, 2017, doi: 10.1016/j.rser.2016.09.025.
[2] X. Wang, Z. Liu, H. Zhang, Y. Zhao, J. Shi, and H. Ding, “A Review on Virtual Power Plant Concept, Application and Challenges,” in 2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019, 2019, pp. 4328–4333, doi: 10.1109/ISGT-Asia.2019.8881433.
[3] F. W. Bliek et al., “The role of natural gas in smart grids,” J. Nat. Gas Sci. Eng., vol. 3, no. 5, pp. 608–616, 2011, doi: 10.1016/j.jngse.2011.07.008.
[4] E. A. Setiawan, Concept and controllability of Virtual Power Plant. Ph.D. dissertation; Dept. Electrical Engineering/Computer; Science. EngUniv. Kassel, 2007.
[5] S. Awerbuch and A. Preston, The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry, vol. 26. Kluwer Academic Pub, 1997.
[6] N. Naval and J. M. Yusta, “Virtual power plant models and electricity markets-A review,” Renew. Sustain. Energy Rev., vol. 149, p. 111393, 2021.
[7] H. M. Rouzbahani, H. Karimipour, and L. Lei, “A review on virtual power plant for energy management,” Sustain. energy Technol. assessments, vol. 47, p. 101370, 2021.
[8] C. Kieny, B. Berseneff, N. Hadjsaid, Y. Besanger, and J. Maire, “On the concept and the interest of Virtual Power plant: Some results from the European project FENIX,” 2009, doi: 10.1109/PES.2009.5275526.
[9] D. Pudjianto, C. Ramsay, and G. Strbac, “Virtual power plant and system integration of distributed energy resources,” IET Renew. Power Gener., vol. 1, no. 1, p. 10, 2007, doi: 10.1049/iet-rpg:20060023.
[10] O. Sadeghian, A. Oshnoei, R. Khezri, and S. M. Muyeen, “Risk-constrained stochastic optimal allocation of energy storage system in virtual power plants,” J. Energy Storage, vol. 31, p. 101732, 2020.
[11] K. Dietrich, J. M. Latorre, L. Olmos, and A. Ramos, “Modelling and assessing the impacts of self supply and market-revenue driven Virtual Power Plants,” Electr. Power Syst. Res., vol. 119, pp. 462–470, 2015, doi: 10.1016/j.epsr.2014.10.015.
[12] M. Shabanzadeh, M. K. Sheikh-El-Eslami, and M. R. Haghifam, “A medium-term coalition-forming model of heterogeneous DERs for a commercial virtual power plant,” Appl. Energy, vol. 169, pp. 663–681, May 2016, doi: 10.1016/j.apenergy.2016.02.058.
[13] Y. Yuan, Z. Wei, G. Sun, Y. Sun, and D. Wang, “A real-time optimal generation cost control method for virtual power plant,” Neurocomputing, vol. 143, pp. 322–330, Nov. 2014, doi: 10.1016/j.neucom.2014.05.060.
[14] M. M. Othman, Y. G. Hegazy, and A. Y. Abdelaziz, “Electrical energy management in unbalanced distribution networks using virtual power plant concept,” Electr. Power Syst. Res., vol. 145, pp. 157–165, Apr. 2017, doi: 10.1016/j.epsr.2017.01.004.
[15] A. Shayegan-Rad, A. Badri, and A. Zangeneh, “Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties,” Energy, vol. 121, pp. 114–125, 2017, doi: 10.1016/j.energy.2017.01.006.
[16] A. Baringo, L. B.-I. T. on P. Systems, and undefined 2016, “A stochastic adaptive robust optimization approach for the offering strategy of a virtual power plant,” ieeexplore.ieee.org.
[17] M. Giuntoli and D. Poli, “Optimized thermal and electrical scheduling of a large scale virtual power plant in the presence of energy storages,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 942–955, 2013, doi: 10.1109/TSG.2012.2227513.
[18] A. G. Zamani, A. Zakariazadeh, S. Jadid, and A. Kazemi, “Stochastic operational scheduling of distributed energy resources in a large scale virtual power plant,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 608–620, Nov. 2016, doi: 10.1016/j.ijepes.2016.04.024.
[19] A. G. Zamani, A. Zakariazadeh, and S. Jadid, “Day-ahead resource scheduling of a renewable energy based virtual power plant,” Appl. Energy, vol. 169, pp. 324–340, May 2016, doi: 10.1016/j.apenergy.2016.02.011.
[20] T. Sousa, H. Morais, Z. Vale, and R. Castro, “A multi-objective optimization of the active and reactive resource scheduling at a distribution level in a smart grid context,” Energy, vol. 85, pp. 236–250, Jun. 2015, doi: 10.1016/j.energy.2015.03.077.
[21] H. Nezamabadi and M. Setayesh Nazar, “Arbitrage strategy of virtual power plants in energy, spinning reserve and reactive power markets,” IET Gener. Transm. Distrib., vol. 10, no. 3, pp. 750–763, Feb. 2016, doi: 10.1049/iet-gtd.2015.0402.
[22] S. Fan, Q. Ai, and L. Piao, “Fuzzy day-ahead scheduling of virtual power plant with optimal confidence level,” IET Gener. Transm. Distrib., vol. 10, no. 1, pp. 205–212, Jan. 2016, doi: 10.1049/iet-gtd.2015.0651.
[23] M. A. Tajeddini, A. Rahimi-Kian, and A. Soroudi, “Risk averse optimal operation of a virtual power plant using two stage stochastic programming,” Energy, vol. 73, pp. 958–967, Aug. 2014, doi: 10.1016/j.energy.2014.06.110.
