A review of the treatment of bone tumours by hyperthermia using magnetic nanoparticles
Subject Areas : Journal of NanoanalysisAthena Ehsani 1 , Rayappa Shrinivas Mahale 2 , Shika Shayegan 3 , Ali Attaeyan 4 , Atefeh Ghorbani 5 , Shamanth Vasanth 6 , Sharath P C 7 , Sheyda Shahriari 8 , Azadeh Asefnejad 9
1 - Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - School of Mechanical Engineering, REVA University, Bengaluru, Karnataka, India
3 - Department of Pharmacy, Cyprus Health and Social Science, Guzelyurt, TRNC via Mersin 10, Turkey
4 - Faculty of Biomechanics, Department of Biomedical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
5 - Biotechnology Department,Falavarjan Branch, lslamic Azad University,Esfahan,lran
6 - School of Mechanical Engineering, REVA University, Bengaluru, Karnataka, India
7 - Department of Metallurgical and Materials Engineering, JAIN Deemed to be University Bangalore Karnataka, India
8 - Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
9 - Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
1) Gavilan, H., Avugadda, S. K., Fernandez-Cabada, T., Soni, N., Cassani, M., Mai, B. T., & Pellegrino, T. (2021). Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews.
https://doi.org/10.1039/D1CS00427A
2) Hatamie, S., Balasi, Z. M., Ahadian, M. M., Mortezazadeh, T., Shams, F., & Hosseinzadeh, S. (2021). Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice. Journal of Drug Delivery Science and Technology, 65, 102680.
https://doi.org/10.1016/j.jddst.2021.102680
3) Huang, Y., Kang, Y., El-kott, A., Ahmed, A. E., Khames, A., & Zein, M. A. (2021). Decorated Cu NPs on Lignin coated magnetic nanoparticles: Its performance in the reduction of nitroarenes and investigation of its anticancer activity in A549 lung cancer cells. Arabian Journal of Chemistry, 14(8), 103299.
https://doi.org/10.1016/j.arabjc.2021.103299
4) Khandan, A., Abdellahi, M., Ozada, N., & Ghayour, H. (2016). Study of the bioactivity, wettability and hardness behaviour of the bovine hydroxyapatite-diopside bio-nanocomposite coating. Journal of the Taiwan Institute of Chemical Engineers, 60, 538-546.
https://doi.org/10.1016/j.jtice.2015.10.004
5) Karamian, E., Motamedi, M. R. K., Khandan, A., Soltani, P., & Maghsoudi, S. (2014). An in vitro evaluation of novel NHA/zircon plasma coating on 316L stainless steel dental implant. Progress in Natural Science: Materials International, 24(2), 150-156.
https://doi.org/10.1016/j.pnsc.2014.04.001
6) Karamian, E., Abdellahi, M., Khandan, A., & Abdellah, S. (2016). Introducing the fluorine doped natural hydroxyapatite-titania nanobiocomposite ceramic. Journal of Alloys and Compounds, 679, 375-383.
https://doi.org/10.1016/j.jallcom.2016.04.068
7) Najafinezhad, A., Abdellahi, M., Ghayour, H., Soheily, A., Chami, A., & Khandan, A. (2017). A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics. Materials Science and Engineering: C, 72, 259-267.
https://doi.org/10.1016/j.msec.2016.11.084
8) Ghayour, H., Abdellahi, M., Ozada, N., Jabbrzare, S., & Khandan, A. (2017). Hyperthermia application of zinc doped nickel ferrite nanoparticles. Journal of Physics and Chemistry of Solids, 111, 464-472.
https://doi.org/10.1016/j.jpcs.2017.08.018
9) Kazemi, A., Abdellahi, M., Khajeh-Sharafabadi, A., Khandan, A., & Ozada, N. (2017). Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material. Materials Science and Engineering: C, 71, 604-610.
https://doi.org/10.1016/j.msec.2016.10.044
10) Khandan, A., & Ozada, N. (2017). Bredigite-Magnetite (Ca7MgSi4O16-Fe3O4) nanoparticles: A study on their magnetic properties. Journal of Alloys and Compounds, 726, 729-736.
https://doi.org/10.1016/j.jallcom.2017.07.288
11) Khandan, A., Jazayeri, H., Fahmy, M. D., & Razavi, M. (2017). Hydrogels: Types, structure, properties, and applications. Biomat Tiss Eng, 4(27), 143-69.
