Exclusion of heavy cations from wastewater using activated carbon/NiFe2O4 nanocomposite prepared via co-precipitation method
Subject Areas : Journal of NanoanalysisMahdi Ranjeh 1 , Mehdi Mousavi-Kamazani 2
1 - Department of Chemistry, College of Science, Semnan University, Semnan, Iran
2 - New Technology Faculty, Semnan University, Semnan, Iran.
Keywords:
Abstract :
[1] M. Mousavi-Kamazani, R. Rahmatolahzadeh and S.A. Shobeir, Facile sol–gel auto-combustion synthesis of β-Zn3B2O6 nanoparticles: optical and photocatalytic studies, J. Mater. Sci. Mater. Electron., 28, 17961 (2017).
[2] C. Feng, S. Zhang, L. Li, G. Wang, X. Xua, T. Li and Q. Zhong, Feasibility of four wastes to remove heavy metals from contaminated soils, J. Environ. Manage., 212, 258 (2018).
[3] Z. Jiang, Y. Zhao and P. Yang, Formation of MFe2O4 (M = Co, Mn, Ni) 1D nanostructures towards rapid removal of pollutants, Mater. Chem. Phys., 214, 1 (2018).
[4] A. Soto-Arreola, A.M. Huerta-Flores, J.M. Mora-Hernández and L.M. Torres-Martínez, Improved photocatalytic activity for water splitting over MFe2O4–ZnO (M = Cu and Ni) type-ll heterostructures, J. Photochem. Photobiol. A-Chem., 364, 433 (2018).
[5] P. Liu, Y. Ren, W. Ma, J. Ma and Y. Du, Degradation of shale gas produced water by magnetic porous MFe2O4 (M = Cu, Ni, Co and Zn) heterogeneous catalyzed ozone, Chem. Eng. J., 345, 98 (2018).
[6] Z. Naghshbandi, N. Arsalani, M.S. Zakerhamidi and K.E. Geckeler, A novel synthesis of magnetic and photoluminescent graphene quantum dots/MFe2O4 (M = Ni, Co) nanocomposites for catalytic application, Appl. Surf. Sci., 443, 484 (2018).
[7] S.A.V. Prasad, M. Deepty, P.N. Ramesh, G. Prasad and D.L. Sastry, Synthesis of MFe2O4 (M=Mg2+, Zn2+, Mn2+) spinel ferrites and their structural, elastic and electron magnetic resonance properties, Ceram. Int., 44, 10517 (2018).
[8] M.H. Beyki, F. Shemirani, J. Malakootikhah, S. Minaeian and R. Khani, Catalytic synthesis of graphene-like polyaniline derivative-MFe2O4 (M; Cu, Mn) nanohybrid as multifunctionality water decontaminant, React. Func. Polym., 125, 108 (2018).
[9] D.K. Dinkar, B. Das, R. Gopalan and B.S. Dehiya, Effects of surfactant on the structural and magnetic properties of hydrothermally synthesized NiFe2O4 nanoparticles, Mater. Chem. Phys., 218, 70 (2018).
[10] X. Cao, J. Meng, Q. Meng, H. Dong and J. Zhang, Investigation of synthesis and magnetic property of rod-shaped NiFe2O4 via chemical precipitation-topotactic reaction employing needle-like γ-FeOOH and α-FeOOH as templates, Mater. Lett., 228, 356 (2018).
[11] M.M. Rahman, M. Adil, A.M. Yusof, Y.B. Kamaruzzaman and R.H. Ansary, Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells, Materials, 7, 3634 (2014).
[12] M. Younas, M. Nadeem, M. Atif and R. Grossinger, Metal-semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy, J. Appl. Phys., 109, 093704 (2011).
[13] J. Jacob and M.A. Khadar, Investigation of mixed spinel structure of nanostructured nickel ferrite, J. Appl. Phys., 107, 114310 (2010).
[14] A. Ceylana, S. Ozcanb, C. Nic and S. Ismat Shah, Solid state reaction synthesis of NiFe2O4 nanoparticles, J. Magnetism Magnetic Mater., 320, 857 (2008).
[15] A.B. Salunkhe, V.M. Khot, M.R. Phadatare and S.H. Pawar, Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications, J. Alloys Compd., 514, 91 (2012).
[16] M. Mousavi-Kamazani, M. Salavati-Niasari and M. Ramezani, Preparation and characterization of Cu2S nanoparticles via ultrasonic method, J. Cluster Sci., 24, 927 (2013).
[17] J. Huo and M. Wei, Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method, Mater. Lett., 63, 1183 (2009).
[18] M. Panahi-Kalamuei, M. Mousavi-Kamazani and M. Salavati-Niasari, Self-assembly of nanoparticles to form tree-like tellurium nanostructures using novel starting reagents, Mater. Lett., 136, 218 (2014).
[19] M. Srivastava, S. Chaubey and A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods, Mater. Chem. Phys., 118, 174 (2009).
[20] V.K. Sankaranarayana and C. Sreekumar, Precursor synthesis and microwave processing of nickel ferrite nanoparticles, Curr. Appl. Phys., 3, 205 (2003).
[21] R. Rahmatolahzadeh, M. Mousavi-Kamazani and S.A. Shobeiri, Facile co-precipitation-calcination synthesis of CuCo2O4 nanostructures using novel precursors for degradation of azo dyes, J. Inorg. Organomet. Polym. Mater., 27, 313 (2017).
[22] M. Mousavi-Kamazani, Z. Zarghami, R. Rahmatolahzadeh and M. Ramezani, Solvent-free synthesis of Cu-Cu2O nanocomposites via green thermal decomposition route using novel precursor and investigation of its photocatalytic activity, Adv. Powder Technol., 28, 2078 (2017).
[23] P. Laokul, V. Amornkitbamrung, S. Seraphin and S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution, Curr. Appl. Phys., 11, 101 (2011).