[24] M. Shabanzadeh, M. K. Sheikh-El-Eslami, and M. R. Haghifam, “Risk-based medium-term trading strategy for a virtual power plant with first-order stochastic dominance constraints,” IET Gener. Transm. Distrib., vol. 11, no. 2, pp. 520–529, Jan. 2017, doi: 10.1049/iet-gtd.2016.1072.
[25] S. R. Dabbagh and M. K. Sheikh-El-Eslami, “Risk Assessment of Virtual Power Plants Offering in Energy and Reserve Markets,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3572–3582, Sep. 2016, doi: 10.1109/TPWRS.2015.2493182.
[26] S. Hadayeghparast, A. SoltaniNejad Farsangi, and H. Shayanfar, “Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant,” Energy, vol. 172, pp. 630–646, Apr. 2019, doi: 10.1016/j.energy.2019.01.143.
[27] Z. Luo, S. H. Hong, and Y. M. Ding, “A data mining-driven incentive-based demand response scheme for a virtual power plant,” Appl. Energy, vol. 239, pp. 549–559, Apr. 2019, doi: 10.1016/j.apenergy.2019.01.142.
[28] N. Naval, R. Sánchez, and J. M. Yusta, “A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation,” Renew. Energy, vol. 151, pp. 57–69, 2020, doi: 10.1016/j.renene.2019.10.144.
[29] S. Yin, Q. Ai, Z. Li, Y. Zhang, and T. Lu, “Energy management for aggregate prosumers in a virtual power plant: A robust Stackelberg game approach,” Int. J. Electr. Power Energy Syst., vol. 117, May 2020, doi: 10.1016/j.ijepes.2019.105605.
[30] A. Alahyari, M. Ehsan, and M. S. Mousavizadeh, “A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A self-scheduling optimization considering price, renewable generation, and electric vehicles uncertainties,” J. Energy Storage, vol. 25, Oct. 2019, doi: 10.1016/j.est.2019.100812.
[31] C. Xiao, D. Sutanto, K. M. Muttaqi, and M. Zhang, “Multi-period data driven control strategy for real-time management of energy storages in virtual power plants integrated with power grid,” Int. J. Electr. Power Energy Syst., vol. 118, Jun. 2020, doi: 10.1016/j.ijepes.2019.105747.
[32] A. Hany Elgamal, G. Kocher-Oberlehner, V. Robu, and M. Andoni, “Optimization of a multiple-scale renewable energy-based virtual power plant in the UK,” Appl. Energy, vol. 256, Dec. 2019, doi: 10.1016/j.apenergy.2019.113973.
[33] A. Kulmukhanova, A. T. Al-Awami, I. M. El-Amin, and J. S. Shamma, “Mechanism Design for Virtual Power Plant with Independent Distributed Generators,” IFAC-PapersOnLine, vol. 52, no. 4, pp. 419–424, 2019, doi: 10.1016/j.ifacol.2019.08.246.
[34] M. H. Abbasi, M. Taki, A. Rajabi, L. Li, and J. Zhang, “Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach,” Appl. Energy, vol. 239, pp. 1294–1307, Apr. 2019, doi: 10.1016/j.apenergy.2019.01.238.
[35] M. Shafiekhani, A. Badri, M. Shafie-khah, and J. P. S. Catalão, “Strategic bidding of virtual power plant in energy markets: A bi-level multi-objective approach,” Int. J. Electr. Power Energy Syst., vol. 113, pp. 208–219, Dec. 2019, doi: 10.1016/j.ijepes.2019.05.023.
[36] H. Wang, Y. Jia, C. S. Lai, and K. Li, “Optimal Virtual Power Plant Operational Regime under Reserve Uncertainty,” IEEE Trans. Smart Grid, 2022.
[37] A. Jani, H. Karimi, and S. Jadid, “Multi-time scale energy management of multi-microgrid systems considering energy storage systems: A multi-objective two-stage optimization framework,” J. Energy Storage, vol. 51, p. 104554, 2022.
[38] H. Karimi and S. Jadid, “A strategy-based coalition formation model for hybrid wind/PV/FC/MT/DG/battery multi-microgrid systems considering demand response programs,” Int. J. Electr. Power Energy Syst., vol. 136, p. 107642, 2022.
[39] W. Hu, Q. Guo, E. Valipour, and S. Nojavan, “Risk-averse trading strategy for a hybrid power plant in energy and carbon markets to maximize overall revenue,” J. Energy Storage, vol. 51, p. 104586, 2022.
[40] “Hourly Ontario Energy Price (HOEP).” .
[41] S. Heunis and M. Dekenah, “A load profile prediction model for residential consumers in South Africa,” 2014, doi: 10.1109/DUE.2014.6827763.
[42] “Data archives for University of Waterloo weather station.” .
[43] S. Nojavan and H. A. Aalami, “Stochastic energy procurement of large electricity consumer considering photovoltaic, wind-turbine, micro-turbines, energy storage system in the presence of demand response program,” Energy Convers. Manag., vol. 103, pp. 1008–1018, Jul. 2015, doi: 10.1016/j.enconman.2015.07.018.
[44] A. SoltaniNejad Farsangi, S. Hadayeghparast, M. Mehdinejad, and H. Shayanfar, “A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs,” Energy, vol. 160, pp. 257–274, 2018, doi: 10.1016/j.energy.2018.06.136.