https://doi.org/10.2174/9781681085364117040007
12) Sharafabadi, A. K., Abdellahi, M., Kazemi, A., Khandan, A., & Ozada, N. (2017). A novel and economical route for synthesizing akermanite (Ca2MgSi2O7) nano-bioceramic. Materials Science and Engineering: C, 71, 1072-1078.
https://doi.org/10.1016/j.msec.2016.11.021
13) Khandan, A., Abdellahi, M., Ozada, N., & Ghayour, H. (2016). Study of the bioactivity, wettability and hardness behaviour of the bovine hydroxyapatite-diopside bio-nanocomposite coating. Journal of the Taiwan Institute of Chemical Engineers, 60, 538-546.
https://doi.org/10.1016/j.jtice.2015.10.004
14) Shayan, A., Abdellahi, M., Shahmohammadian, F., Jabbarzare, S., Khandan, A., & Ghayour, H. (2017). Mechanochemically aided sintering process for the synthesis of barium ferrite: Effect of aluminum substitution on microstructure, magnetic properties and microwave absorption. Journal of Alloys and Compounds, 708, 538-546
https://doi.org/10.1016/j.jallcom.2017.02.305
15) Heydary, H. A., Karamian, E., Poorazizi, E., Khandan, A., & Heydaripour, J. (2015). A novel nano-fiber of Iranian gum tragacanth-polyvinyl alcohol/nanoclay composite for wound healing applications. Procedia Materials Science, 11, 176-182.
https://doi.org/10.1016/j.mspro.2015.11.079
16) Khandan, A., Karamian, E., & Bonakdarchian, M. (2014). Mechanochemical synthesis evaluation of nanocrystalline bone-derived bioceramic powder using for bone tissue engineering. Dental Hypotheses, 5(4), 155.
https://doi.org/10.4103/2155-8213.140606
17) Karamian, E., Khandan, A., Kalantar Motamedi, M. R., & Mirmohammadi, H. (2014). Surface characteristics and bioactivity of a novel natural HA/zircon nanocomposite coated on dental implants. BioMed research international, 2014.
https://doi.org/10.1155/2014/410627
18) Jabbarzare, S., Abdellahi, M., Ghayour, H., Arpanahi, A., & Khandan, A. (2017). A study on the synthesis and magnetic properties of the cerium ferrite ceramic. Journal of Alloys and Compounds, 694, 800-807.
https://doi.org/10.1016/j.jallcom.2016.10.064
19) Razavi, M., & Khandan, A. (2017). Safety, regulatory issues, long-term biotoxicity, and the processing environment. In Nanobiomaterials Science, Development and Evaluation (pp. 261-279). Woodhead Publishing.
https://doi.org/10.1016/B978-0-08-100963-5.00014-8
20) Khandan, A., Ozada, N., & Karamian, E. (2015). Novel microstructure mechanical activated nano composites for tissue engineering applications. J Bioeng Biomed Sci, 5(1), 1.
21) Ghayour, H., Abdellahi, M., Bahmanpour, M., & Khandan, A. (2016). Simulation of dielectric behavior in RFeO $$ _ {3} $$3 orthoferrite ceramics (R= rare earth metals). Journal of Computational Electronics, 15(4), 1275-1283.
https://doi.org/10.1007/s10825-016-0886-2
22) Saeedi, M., Abdellahi, M., Rahimi, A., & Khandan, A. (2016). Preparation and characterization of nanocrystalline barium ferrite ceramic. Functional Materials Letters, 9(05), 1650068.
https://doi.org/10.1142/S1793604716500685
23) Khandan, A., Karamian, E., Faghih, M., & Bataille, A. (2014). Formation of AlN Nano Particles Precipitated in St-14 Low Carbon Steel by Micro and Nanoscopic Observations. Journal of Iron and Steel Research International, 21(9), 886-890.
https://doi.org/10.1016/S1006-706X(14)60157-6
24) Karamian, E. B., Motamedi, M. R., Mirmohammadi, K., Soltani, P. A., & Khandan, A. M. (2014). Correlation between crystallographic parameters and biodegradation rate of natural hydroxyapatite in physiological solutions. Indian J Sci Res, 4(3), 092-9.
https://doi.org/10.1155/2014/410627
25) Khandan, A., & Esmaeili, S. (2019). Fabrication of polycaprolactone and polylactic acid shapeless scaffolds via fused deposition modelling technology. Journal of Advanced Materials and Processing, 7(4), 16-29.
