Subject Areas : Computer Engineering
T. Razzaghnia 1 , S. Danesh 2 , A. Maleki 3
1 - Department of Statistics, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Young Researchers and Elite Club, East Tehran Branch, Islamic Azad university, Tehran, Iran.
3 - Department of Statistics, West tehran Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
[1] H. Tanaka, S. Uejima, K. Asia, “Linear regression analysis with fuzzy model”, IEEE Transactions on Systems, Man, and Cybernetics,Vol12,P 903-907, 1982.
[2] Danesh, S., Farnoosh, R., Razzaghnia, T. (2015). “Fuzzy nonparametric regression based on adaptive neuro fuzzy inference system”, Neurocomputing, Vol173, P1450-1460, 2015.
[3] Naderkhani, R., Behzad, M.H., Razzaghnia, T. et al. “Fuzzy Regression Analysis Based on Fuzzy Neural Networks Using Trapezoidal Data”. Int. J. Fuzzy Syst. Vol23, P1267–1280, 2021.
[4]Cheng, C. B., Lee, E. S ,. “Nonparametric fuzzy regression K-NN and Kernel Smoothing techniques”, Computers and Mathematics with Applications, Vo 38, P 239-251, 1999.
[5] R. Farnoosh, J. Ghasemian and o. SolaymaniFard, “A modification on ridge estimation for fuzzy nonparametric regression”, Iraninan Journal of Fuzzy systems,Vol 9,P 75-88, 2012.
[6] H. Ishibushi, H. Tanaka, “Fuzzy regression analysis using neural networks”, Fuzzy Sets and Systems, Vol50,P257-265,1992.
[7] H. Ishibushi, H. Tanaka, “Fuzzy neural networks with interval weights and its application to fuzzy regression analysis”, Fuzzy Sets and Systems, Vol 57,P 27-39,1993.
[8] J. Fan, I. Gijbels, Local polynomial modeling and its applications, Chapman & Hall, London, 1996.
[9] W. Hardle, Applied Nonparametric Regression, Cambridge University Press, New York, 1990.
[10] M.Danesh ,S.Danesh , T.Razzaghnia, A.Maleki, “Prediction of fuzzy nonparametric regression function: a comparative study of a new hybrid method and smoothing methods”, Global Analysis and Discrete Mathematics, Vol
6, Issue 1, P 143–177,2021.
[11] N.Wang, W.X. Zhang and C.L Mei, “Fuzzy nonparametric regression based on local linear smoothing
technique”, Information Sciences, Vol177, P 3882-3900,
2007.
[12] P. Diamond, “Fuzzy least squares”, Information Sciences,Vol46, P 141-157, 1988.
[13] T. Razzaghnia, E. Pasha, E. Khorram, A. Razzaghnia, “Fuzzy linear regression analysis with trapezoidal coefficients”, First Joint Congress On Fuzzy And Intelligent Systems, 2007, Aug. 29-31, Mashhad, Iran.
[14] D. O. Loftsgaarden and G.P. Quesenberry, “A nonparametric estimate of a multivariate density function”, Annals of Mathematical Statistics,Vol36, P1049-1051, 1965.
[15] R. Coppi, P.D'Urso, P. Giordani, A Santoro, “Least squares estimation of a linear regression model with LR fuzzy response”, Computational Statistics and Data Analysis, Vol 51,P 267-286,2006.
[16] M. Stone, “Cross-validatory choice and assessment of statistical predictions”, Journal of the Royal Statistical Society, VOl 36 (Series B), P111-147, 1994.
[17] Chang, P. T., Lee, E. S., “A generalized fuzzy weighted least-squares regression”, Fuzzy Sets and Systems,Vol82, P289-298, 1996.
[18] C.-B. Cheng, E. S. Lee, “Applying Fuzzy Adoptive Network to Fuzzy Regression Analysis”,Computers and Mathematics with Applications,Vol38, P 123-140, 1999.