26) Saeedi, M. R., Morovvati, M. R., & Mollaei-Dariani, B. (2020). Experimental and numerical investigation of impact resistance of aluminum-copper cladded sheets using an energy-based damage model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(6), 1-24.
https://doi.org/10.1007/s40430-020-02397-0
27) Kardan-Halvaei, M., Morovvati, M. R., & Mollaei-Dariani, B. (2020). Crystal plasticity finite element simulation and experimental investigation of the micro-upsetting process of OFHC copper. Journal of Micromechanics and Microengineering, 30(7), 075005.
https://doi.org/10.1088/1361-6439/ab8549
28) Fazlollahi, M., Morovvati, M. R., & Mollaei Dariani, B. (2019). Theoretical, numerical and experimental investigation of hydro-mechanical deep drawing of steel/polymer/steel sandwich sheets. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(5), 1529-1546.
https://doi.org/10.1177/0954405418780173
29) Saeedi, M. R., Morovvati, M. R., & Alizadeh-Vaghasloo, Y. (2018). Experimental and numerical study of mode-I and mixed-mode fracture of ductile U-notched functionally graded materials. International Journal of Mechanical Sciences, 144, 324-340.
https://doi.org/10.1016/j.ijmecsci.2018.06.008
30) Morovvati, M. R., & Mollaei-Dariani, B. (2018). The formability investigation of CNT-reinforced aluminum nano-composite sheets manufactured by accumulative roll bonding. The International Journal of Advanced Manufacturing Technology, 95(9), 3523-3533.
https://doi.org/10.1007/s00170-017-1205-1
31) Morovvati, M. R., & Dariani, B. M. (2017). The effect of annealing on the formability of aluminum 1200 after accumulative roll bonding. Journal of Manufacturing Processes, 30, 241-254.
https://doi.org/10.1016/j.jmapro.2017.09.013
32) Morovvati, M. R., Lalehpour, A., & Esmaeilzare, A. (2016). Effect of nano/micro B4C and SiC particles on fracture properties of aluminum 7075 particulate composites under chevron-notch plane strain fracture toughness test. Materials Research Express, 3(12), 125026.
https://doi.org/10.1088/2053-1591/3/12/125026
33) Fatemi, A., Morovvati, M. R., & Biglari, F. R. (2013). The effect of tube material, microstructure, and heat treatment on process responses of tube hydroforming without axial force. The International Journal of Advanced Manufacturing Technology, 68(1), 263-276.
https://doi.org/10.1007/s00170-013-4727-1
34) Pourmoghadam, M. N., Esfahani, R. S., Morovvati, M. R., & Rizi, B. N. (2013). Bifurcation analysis of plastic wrinkling formation for anisotropic laminated sheets (AA2024-Polyamide-AA2024). Computational materials science, 77, 35-43.
https://doi.org/10.1016/j.commatsci.2013.03.037
35) Morovvati, M. R., Mollaei-Dariani, B., & Haddadzadeh, M. (2010). Initial blank optimization in multilayer deep drawing process using GONNS. Journal of manufacturing science and engineering, 132(6).
https://doi.org/10.1115/1.4003121
36) Fatemi, A., Biglari, F., & Morovvati, M. R. (2010). Influences of inner pressure and tube thickness on process responses of hydroforming copper tubes without axial force. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(12), 1866-1878.
https://doi.org/10.1243/09544054JEM2001
37) Anarestani, S. S., Morovvati, M. R., & Vaghasloo, Y. A. (2015). Influence of anisotropy and lubrication on wrinkling of circular plates using bifurcation theory. International Journal of Material Forming, 8(3), 439-454.
https://doi.org/10.1007/s12289-014-1187-6
38) Talebi, M., Abbasi-Rad, S., Malekzadeh, M., Shahgholi, M., Ardakani, A. A., Foudeh, K., & Rad, H. S. (2021). Cortical bone mechanical assessment via free water relaxometry at 3 T. Journal of Magnetic Resonance Imaging, 54(6), 1744-1751.
https://doi.org/10.1002/jmri.27765
39) Lucchini, R., Carnelli, D., Gastaldi, D., Shahgholi, M., Contro, R., & Vena, P. (2012). A damage model to simulate nanoindentation tests of lamellar bone at multiple penetration depth. In 6th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2012 (pp. 5919-5924).
40) Shahgholi. M. (2014). Experimental and numerical characterization of native bone tissue and glass ceramic bone scaffold at small scale.
41) Fada, R., Farhadi Babadi, N., Azimi, R., Karimian, M., & Shahgholi, M. (2021). Mechanical properties improvement and bone regeneration of calcium phosphate bone cement, Polymethyl methacrylate and glass ionomer. Journal of Nanoanalysis, 8(1), 60-79.
42) Monfared, R. M., Ayatollahi, M. R., & Isfahani, R. B. (2018). Synergistic effects of hybrid MWCNT/nanosilica on the tensile and tribological properties of woven carbon fabric epoxy composites. Theoretical and Applied Fracture Mechanics, 96, 272-284.
https://doi.org/10.1016/j.tafmec.2018.05.007
43) Ayatollahi, M. R., Barbaz Isfahani, R., & Moghimi Monfared, R. (2017). Effects of multi-walled carbon nanotube and nanosilica on tensile properties of woven carbon fabric-reinforced epoxy composites fabricated using VARIM. Journal of Composite Materials, 51(30), 4177-4188.
https://doi.org/10.1177/0021998317699982
44) Kamarian, S., Bodaghi, M., Isfahani, R. B., Shakeri, M., & Yas, M. H. (2021). Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: Experimental and numerical investigations. Mechanics Based Design of Structures and Machines, 49(2), 217-232.
https://doi.org/10.1080/15397734.2019.1674664
45) Ayatollahi, M. R., Moghimi Monfared, R., & Barbaz Isfahani, R. (2019). Experimental investigation on tribological properties of carbon fabric composites: effects of carbon nanotubes and nano-silica. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 874-884.
https://doi.org/10.1177/1464420717714345
46) Kamarian, S., Bodaghi, M., Isfahani, R. B., & Song, J. I. (2020). A comparison between the effects of shape memory alloys and carbon nanotubes on the thermal buckling of laminated composite beams. Mechanics Based Design of Structures and Machines, 1-24.
https://doi.org/10.1080/15397734.2020.1776131
47) Mirsasaani, S. S., Bahrami, M., & Hemati, M. (2016). Effect of Argon laser Power Density and Filler content on Physico-mechanical properties of Dental nanocomposites. Bull. Env. Pharmacol. Life Sci, 5, 28-36.
48) Ghomi, F., Daliri, M., Godarzi, V., & Hemati, M. (2021). A novel investigation on characterization of bioactive glass cement and chitosan-gelatin membrane for jawbone tissue engineering. Journal of Nanoanalysis.
49) Mirsasaani, S. S., Hemati, M., Dehkord, E. S., Yazdi, G. T., & Poshtiri, D. A. (2019). Nanotechnology and nanobiomaterials in dentistry. In Nanobiomaterials in clinical dentistry (pp. 19-37). Elsevier.
https://doi.org/10.1016/B978-0-12-815886-9.00002-4
50) Mahale, R. S., Shamanth, V., Sharath, P. C., Shashanka, R., & Hemanth, K. (2021). A review on spark plasma sintering of duplex stainless steels. Elsevier Materials Today: Proceedings, 45, 138-144.
https://doi.org/10.1016/j.matpr.2020.10.357
51) Mahale, R. S., Shamanth, V., Sharath, P. C., Hemanth, K., & Shashanka, R. (2022). Mechanical testing of spark plasma sintered materials: A Review. AIP Conference Proceedings, 2469, 01-24.
https://doi.org/10.1063/5.0080183
52) Mahale, R. S, Shashanka, R., Shamanth, V., Hemanth, K., Nithin, S. K., Sharath, P. C., & Patil, A. (2022). Technology and Challenges in Additive Manufacturing of Duplex Stainless Steels. Biointerface Research in Applied Chemistry, 12(1), 1110-1119.
https://doi.org/10.33263/BRIAC121.11101119
53) Mahale, R. S., Shamanth, V., Hemanth, K., Sharath P. C., Shashanka R., Patil A., & Rathod, B. S. (2022). Sensor Based Additive Manufacturing Technologies. Biointerface Research in Applied Chemistry, 12(3), 3513-3521.
https://doi.org/10.33263/BRIAC123.35133521
54) Mahale, R. S., Shamanth, V., & Sharath P. C. (2020). A Study on Precipitation Kinetics of Super Duplex Stainless Steels. International Journal of Scientific and Engineering Research, 11(07), 18-21.
55) Mahale, R. S., Shashanka, R., Shamanth, V., & Vinaykumar, R. (2021). Voltammetric Determination of Various Food Azo Dyes Using Different Modified Carbon Paste Electrodes . Biointerface Research in Applied Chemistry, 12(4), 4557-4566.
https://doi.org/10.33263/BRIAC124.45574566
56) Mahale, R. S., Shamanth, V., Hemanth, K., Nithin S. K., Sharath, P. C., Shashanka, R., Patil A., & Darshan, Shetty. (2022). Processes and Applications of Metal Additive Manufacturing. Elsevier Materials Today: Proceedings, 54, 228-233.
https://doi.org/10.1016/j.matpr.2021.08.298
57) Asadpoori, A., Keshavarzi, A., & Abedinzadeh, R. (2021). Parametric study of automotive shape memory alloy bumper beam subjected to low-velocity impacts. International journal of crashworthiness, 26(3), 322-327.
https://doi.org/10.1080/13588265.2020.1717916
58) Abedinzadeh, R. (2018). Study on the densification behavior of aluminum powders using microwave hot pressing process. The International Journal of Advanced Manufacturing Technology, 97(5), 1913-1929.
https://doi.org/10.1007/s00170-018-1867-3
59) Moradi, A., Heidari, A., Amini, K., Aghadavoudi, F., & Abedinzadeh, R. (2021). Molecular modeling of Ti-6Al-4V alloy shot peening: the effects of diameter and velocity of shot particles and force field on mechanical properties and residual stress. Modelling and Simulation in Materials Science and Engineering, 29(6), 065001.
https://doi.org/10.1088/1361-651X/ac03a3
60) Abedinzadeh, R., & Faraji Nejad, M. (2021). Effect of embedded shape memory alloy wires on the mechanical behavior of self-healing graphene-glass fiber-reinforced polymer nanocomposites. Polymer Bulletin, 78(6), 3009-3022.
https://doi.org/10.1007/s00289-020-03253-w
61) Abedinzadeh, R., Norouzi, E., & Toghraie, D. (2021). Experimental investigation of machinability in laser-assisted machining of aluminum-based nanocomposites. Journal of Materials Research and Technology, 15, 3481-3491.
https://doi.org/10.1016/j.jmrt.2021.09.127
62) Khademi, H., Iranmanesh, P., Moeini, A., & Tavangar, A. (2014). Evaluation of the effectiveness of the iralvex gel on the recurrent aphthous stomatitis management. International Scholarly Research Notices, 2014.
https://doi.org/10.1155/2014/175378
63) Kolahi, J., Khazaei, S., Iranmanesh, P., & Soltani, P. (2019). Analysis of highly tweeted dental journals and articles: a science mapping approach. British dental journal, 226(9), 673-678.
https://doi.org/10.1038/s41415-019-0212-z
64) Liu, L., Xu, X., Liang, X., Zhang, X., Wen, J., Chen, K., ... & Xu, J. (2021). Periodic mesoporous organosilica-coated magnetite nanoparticles combined with lipiodol for transcatheter arterial chemoembolization to inhibit the progression of liver cancer. Journal of colloid and interface science, 591, 211-220.
https://doi.org/10.1016/j.jcis.2021.02.022
65) Rezanezhad, A., Hajalilou, A., Eslami, F., Parvini, E., Abouzari-Lotf, E., & Aslibeiki, B. (2021). Superparamagnetic magnetite nanoparticles for cancer cells treatment via magnetic hyperthermia: effect of natural capping agent, particle size and concentration. Journal of Materials Science: Materials in Electronics, 32(19), 24026-24040.
https://doi.org/10.1007/s10854-021-06865-8
66) Askar, M. A., El-Nashar, H. A., Al-Azzawi, M. A., Rahman, S. S. A., & Elshawi, O. E. (2022). Synergistic Effect of Quercetin Magnetite Nanoparticles and Targeted Radiotherapy in Treatment of Breast Cancer. Breast Cancer: Basic and Clinical Research, 16, 11782234221086728.
https://doi.org/10.1177/11782234221086728
67) Janani, V., Induja, S., Jaison, D., Abhinav, E. M., Mothilal, M., & Gopalakrishnan, C. (2021). Tailoring the hyperthermia potential of magnetite nanoparticles via gadolinium ION substitution. Ceramics International, 47(22), 31399-31406.
https://doi.org/10.1016/j.ceramint.2021.08.015
68) Areekara, S., Mabood, F., Sabu, A. S., Mathew, A., & Badruddin, I. A. (2021). Dynamics of water conveying single-wall carbon nanotubes and magnetite nanoparticles subject to induced magnetic field: A bioconvective model for theranostic applications. International Communications in Heat and Mass Transfer, 126, 105484.
https://doi.org/10.1016/j.icheatmasstransfer.2021.105484
69) Demin, A. M., Pershina, A. G., Minin, A. S., Brikunova, O. Y., Murzakaev, A. M., Perekucha, N. A., ... & Krasnov, V. P. (2021). Smart Design of a pH-Responsive System Based on pHLIP-Modified Magnetite Nanoparticles for Tumor MRI. ACS applied materials & interfaces, 13(31), 36800-36815.
https://doi.org/10.1021/acsami.1c07748
70) Dong, P., Zhang, T., Xiang, H., Xu, X., Lv, Y., Wang, Y., & Lu, C. (2021). Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography. Journal of Materials Chemistry B, 9(4), 958-968.
https://doi.org/10.1039/D0TB02337J
71) Baranei, M., Taheri, R. A., Tirgar, M., Saeidi, A., Oroojalian, F., Uzun, L., ... & Goodarzi, V. (2021). Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome Coated with PEG against different cell lines. Materials Today Communications, 26, 101751.
https://doi.org/10.1016/j.mtcomm.2020.101751
72) Abasalta, M., Asefnejad, A., Khorasani, M. T., & Saadatabadi, A. R. (2021). Fabrication of carboxymethyl chitosan/poly (ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer. Carbohydrate Polymers, 257, 117631.
https://doi.org/10.1016/j.carbpol.2021.117631
73) Kheiri Mollaqasem, V., Asefnejad, A., Nourani, M. R., Goodarzi, V., & Kalaee, M. R. (2021). Incorporation of graphene oxide and calcium phosphate in the PCL/PHBV core-shell nanofibers as bone tissue scaffold. Journal of Applied Polymer Science, 138(6), 49797.
https://doi.org/10.1002/app.49797
74) Sotoudeh, A., Darbemamieh, G., Goodarzi, V., Shojaei, S., & Asefnejad, A. (2021). Tissue engineering needs new biomaterials: Poly (xylitol-dodecanedioic acid)-co-polylactic acid (PXDDA-co-PLA) and its nanocomposites. European Polymer Journal, 152, 110469.
https://doi.org/10.1016/j.eurpolymj.2021.110469
75) Abedinzadeh, R. (2018). Study on the densification behavior of aluminum powders using microwave hot pressing process. The International Journal of Advanced Manufacturing Technology, 97(5), 1913-1929.
https://doi.org/10.1007/s00170-018-1867-3
76) Asadpoori, A., Keshavarzi, A., & Abedinzadeh, R. (2021). Parametric study of automotive shape memory alloy bumper beam subjected to low-velocity impacts. International journal of crashworthiness, 26(3), 322-327.
https://doi.org/10.1080/13588265.2020.1717916
77) Moradi, A., Heidari, A., Amini, K., Aghadavoudi, F., & Abedinzadeh, R. (2021). Molecular modeling of Ti-6Al-4V alloy shot peening: the effects of diameter and velocity of shot particles and force field on mechanical properties and residual stress. Modelling and Simulation in Materials Science and Engineering, 29(6), 065001.
https://doi.org/10.1088/1361-651X/ac03a3
78) Elgazery, N. S., Elelamy, A. F., Bobescu, E., & Ellahi, R. (2022). How do artificial bacteria behave in magnetized nanofluid with variable thermal conductivity: application of tumor reduction and cancer cells destruction. International Journal of Numerical Methods for Heat & Fluid Flow.
https://doi.org/10.1108/HFF-11-2021-0722
79) Narayanaswamy, V., Sambasivam, S., Saj, A., Alaabed, S., Issa, B., Al-Omari, I. A., & Obaidat, I. M. (2021). Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths. Molecules, 26(4), 796.
https://doi.org/10.3390/molecules26040796
80) Khan, B., Nawaz, M., Price, G. J., Hussain, R., Baig, A., Haq, S., ... & Waseem, M. (2021). In vitro sustained release of gallic acid from the size-controlled PEGylated magnetite nanoparticles. Chemical Papers, 75(10), 5339-5352.
https://doi.org/10.1007/s11696-021-01724-6